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Preface

“Unprovided with original learning, unformed in the habits of thinking, unskilled in the
arts of composition, I resolved to write a book.”

Edward Gibbon

This is believed to be the first book concentrating wholly on active crossovers—in fact, it is
probably the first book that focuses exclusively on crossovers of any sort. In a field where
any sort of consensus is rare, there is general agreement that audio systems with active
crossovers and multiple amplifiers to drive the loudspeakers sound unquestionably better
than their passive crossover counterparts. I think that the use of active crossovers may well
be the next big step in hi-fi, and that was part of my motivation for writing this book. The use
of active crossovers in sound reinforcement is also very fully covered.

You might think that active crossovers are a narrow field for a book, but actually the scope
of the subject is rather wider than it sounds. There is a lot of material on active filters,
low-noise design, and generally on the intelligent use of opamps, which has much wider
applications. More broadly than that, there are many examples of how to tackle a problem
logically and get results which are both optimal and economical.

This book will also be useful for passive crossover design. It gives comprehensive details
of all the basic crossover alignments, plus some more exotic types such as Gaussian and
Legendre crossovers. Having chosen one, whether you use an active crossover or a passive
one is up to you. Passive crossover design is greatly complicated by reactive drive unit
impedances, the problems of matching drive unit sensitivities, the need to present a reasonable
load impedance to an amplifier, etc, so a given crossover alignment is something to be aimed
at hopefully. With an active crossovers, be it analogue or digital, the required alignment can
be realised precisely.

As to the analogue versus DSP issue, I have tried to structure this book so that at least
two-thirds of it is applicable to either the analogue or the DSP approach. You study the
concepts, you choose a crossover type, and when you find that at some point you need, say,
a second-order Butterworth filter, it is then your choice whether to break out the 5532s or
start cutting code for a DSP.
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However, when it comes down to the implementation, the focus of this book is analogue,
and to be specific, opamp-based analogue. Instructions on DSP implementation would need
to discuss topics like the bilinear transform, word-length effects (Fixed-point or floating
point? Single or double precision?), the different IIR filter structures, convolution methods
for FIR, noise shaping, and so on. All good stuff, but none of it crossover-specific. It can be
found in many DSP textbooks. In contrast, a lot of the material on analogue implementation,
is crossover-oriented, because the use of Sallen & Key filters puts opamps in particularly
demanding situations.

I have nothing whatsoever against the DSP approach. It was I that did the initial digital
mixing console work at Soundcraft on the Motorola 56001 processor back in the mid 1980s.
Clearly some functions such as pure time-delay are much easier in the digital world, and
there is unquestionably the advantage of very great precision in setting filter characteristics
with no worries about capacitor tolerances and so on. It is doubtful if it is practical to make
an eighth-order crossover any other way. Nonetheless, there was just not space to give any
meaningful attention to DSP issues.

In this book I have not included the underlying mathematics of filter design. Active crossovers
inevitably involve a lot of filter design, and if you have ever looked into a filter textbook
you will probably have found it bristling with long equations spattered with Laplace
variables (those enigmatic s’s), and some heavyweight complex algebra; this does not just
mean complicated algebra, but algebra that incorporates j, the square root of minus-one.
There will be much talk of placing poles and zeros on the complex plane.

This is all very well, and you will unquestionably have a better feel for filter design if you
understand it, but it is my contention that today it is not necessary for practical filter design.
I say today, because nowadays it is possible to download very capable simulation software for
free. There is no need to evaluate unwieldy equations to plot your filter response—you just
enter the circuit and in a minute or two you can have the frequency response, phase response,
and group delay curve in as much detail as you like. This is quite a significant development,
as for a start it means that this book can be produced in a reasonable length. Putting in all the
equations would have doubled its size, as well as discouraging a lot of people.

That does not mean there is no mathematics at all; I have included a large number of design
equations for specific circuits so the component values can be calculated very rapidly. You
don’t need to be able to handle anything worse than a square root. There are many fully
worked-out practical circuits with component values that can be simply scaled to give the
characteristics required. There are tables that allow you to design a wide range of filters
very quickly indeed.

This book goes all the way from the basic concepts of crossovers, however implemented,
to the details of making a non-standard resistance value by putting two resistors in series
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or parallel. You might think nothing could be simpler—but actually combining two resistors
to get the most accurate result is a surprisingly subtle business.

There is a lot of new material here that has never been published before. To pick a few
examples at random: using capacitance multipliers in biquad equalisers, opamp output
biasing to reduce distortion, the design of NTM™ notch crossovers, the design of special
filters for filler-driver crossovers, the use of mixed capacitors to reduce filter distortion,
differentially elevated internal levels to reduce noise, and so on.

What you will not find in this book is any homage to Subjectivism—the cult of thousand-
pound cables, audio homeopathy, and faith-based audio in general. Truck with that I will
have none of.

I don’t claim that this book contains all knowledge on crossovers. If it tried to do that,
I think it might have come out as a ten-volume set. I have however given, both in the main
text and consolidated in two big appendices, a very large number of references so that any
topic can be pursued pretty much to the limit of published knowledge. It is a very long
time since any one person could credibly claim to know all of science. We may have
already reached the point where it is impossible for any one person to know all about
crossover design. I hope this book will prove useful.

Douglas Self

London

Jan 2011
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CHAPTER 1

Crossover Basics

I do hope you’ve read the Preface. It is not mere amiable meanderings, but gives an
oversight as to how this book is constructed and what it is intended to do.

1.1 What a Crossover Does

The basic function of any crossover, be it passive or active, analogue or digital, is to take
the audio spectrum that stretches roughly from 20 Hz to 20 kHz and split it into two, three,
or sometimes more bands so they can be applied to loudspeaker drive units adapted for
those frequencies. In hi-fi use the crossover frequencies are usually fixed and intended for
work with one particular loudspeaker design, but for sound reinforcement applications the
crossover frequencies are normally variable by front panel controls.

There are also other functions that are sometimes but not always performed by crossovers,
and we may list them all as follows, roughly in order of importance:

1. Splitting the audio spectrum into two, three, or occasionally more bands
2. Equalisation to correct drive unit frequency responses
3. Correction for unmatched drive unit sensitivities
4. The introduction of time delays into the crossover outputs to correct for the physical

alignment of drive units
5. Equalisation to correct for interactions between drive units and the enclosure,

for example, diffraction compensation
6. Equalisation to correct for loudspeaker-room interactions, such as operating in half-

space as opposed to quarter-space
7. Enhancement of the natural LF response of the bass drive unit and enclosure by

applying controlled bass boost

Most of these functions are equally applicable to both passive and active crossovers, but the
time-delay function is rarely implemented in passive crossovers because it requires a lot of
expensive components and involves significant power losses.

Some of these functions will probably appear wholly opaque if you are just starting this
book, but stay with me. All will be revealed.

The Design of Active Crossovers
© 2011 Douglas Self. Published by Elsevier, Inc. All rights reserved. 1



1.2 Why a Crossover Is Necessary

The need for any crossover at all is rooted in the impracticability of making a drive unit
that can handle the whole ten-octave audio spectrum satisfactorily. This is not merely
because the technology of loudspeaker construction is inadequate, but is also based on some
basic physics. Ideally the acoustic output of a loudspeaker would come from a single point;
with such a source the sound field is uniform, because there can be no interference effects
that result from multiple sources, or from a source of finite size.

A tweeter has a small physical size, with a dome usually around an inch (2 or 3 cm) in
diameter, and approximates fairly well to a point source. This technology works very well
for high frequencies, say down to 1 kHz, but is hopelessly inadequate for bass reproduction
because such a small area cannot move much air, and to reproduce bass frequencies you
need to move a lot of it. Low-frequency drive units are therefore of much greater diameter,
up to 12 inches for domestic hi-fi and up to 18 inches or more for sound-reinforcement
applications. As cone area is proportional to the square of diameter, a 12-inch drive unit has
144 times the area of a typical tweeter, and an 18-inch unit has 324 times the area.

It is not at present technically possible to make a big low-frequency drive unit that works
accurately up to 20 kHz, because as the frequency increases the cone ceases to move as a unit-
it is not one of those most desirable “infinitely rigid pistons” that are always cropping up in
loudspeaker theory but never in manufacturer’s catalogues. This effect is often called “cone
break-up” not because the cone physically falls apart but because, due to its finite stiffness, with
rising frequency its surface divides up into separate areas of vibration. This unhappy state of
affairs is put to advantage in so-called “full-range” loudspeakers which have a “parasitic tweeter”
in the form of a small cone, attached to the voice coil. The idea is that at higher frequencies the
main cone does its own thing and is effectively decoupled from the voice coil and the tweeter
cone, allowing the latter to radiate high frequencies without being restrained by the much greater
mass of the main cone; what you might call a mechanical crossover. As you might imagine,
there are many compromises involved in such a simple arrangement and the response is
generally much inferior to a good two-way loudspeaker with separate bass unit and tweeter.

Nonetheless, the field of audio being what it is, there are a certain number of hi-fi enthusiasts
who advocate full-range speakers for various reasons. Eliminating a passive crossover naturally
increases power efficiency (as none is lost in the crossover components) and reduces cost.

1.3 Beaming and Lobing

Even if it was possible to make a large-diameter drive unit which covered the whole audio
spectrum perfectly, there is a powerful reason why it is far from certain that this would be a
good idea. If a radiating surface is of finite size, then if you stand to the side of the central
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axis, sound from one area of the drive unit will arrive at your ear at a slightly different time
because of the differing path lengths through the air. This will cause interference between
the two signals, and, given the right amount of path difference, complete cancellation. There
will therefore be major irregularities in the frequency response anywhere but on the central
axis. This is called “beaming” or “lobing” and it occurs when the diameter of the radiating
object is comparable with the wavelength of the sound. It is obviously to be avoided as
much as possible; the variation in response as the angle between the listener and the centre
axis changes is called the polar response, and a “uniform polar response” is much sought
after in loudspeaker design.

The beaming phenomenon is why a tweeter has to be of small diameter if it is to approach
having a uniform polar response. Deciding when beaming becomes significant depends on
the application, but the following figures in Table 1.1 [1] have been put forward:

These frequencies are approximately those at which the wavelength in air equals the driver
diameter. The whole business of beaming, lobing, and polar response generally is obviously
much too complex to be summed up in a single table, but it does give some indication of
when you need to start worrying about it.

There is of course much more to a crossover than simply splitting the audio signal into
separate frequency bands. The vital point to understand is that the splitting has then to be
followed by summation. the frequency bands have to be joined together again seamlessly.
This requires the acoustic signals be summed to be correct not only in amplitude but also in
phase. The crossover and speaker system can only create the exactly correct signal at one
point in space, which is unfortunate, as we have two ears and each listener therefore needs
the signal to be correct at two points in space. Crossover design is always a matter of
compromise to some degree.

It is not sufficient to get a perfect response on-axis, even if one interprets this as being
capable of summing correctly at both ears. The off-axis output from the loudspeaker will

Table 1.1: Onset of Beaming versus Drive Unit Diameter

Driver Diameter (Inches) Beaming Onset Frequency (Hz)

1 13,680
2 6840
5 3316
6.5 2672
8 2105
10 1658
12 1335
15 1052
18 903
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not only be heard by those in the room unfortunate enough to not get the best seat on the
sofa, but it also creates the ambient sound environment through room reflections and
reverberation. If it has serious response irregularities then these will detract from the
listening experience, even if the direct on-axis sound is beyond reproach.

The term “lobing” is also used to describe the reinforcements and cancellations that occur
when two separate drive units are radiating; in this case their size is relatively unimportant
because interference would still occur even if both were point sources. When the radiation
is shifted at the crossover frequency because the signals to the two drive units are not in
phase, this is called “lobing error.” There is much more on this in Chapters 3 and 4.

1.4 Active Crossover Applications

The main fields of application for active crossovers in association with multi-way
loudspeakers are high-end hi-fi, sound reinforcement, automotive audio, sound recording
studios, cinema theatres, and film studios. In hi-fi, active crossover technology offers better
and more consistent quality than passive crossovers. We shall look closely at why this is so
later in this chapter.

In the area of sound reinforcement the use of active crossovers is virtually mandated by the
need to use banks of loudspeakers with different characteristics, especially sub-woofers. The
size and number of the loudspeaker cabinets used mean that it is physically impossible to put
them close together, and hence sophisticated control of time delays is essential to obtain the
desired coverage and polar responses. The large amount of power used in a typical sound
reinforcement system means that the losses inherent in the use of passive crossovers cannot be
tolerated. The high-power requirement also means that multiple power amplifiers are always
used, and the extra cost of an active crossover system is very small by comparison.

Automotive audio marches to its own drummer, so to speak, the priority of most of its
exponents being the maximum possible level of bass at all costs. This is perhaps not the place
to speculate on whether this is driven by an appreciation of musical aesthetics or macho
territorial aggression, but the result is that subwoofer systems are very popular, and so
naturally some sort of crossover system is required. This is usually an active crossover,
because the high power levels once again make the losses in a passive crossover
unacceptable. This is particularly true because 4Ω loudspeakers are used, so the current levels
in inductors are doubled and I2R losses are quadrupled, compared with the 8Ω situation.

Active crossovers do have other important applications besides driving multiway
loudspeakers. They are also used in multi-band signal processing, of which the most
common example is multi-band compression. A multi-band compressor uses a set of filters,
working on exactly the same principle as a loudspeaker crossover, to split the audio signal
into two, three, four or even more frequency bands; three or four-band compressors are the
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most popular. On emerging from the crossover, each band is fed to a separate compressor,
after which the signals are recombined, usually by simple summation. This is delightfully
simple compared with the acoustic summation that recombines the outputs of the different
drive units of a multiway loudspeaker, because there are no problems with polar response
or time delays.

The great advantage of multi-band compression is that a peak in level in one frequency band
will not cause any gain reduction in the other bands; a high-level transient from bass guitar or
kick-drum will not depress the level of the whole mix. Another feature is the ability to use
different attack/decay times for different frequency bands. You may be thinking at this point
that it would have been more sensible to compress the kick drum before you mixed it in with
everything else, and you are of course quite right. However, in many situations you are not
doing the mixing but dealing with fully mixed audio as it comes along. Radio stations (not
excluding the BBC) make considerable use of multi-band compression and limiting on
existing stereo material to maximise the impact of their transmissions.

Other applications for multiband processing include multiband distortion, where splitting
the distortion operation into separate bands prevents intermodulation turning the sound
into an unpleasant muddle. A simple example of this is the “high frequency exciter” or
“psychoacoustic enhancer” technology where a filter selects some part of the upper reaches
of the audio spectrum and applies distortion to it in order to replace missing or under-
strength harmonics. Multiband techniques have also been used in noise reduction
techniques, notably in the Dolby A noise reduction system.

The active crossovers used for multi-band signal processing do essentially the same job as
those for loudspeakers, and this book will be most useful in their design.

1.5 Bi-Amping and Bi-Wiring

The use of two separate amplifiers driven by an active crossover is sometimes called
bi-amping. This is nothing to do with the use of two amplifier channels for stereo. If there
are three separate amplifiers powering three drive units, this is called tri-amping or simply
multi-amping. Bi-amping should not be confused with bi-wiring, which is a completely
different idea. It is worth taking a quick look at it because the alleged benefits of bi-wiring
are very relevant to crossover operation.

The most common method of wiring between an amplifier and a multi-way loudspeaker is to
use a single cable, as shown in Figure 1.1a. Note that the passive crossover networks shown
are the simplest possible, and real passive crossovers will have more components.

In bi-wiring (or tri-wiring, or “multi-cabling”) only one amplifier is used, but separate
cables run from it to separate sections of a passive crossover that is mounted as usual inside
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the loudspeaker enclosure; this is illustrated in Figure 1.1b. Bi-wiring requires individual
access to the passive crossover sections for the LF unit and tweeter, which is arranged for
by having two sets of terminals on the rear of the loudspeaker connected together with
shorting links that can be easily removed.

Arranging things for tri-wiring is a little more expensive and difficult, as it requires six
terminals and four shorting links, plus the facility of connecting two shorting links to one
terminal in a tidy manner. This is probably why loudspeakers with three drive units are
more often connected for bi-wiring rather than tri-wiring. Normally the tweeter and mid
drive units are connected to one pair of terminals and the bass drive unit to the other.
There is also the point that if your taste runs to expensive loudspeaker cables of undefined
superiority, having three sets of them is significantly more costly than two.

The question is, just what is gained by bi-wiring? The hard fact is: not much. Its
enthusiasts usual claim that separating the high and low frequencies into different cables
prevents “intermodulation” of some sort in the cabling. I must point out at once that even
the cheapest copper cable is absolutely linear and can generate no distortion whatsoever,
even when passing heavy currents. The same absolute linearity is shown at the smallest
signal levels that can be measured [2]. From time to time some of our less bright audio
commentators speculate in the vaguest of terms that a metallic conductor is actually some
sort of swamp of “micro-diodes,” and that non-linearity might just conceivably be found
if the test signal levels were made low enough. This is categorically untrue and quite
impossible with it. The physics of conduction in metals has been completely understood for
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Figure 1.1: (a) Normal loudspeaker wiring (b) bi-wiring (c) full-band multi-amplification, and
(d) active-crossover multi-amplification.

6 Chapter 1



a long time, and there simply is no threshold effect for metallic conduction. The only way
that a cabling system can introduce non-linear distortion is if the connectors are defective,
which in this context pretty much means “about to fall apart altogether.”

Actually, a lot of audiophiles are much less definite about he advantages of bi-wiring. They
tend to say something pitifully vaporous like: “If only one pair of conductors delivers the
whole signal, there is a danger that the bass frequencies can affect the transmission of the
more delicate and subtle treble frequencies.” Affect the transmission? Exactly how, pray? And
how much danger is there? Not much? Immediate extreme peril? Danger, Will Robinson!

Where bi-wiring can be of use is in minimising the interaction of loudspeaker impedance
variations with cable resistances. Let’s suppose that the combination of LF crossover and
bass drive unit has a dip in its impedance: (the drive unit alone cannot show an impedance
lower than its voice coil resistance); this dip will cause a greater voltage-drop across the
cable resistance, giving a dip in driver output that would not have existed if the cable (and
the amplifier) had zero resistance. If we suppose again, and this is a bit more of a stretch,
that impedance dips in the HF and LF impedance might overlap, then applying them to
separate cables will reduce the level variations. However, the same effect could be got by
doubling up a non-bi-wired loudspeaker cable, as this would halve its resistance.

Bi-wiring has a certain enduring appeal because it enables the experimenter to feel he has
done something sophisticated to his system, but requires little effort, relatively little cost,
(though this of course depends on how much you think you need to pay for acceptable
loudspeaker cables) and the chances of anything going wrong are minimal. This is not of
course the case if you start delving about inside a power amplifier.

Bi-amping means a separate amplifier for each crossover section. This almost always
implies the use of an active crossover to split the audio spectrum and feed different sections
to different amplifiers. Occasionally, however, you hear advocated what might be called
full-range multi-amplification. This is shown in Figure 1.1c, where two power amplifiers are
fed with identical signals and drive the passive crossover sections separately. This is an
expensive way to gain relatively small advantages. The loading on each amplifier will be
less, and you might get some of the advantages of bi-amping, such as less stress on each
amplifier, and reduced intermodulation of LF and HF signals in the amplifiers. The
advantage of the latter should be negligible with well-designed solid-state amplifiers, but
I suppose there are valve amplifiers to consider. There is also the possibility of using a
smaller power amplifier for the HF path. In general, however, this approach combines most
of the disadvantages of passive crossovers with the extra cost of active crossovers.

Figure 1.1d shows standard bi-amping, with two power amplifiers fed with the appropriate
frequency bands by an active crossover, the passive crossover no longer being present. This
is the approach dealt with in this book.
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1.6 Loudspeaker Cables

It would be somewhat off-topic to go into a lot more detail about loudspeaker cable design,
but this might be a good place to point out that there is absolutely nothing magical or
mysterious about them. My findings [3] are that, looking at the amplifier–cable–loudspeaker
system as a whole, the amplifier and cable impedances have the following effects:

• Frequency response variation due to the cable resistance forming the upper arm of a
potential divider with the loudspeaker load as the lower arm. The effect of the resistive
component from the amplifier output impedance is usually negligible with a solid-state
design, but this is unlikely to be the case for valve amplifiers. This is at least potentially
audible and is a good reason for using thick cables. It is not a good reason for using
anything other than ordinary copper cable.

• A high-frequency roll-off due to the cable inductance forming an LR lowpass filter with
the loudspeaker load. The amplifier’s series output inductor (almost always present to
give stability with capacitive loads) adds directly to this to make up the total series
inductance. The shunt capacitance of any normal speaker cable is trivially small, and
can have no significant effect on frequency response or anything else.

The main factors in speaker cable selection are therefore series resistance and inductance. If these
parameters are less than 100mΩ for the round-trip resistance and less than 3 μH for the total
inductance, any effects will be imperceptible [3]. These conditions can be met by standard 13-Amp
mains cable. (I’m not quite sure how the equivalent cable is labelled in the United States.) This
cable has three conductors (Live, Neutral, and Earth) each of 1.25 sqmm cross-section, made up of
40× 0.2 mm strands. Using just two of the three conductors, a 100 mΩ round-trip resistance allows
3.7 metres of cable. The lowest cable resistance is obtained if all three conductors are used,
normally by paralleling the Neutral and Earth conductor on the cold (grounded) side of the cable;
themaximum length for 100mΩ is now 5.0 metres, which should do for most of us. This three-
conductor method does give what I suppose youmight call an “asymmetric” cable, which could
offend some delicate sensibilities, but I can assure you that it works nicely.

The loudspeaker cables that I have in daily use are indeed made of such 13-Amp mains cable,
bought from an ordinary hardware shop nearly 40 years ago. Should a passing audiophile query
the propriety of using such humble cabling, I usually tell them that with so much passage of
time in regular use, the electrons have been thoroughly shaken loose and move about with the
greatest possible freedom. I do hope nobody reading this book is going to take that seriously.

1.7 The Advantages and Disadvantages of Active Crossovers

Here I have tried to put down all the advantages and disadvantages of the active crossover
approach. Some of them may not be very comprehensible until you have read the relevant
chapter of this book. My initial plan was to attempt to put them in order of importance, but
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this is not an easy thing to do. The order here is therefore to some extent subjective, if I
may use the term…

1.7.1 The Advantages of Active Crossovers

The advantages of active crossovers are:

1. The over-riding advantage of an active crossover is it offers ultimate freedom of design
as virtually any frequency or phase response that can be imagined can be used. The
filter slopes of the crossover can be made as steep as required without using large
numbers of big and relatively expensive components. Any increase in passive crossover
complexity means a significant increase in cost.

2. The design of passive crossovers is restricted by the need to keep the loading on the
power amplifier within reasonable limits. With an active crossover, correction of the
response for each driver is much simpler as it can be undertaken without having to
worry about the combined load becoming too low in impedance for the average
amplifier.

3. The design of passive crossovers is further complicated by the need to keep the power
losses in the crossover within reasonable limits. The losses in the resistors and in the
inductors (because of their inevitable series resistance) of a passive crossover, especially
a complex design employing high-order filters or time delay compensation, can be very
serious. In a big sound-reinforcement system the losses would be measured in tens of
kilowatts. Not only does this seriously degrade the power efficiency of the overall
system by wasting power that could be better applied to the loudspeakers, but it also
means that the crossover components have to be able to dissipate a significant amount
of heat, and are correspondingly big, heavy, and expensive. It is far better to do the
processing at the small-signal level; the power used by even a sophisticated active
crossover is trivial.

4. If one of the power amplifiers is driven into clipping, that clipping is confined to its
own band. Clipping is usually less audible in the bass, so long as there is no
intermodulation with high frequencies. It has been stated that an active crossover system
can be run 4 dB louder for the same subjective impairment. This is equivalent to more
than twice the power, but less than twice the perceived volume, which would require a
10 dB increase in SPL.

5. Delays can be added to compensate for differing acoustic centres for the drive units
planes quite easily. Passive delay-lines can be built but are prodigal in their use of
expensive, lossy, and potentially non-linear inductors, and as a result have high overall
losses.

6. Tweeters and mid drive units can have resonances outside their normal operating range,
which are not well suppressed by a passive crossover because it does not put a very low
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source impedance across the voice coil. The presence of a series capacitor can greatly
reduce the damping of the main resonance [4], and it is also possible for a series
capacitor to resonate with the tweeter voice-coil inductance [5], causing an unwanted
rise in level above 10 kHz or thereabouts.

7. Drivers of very different sensitivities can be used, if they happen to have the best
characteristics for the job, without the need for large power-wasting resistances or
expensive and potentially non-linear transformers or auto-transformers. If level controls
for the drive units are required, these are very straightforward to implement in an
infinitely-variable fashion with variable resistors. When passive crossovers are fitted
with level controls (typically for the mid unit or tweeter, or both) these have to use
tapped auto-transformers or resistor chains, because the power levels are too high for
variable resistors, and so control is only possible in discrete steps.

8. The distortion of the drive unit itself may be reduced by direct connection to a low-
impedance amplifier output [6]. It is generally agreed that the current drawn by a
moving coil drive unit may be significantly non-linear, so if it is taken from a non-zero
impedance, the voltage applied to the drive unit will also be distorted. This may be
related to out-of-band tweeter resonance; Jean-Claude Gaertner states that tweeters can
have increased distortion below 1 kHz [7]. I do not know for sure, but I strongly
suspect, that when drive units are being developed they are driven from amplifiers with
effectively zero output impedance, and that linearity is optimised under this condition.
Any other approach would mean guessing at the source impedance, which given the
number of ways in which it could vary, would be a quite hopeless exercise.

9. With modern opamps and suitable design techniques, an active crossover can be
essentially distortion-free, though care must be taken with the selection of capacitors in
the filters. It will not however be noise-free, though the noise levels can be made very
low indeed by the use of appropriate techniques; these are described later in this book.
A passive crossover contains inductors, which if ferrite or iron-cored will introduce
distortion. It also contains capacitors, often in the form of non-polar electrolytics, which
are not noted for their linearity, or the stability of their value over time. I haven’t been
able to find any published data on either of these problems. Capacitor linearity is very
definitely an issue because they are being used in filters and therefore have significant
voltage across them. It is possible for capacitor distortion to occur in active crossovers
too, but the signal voltages are much lower and one can expect the amount of distortion
generated to be much less. See Chapter 12, where using the worst sort of capacitor
increases the distortion from 0.0005% to 0.005%, with a signal level of 10 Vrms. In
contrast, the distortion from a passive crossover can easily exceed 1%.

10. With the rise of AV there is more experience in making multi-channel amplifiers
economically. The separate-module-for-each-channel approach, where each module has
a small toroid mounted right up at one end, while the input circuitry is at the other,
is more expensive to manufacture but can give an excellent hum and crosstalk
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performance. The main alternative is the huddle-around-the-big-central-toroid approach,
which has some serious and intractable hum issues.

11. If a protection system is fitted that is intended to guard the drive units against excessive
levels, then it can be closely tailored for each drive unit.

12. Voice coil heating will increase the resistance of the wire in its windings, reducing the
output. This is known as thermal compression. It also increases the impedance of a
drive unit, and if it is part of a complex passive crossover, the interaction can be such
that there are much greater effects on the response than that of thermal compression
alone. In one set of tests conducted by Phil Ward [8], the voice coil temperatures of
four different loudspeakers showed a maximum of 195°C and a rise in resistance of
176%. That sort of variation has got to cause interaction with almost any sort of passive
crossover.

13. It has been proposed that active crossovers can allow the modelling of voice-coil
heating by calculations based on signal level, frequency, and known thermal time-
constants. Thus the effects of thermal compression (the reduction in output as the voice
coil resistance rises with temperature) could be compensated for. It does however imply
relatively complex computation that would be better carried out by digital processing
rather than in analogue circuitry. There would have to be A to D conversion of the
signal and perhaps D to A conversion of to control parameters, even if the actual
crossover function was kept in the analogue domain. Controlling the active crossover
parameters with analogue switches or VCAs, without compromising signal quality, is
going to be hard to do. Modern volume control chips have excellent linearity but they
are not really adapted to general control, and using a lot of them would be rather
expensive. If you are undertaking this sort of complex stuff then it’s probably going to
be best to do all the processing in the digital domain.
Clearly this plan can only work if the crossover is programmed with the thermal
parameters for a given loudspeaker and its set of drive units; this information would
have to be provided by the loudspeaker manufacturers, and once again we see the need
for the active crossover to be matched to the loudspeaker.

14. Drive unit production tolerances can be trimmed out. It has been said that changes in
driver characteristics due to aging can also be trimmed out, but since aging is not likely
to be an absolutely predictable process, this would ideally require some sort of periodic
acoustic testing. For a reference loudspeaker in a laboratory or monitors in a recording
studio this is entirely practical, but it is less so in the home environment because of the
need for an accurate measuring microphone, or, more likely, one whose response
deviations are sufficiently predictable for them to be allowed for. Extra electronics is of
course required to implement the testing procedure.

15. The active filter crossover components will have stable values. The inductors in a
passive crossover should be stable with time, but the non-polar electrolytic capacitors
often used have a bad reputation for shifting value over time. The stability of these
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components has improved in recent years but it is still a cause for concern. It has been
stated that electrolytics in high-end passive crossovers should be regarded as having a
lifetime of no more than 10 years [9]. Plastic film crossover capacitors such as
polypropylene show better stability but are very expensive. A fashion has grown up
recently for bypassing big passive crossover capacitors with smaller ones; whether this
has any beneficial effects is very questionable.

16. The active filter crossover components will not change in the short-term due to internal
heating. In a passive crossover the capacitors will have large voltages across them and
large currents through them; dielectric losses and ohmic losses in the ESR (equivalent
series resistance) may cause these capacitors to heat up with sustained high power and
change in value. Non-polar electrolytic capacitors (basically two ordinary electrolytics
back-to-back) are considered particularly susceptible to this effect because their
relatively small size for a given capacitance-voltage product means they have less area
to dissipate heat and so the temperature rise will be greater.

17. The relatively small capacitors used in active crossover filters can be economically
chosen to be types that do not exhibit non-linear distortion– polystyrene and
polypropylene capacitors have this useful property. Non-polar electrolytic capacitors
when used in passive crossovers are known to generate relatively large amounts of
distortion.

18. No inductors are required in active crossover circuitry (apart perhaps for a few small
ones at inputs and outputs for EMC filtering). Inductors are notorious for being
awkward and expensive. If they have ferromagnetic cores they are heavy and generate
large amounts of non-linear distortion. If they are air-cored distortion is not a problem,
but many more turns of copper wire are needed to get the same inductance, and the
result is a bulky and expensive component. Martin Colloms has stated [10] that if an
inadequate ferromagnetic core is pushed into saturation by an large transient, the
resulting sudden drop in inductance can cause a drastic drop in the impedance seen at
the loudspeaker terminals, and this sort of thing does not make life easier for power
amplifiers.

19. Passive crossovers typically use a number of inductors, and it may be difficult to mount
these so there is no magnetic coupling between them; unwanted coupling is likely to
lead to frequency response irregularities. (It should be said that some types of passive
crossover use transformers or auto-transformers, where the coupling is of course entirely
deliberate)

20. When a passive crossover is designed, it is absolutely not permissible to treat a drive
unit as if its impedance was simply that of an 8Ω resistor. The peaky impedance rise at
resonance, and the gentler rise at HF due to the voice coil inductance have to be taken
into account to get even halfway acceptable results. This naturally complicates the
filter design process considerably, and one way of dealing with this is to attempt to
compensate for these impedance variations by placing across the drive unit terminals a
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series-resonant LCR circuit (to cancel the resonance peak) and an RC Zobel network
(to cancel the voice coil inductance rise) [5]. This means there are at least five more
components associated with just one drive unit, and they all have to be big enough to
cope with large signals. There may also be changes in impedance due to changes in
acoustic loading across the drive unit’s passband. In an active crossover system the
drive unit is simply connected directly to its power amplifier, and assuming that
amplifier has an adequate ability to drive reactive loads, the details of the drive unit
impedance curve can be ignored.

21. The presence of an active crossover in the system makes it easy to add bass-end
equalisation of the loudspeaker. An equaliser circuit is added which provides a carefully
controlled amount of bass boost to counteract the natural roll-off of the bass drive
unit in conjunction with its enclosure, thus extending the level bass response to lower
frequencies. This sort of thing always has to be approached with care, as too much
equalisation will lead to excessive drive unit displacements and permanent damage. This
is a particular problem with ported enclosures that put no loading on the drive unit cone
at low frequencies.

22. An active crossover system also opens up the possibility of motional feedback, where
the position, velocity, etc. of the bass drive unit cone are monitored by an accelerometer
or other method, and the information is used to correct frequency response irregularities
and non-linear distortion. This is obviously more practical where the crossover and
power amplifiers are built into the loudspeaker enclosure. Motional feedback is a big
subject and this is not the place to get into it in detail, but it may be remarked in
passing that while it sounds like a first-class idea, it has never achieved much success
in the marketplace.

That is a pretty formidable list of real advantages for active crossovers. There are also some
claimed advantages that are pretty much bogus, and we had better have a quick look at
these before we move on:

Some Illusory Advantages of Active Crossovers

1. A commonly quoted “advantage” is that there is less intermodulation distortion in the
power amplifiers because each one handles a restricted frequency range. This may once
have been a significant issue, but nowadays designing highly linear power amplifiers
is not hard when you know what pitfalls to avoid. I have demonstrated this many
times [11]. I suppose this might well be a valid advantage if you insist on using valve
amplifiers, which have generally poor linearity, at its worst at low frequencies due to
the well-known limitations of transformers.

2. Similarly, it has been claimed that the danger of slew-rate limiting is much reduced
in the more powerful LF and MF power amplifiers, as they do not handle high
frequencies. This is a specious argument, as there is no difficulty whatsoever in
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designing a power amplifier that has a faster slew-rate than could ever conceivably be
needed for an audio signal [12].

3. It is sometimes stated that an active crossover system results in simpler loading for each
power amplifier, as it is connected to only one drive unit. This is true, as regards human
understanding of what the impedance curves look like—it is often difficult to see what
causes the impedance ups and downs of a complex passive crossover, whereas for a
single moving-coil drive unit the effects of the resonance, the voice coil resistance,
and the voice coil inductance are all readily identifiable. However, amplifiers are not
sentient, and no amount of anthropomorphic thinking will make them so. An impedance
curve that is hard to understand, with a cross-section like the Pyrenees, is not necessarily
hard to drive. What puts most stress on a power amplifier are impedance dips and high
levels of reactance; these increase the peak and average dissipation in the amplifier output
devices. It is not a question of the amplifier having to think harder about it, but the
amplifier designer may have to.

4. Following from the previous point, an amplifier connected to a single moving-coil
drive unit sees basically a mixture of resistance and inductance. Purely capacitative
loading is not possible, and it has been said that amplifier stability is therefore easier
to obtain. In reality, ensuring amplifier stability into capacitive loads is not a significant
problem—you just put the traditional inductor in series with the amplifier—so this is
not a big deal. The inductors used have only a few turns and are not expensive. If you
are constructing a system where the amplifiers are permanently connected to the drive
units—for example, if the amplifiers are built into the loudspeaker enclosure—then
there is the possibility of omitting the power amplifier output inductors as a single
drive unit is essentially resistive and inductive, but I’ll say right now that I’ve never
tried this.

5. It has sometimes been claimed that it is easier or cheaper to design a power amplifier that
only has to handle a limited bandwidth. This is not true. It is absolutely straightforward
to design a good power amplifier that not only covers the whole audio spectrum, but also
several octaves on either side of it. Likewise, a limited bandwidth does not reduce costs
much. You could make the capacitor in the power amplifier negative-feedback smaller
in the MID and HF channels, but that is a matter of a penny or two; if the amplifiers
have separate power supplies then those for the MID and HF could have smaller reservoir
capacitors, which might save tens of pennies. It is possible to save a significant amount
of money by designing the HF power amplifier for a lower power output, but that is a
different matter from the bandwidth issue, dealt with in Chapter 14 on crossover
system design.

6. If we are dealing with an integrated crossover/power–amplifier/loudspeaker system with
everything installed in one enclosure, it is often claimed there is no need to fit short-
circuit protection to the amplifiers as their outputs are not externally accessible, and so
money can be saved. This is a dubious approach, because it assumes that voice-coils
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will never fail short-circuit; if one does there could be serious safety issues. It also
assumes that there will be no accidents when testing the amplifiers. The cost saving is
very small and is not recommended.

It is still of course very necessary to provide all the power amplifiers with effective
DC-offset protection, for safety reasons if for no other. This is a special challenge when
driving tweeters, as described below. This is a good deal more expensive than short-circuit
protection, as it usually requires an output relay for each power amplifier.

1.7.2 The Disadvantages of Active Crossovers

The disadvantages of active crossovers, once again in what I think to be their order of
importance, are:

1. Much greater electronic complexity. The number of power amplifiers is doubled, or
more likely tripled, and quite possibly quadrupled. This could potentially lead to lower
reliability, as the failure of any one of the power amplifiers or of the active crossover
itself renders the whole system unusable. However, with proper design techniques and
the use of adequate safety margins, the failure-rate of a modern solid-state power
amplifier or active crossover should be so low that reliability is not an issue.

2. As a direct result of the first statement, there is much more hardware to fit into the
living room. Not just more electronic boxes, but all the cabling between them. Ways of
tackling this issue are considered later in this chapter.

3. Also flowing from (1) is the issue of greater cost. The high-frequency amplifiers can be
of lower power output than the low-frequency amplifiers but this definitely does not
reduce their cost proportionally. There may be economies of scale to be made by
making all the power amplifiers identical, but with the high-frequency ones fed from
lower supply voltages. This is perfectly feasible without any compromise on amplifier
performance.
Against this must be set the fact that precise, stable, and generally high-quality
components for passive crossovers are not cheap, and a top-end passive crossover can
easily end up costing more than an active crossover; this does not however take into
account the extra power amplifiers.

4. The vast majority of active crossover loudspeakers have been built as one unit. A mono
active crossover, and the two or three power amplifiers required, are put inside into the
loudspeaker enclosure. While this makes a very convenient package, which requires
only a mains lead to each loudspeaker as extra wiring, it has a deadly disadvantage. The
simple truth is that people want to be able to choose their own power amplifiers. Not
everybody is prepared to believe that a company that specialises in loudspeakers would
be able to come up with a good power amplifier, and is it entirely understandable that
people prefer to buy each audio component from specialists in the relevant field.
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5. The active crossover must be matched to the loudspeaker and cannot be bought off the
shelf. Many speakers allow for bi-wiring but this still leaves the passive crossover
components in place. Few if any loudspeakers allow direct access to the drive units
without some serious dismantling, and so any domestic system must be either home-
built, or custom-built with a commensurately high cost.

6. Tweeters, and to a lesser extent, mid-range drive units are much more exposed to
amplifier DC-offset faults. When they are connected to an amplifier via a passive
crossover, there will be at least one capacitor between the amplifier and the voice coil.
This will be of modest size as it is not intended to pass low frequencies, and so
provides very good protection for tweeters and mid-range drive units which do not have
the displacement capability or thermal inertia of bass drivers. Tweeters in particular can
be destroyed in an instant by a large DC offset. This seems to me a very good, if not
irrebuttable, argument for using a low-power amplifier to drive the tweeter in an active
crossover system.
Any DC-coupled amplifier connected to a loudspeaker should of course have DC-offset
protection, but since such a fault is usually detected by putting the output signal through
a lowpass filter with a very low cutoff frequency to remove all the audio, and then
applying it to a comparator, there is inevitably some delay in its operation; an output
muting relay also takes a significant amount of time to open its contacts and break the
circuit. If the amplifier driving the tweeter is specialised for the task then it can be
given DC protection that reacts more quickly, as its lowpass filter will not need to reject
high amplitude bass signals; it can therefore have a higher cutoff frequency and will
respond faster.

7. There will be a greater power consumption due to quiescent current flowing in more
amplifiers. In a solid-state Class-B power amplifier, how much power is involved
depends on the details of the output stage design. Class-A amplifiers, built with any
technology, uselessly dissipate almost all the power so trustingly fed into them, showing
efficiencies of around 1% with musical signals, as opposed to sinewave testing [13].
There is also the power consumption of the active crossover itself, but this is not likely
to be significant, even for a very complex analogue active crossover.

8. Passive crossovers cannot be radically maladjusted by the user (though some allow
vernier adjustments, typically of HF output level). In the sound-reinforcement business
there is always the possibility that some passing “expert” may decide to try and use the
crossover controls as a sort of equaliser. This is unlikely to be effective and can result
in severe damage to loudspeakers. Lockable security covers solve this problem.

9. Active crossovers add extra electronics to the signal path which would otherwise not be
there, and so must be beyond reproach, or at any rate not cause any significant signal
degradation. With the intelligent use of either opamp or discrete circuitry this should not
be a serious problem.
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1.8 The Next Step in Hi-Fi

As we have just seen, active crossovers have a long and convincing list of technical
advantages. The score is 22 very real advantages and 5 not-too-convincing advantages, as
opposed to 9 advantages for passive crossovers. It is generally accepted that active crossover
hi-fi systems sound obviously better than their passive-crossover counterparts. Any sort of
consensus is rare in the wide field of audio, so this is highly significant. I strongly suspect
that the widespread adoption of active crossovers, suitably matched to their loudspeakers,
would be The Next Big Step in Hi-Fi, and possibly even The Last Big Step possible with
current technology.

Nonetheless, it is undeniable that active crossovers, despite their compelling advantages,
have made very little headway in the domestic market so far, though they are used in all but
the smallest sound-reinforcement systems, and extensively in automotive audio. The big
question is how to make active crossover technology more acceptable in the marketplace.
The first thing we shall do is look at ways of solving the “too many boxes and wires”
problem.

1.9 Active Crossover Systems

We will consider the various ways in which an active crossover system can be configured,
with an especially hard look at making it acceptable in a domestic environment. Sound-
reinforcement systems are a separate issue. One of the significant disincentives to the active
crossover approach is the sheer amount of hardware required, in terms of electronic boxes
and cables. This can be hard to fit into a minimalist decoration scheme- and indeed often
hard to fit into any sort of decoration scheme at all. It is desirable to package the technical
functionality as neatly as possible. I am assuming here that a high-quality system is
intended, and so three-way active crossovers will be used.

In terms of cabling and equipment the tidiest set-up is undoubtedly achieved with a mono
active crossover and its three power amplifiers built into each loudspeaker enclosure, but it
is vital to realise that this is not an acceptable approach for people who take their power
amplifiers at all seriously.

Figure 1.2 shows an active crossover system using six separate monobloc power amplifiers.
This could be configured with all six amplifiers in one location, in which case putting them
all near one of the loudspeakers reduces the length of at least one set of loudspeaker cables
to a minimum. The amplifiers may be all of the same type, but all that is really required of
them is that they have the same gain. Even if we have six nominally identical amplifiers
made at the same time by the same manufacturer, somewhere in each amplifier will be at
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least two gain-setting resistors, each with a tolerance; nonetheless, in a competent design the
variation should be comfortably less than variations in the drive units.

Alternatively, three of the power amplifiers could be placed adjacent to each loudspeaker,
considerably shortening the total length of what might be expensive loudspeaker cable, as
three of the connections are now very short. Three of the line level cables to the power
amplifiers naturally become correspondingly longer, but since their resistance is of much
less importance than that of the loudspeaker cables, this is overall a good thing. The
increased resistance of long line cables makes the link more susceptible to voltages induced
by currents flowing through the ground connection, but I think it is fair to assume that a
hi-fi system with active crossovers would use balanced connections to cancel such noise.
Ultimately the placing of the various parts of the system is going to be influenced by
furniture arrangement and the availability of handy (and hopefully well-ventilated)
cupboards in which to stash the boxes.

Adding it up, a system configured in this way consists of 7 electronic boxes (not including
the preamplifier), line-level cables, and 6 loudspeaker cables. If the connection from the
preamp to the crossover is a two-way cable (i.e., two parallel cables joined together along
their length), that is reduced to 7 boxes, 7 line cables, and 6 loudspeaker cables, which is
hardly a great improvement.

However, it must be said that there are excellent technical reasons for using two-way cables
when you can. Their construction keeps the grounds for the two links physically close
together, and prevents them forming a loop that could pick up magnetic fields that would
induce current flow; this current would cause voltage drops in the ground resistance and
degrade the signal. The use of balanced connections greatly reduces the effects of ground
currents but it is of course much sounder to prevent the currents arising in the first place.
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Figure 1.2: Active crossover system using six monobloc power amplifiers.
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In Figure 1.3, the system is configured with three stereo power amplifiers. This has the
advantage that stereo amplifiers are the most common sort and give the greatest choice. The
ones used here are assumed to be identical; if a lower-power stereo amplifier is chosen to
drive the tweeters then Figure 1.3 would need to have its connections rearranged. Figure 1.3
uses 5 electronic boxes, 8 line cables, and 6 loudspeaker cables. Using two-way cables
between the preamplifier and crossover and also to the power amplifiers simplifies this to
5 boxes, 4 line cables, and 6 loudspeaker cables. There are always going to be 6 loudspeaker
cables.

Figure 1.4 shows a variation on this approach which puts one of the stereo amplifiers
adjacent to the right loudspeaker, instead of piling them all up on the left side. This cuts
down the total length of loudspeaker cable required, but there is still a long run from one
amplifier on the left to the right loudspeaker on the other side of the room.

The opinion is held in some quarters that very high degrees of isolation between left and
right channels is essential to obtain an optimal stereo image. This is wholly untrue, but audio
is not a field in which rational argument can be relied upon to convince everybody. The
configuration of Figure 1.4 could be criticised on the grounds that left and right channels pass
through one stereo power amplifier and this might compromise the crosstalk figures. It is not
actually harder to get a good crosstalk performance from a stereo power amplifier than from a
stereo preamplifier; in fact it is usually easier because the preamplifier has more complex
signal routing for source selection and the like. Nonetheless it is only fair to point out that
there might be objections to the 3× stereo amplifier arrangement because however it is
configured, at least one amplifier will have to handle both right and left signals.

We will now take a radical step and assume the ready availability of three-channel power
amplifiers.

Figure 1.3: Active crossover system using three stereo power amplifiers.
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Multi-channel power amplifiers at a reasonable cost have been available for surround-sound
systems for many years, to deal with 5:1 formats and so on. The last multi-channel power
amplifier I designed (the TAG 100× 5R:10) could be configured for ten channels of 80W/8Ω
each. A three-channel power amplifier of high quality presents absolutely no new technical
challenges at all.

As you can see from Figure 1.5, using two three-channel power amplifiers simplifies things
considerably. There are now 4 electronic boxes, 8 line cables, and 6 loudspeaker cables.
Using a two-way cable from preamp to crossover and three-way cables between the
crossover and amplifiers is well worthwhile and reduces the parts count to 4 boxes, 3 line
cables, and 6 loudspeaker cables. This important configuration is shown in Figure 1.6. One
of the three-channel power amplifiers could be sited over by the right loudspeaker, and this
is much to be preferred as it minimises total loudspeaker cable length. I think it is fairly
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Figure 1.4: Alternative setup of three stereo power amplifiers, with one placed on right
speaker side.
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Figure 1.5: Active crossover system using two three-channel power amplifiers.
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clear that this is the best way to configure things, with the least number of separate parts
and the possibility of keeping the loudspeaker cables very short indeed if each power
amplifier is sited right behind its loudspeaker.

The only real difficulty is those three-channel power amplifiers. Some do exist, evidently
intended for multi-channel AV use rather than in active crossover systems; two current
examples are the Classé CA-3200 three-channel power amplifier [14] and the Teac A-L700P
three channel Amplifier. There appear, however to be no three-channel amplifiers specifically
designed for our application here. Such an amplifier would be able to economise on its total
power output by having a big output for the LF driver, a medium output for the mid drive
unit, and a smaller output again for the tweeter. The downside to that plan is that it would
be less versatile than a three-channel amplifier with equal outputs, which could be pressed
into stereo or multi-channel service if required.

Three-way cables should present no problems; in the UK, the widespread Maplin chain
sells four-way audio line cables with individually lap-screened cores at a very reasonable
price. Individual screened cores are of course highly desirable to prevent capacitive
crosstalk.

To take things to their logical conclusion, we can use a six-channel power amplifier. These
are used extensively in AV applications so are not hard to obtain. If we assume the use of
multi-way cables from the start, we get Figure 1.7. This cuts down the separate pieces of
hardware to the minimum, giving 3 electronic boxes, 2 line cables, and the usual 6 loudspeaker
cables. Unfortunately this configuration brings back the need for long and possibly expensive
loudspeaker cables to drive the right loudspeaker, and it also raises again the question of
left-right crosstalk in the power amplifier.

In my view, the configuration using two three-channel amplifiers is clearly the best
approach. There is one more box but the loudspeaker cables can be of minimal length.
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Figure 1.6: Active crossover system using two three-channel power amplifiers
and multi-way cables.
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1.10 Matching Crossovers and Loudspeakers

Having looked at the best way to package and configure an active crossover system, there
are some other issues to deal with. In the sound reinforcement business, active crossovers
are sold with wide-ranging control over crossover frequencies, time delay compensation, and
so on. This is feasible in a situation where skilled operators set up the system. In a hi-fi
situation it is more common to have fixed crossover parameters that are carefully matched
to the loudspeaker characteristics. These parameters include not only crossover frequencies
and delays, but also things like drive unit frequency response equalisation, diffraction
compensation equalisation, and so on. The crossover has to be set up for one model of
loudspeaker only. This is fine if the crossover and amplifiers are built into the loudspeaker,
but as we have seen, this is not going to work for potential customers who want to choose
their own power amplifiers, and that is most of them.

The solution to this problem is to sell active crossovers and loudspeakers as a matched
package, but leave the power amplifiers to be bought separately. All that would be required
of the amplifiers is that they should all have the same gain. For the higher reaches of the
high end, each active crossover unit could be individually calibrated by acoustic testing to
match each loudspeaker with its drive units at the factory, authoritatively solving the
problem of variation in drive unit parameters. The loudspeakers and crossover would then
be tied together by their serial numbers. Obviously it would be essential to not swap over
the Left and Right channels at any point. The calibration could be done by plugging in
resistors until the optimal result is obtained, and then soldering them in permanently. This
kind of hand tuning would not of course be cheap, but with the right measuring gear and an
intelligent algorithm for adjusting the various crossover parameters, I am sure it could be
done at a price some folk would be prepared to pay.
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Figure 1.7: Active crossover system using a single six-channel power amplifier and
multi-way cables.
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What it would not do is compensate for drift in drive unit parameters over time. This could
only be addressed by regular re-calibration, which would be unpopular with most people if
it involved sending the crossover and loudspeakers back to the factory—and handing over
some more money, no doubt.

For this scheme it would be necessary to construct loudspeakers so that direct access could be
gained to the drive units, optionally by passing the internal passive crossover, if one is fitted
at all. Providing facilities for bi-wiring on the back of a loudspeaker is straightforward; you
just put four terminals on the back and add a pair of shorting links that can be easily removed.
Tri-wiring is a little more difficult but still thoroughly doable. Bypassing a passive crossover
is however more complex, as it is necessary to disconnect it not only from the input terminals
but also from two, three, or possibly four drive units.

1.11 A Modest Proposal: Popularising Active Crossovers

Let us suppose that it becomes accepted practice to sell crossovers and speakers as a
package, but the amplifiers are bought separately. As we have just seen the best and neatest
way to configure the complexities of a 3-way active crossover system is to use three- or
six-channel power amplifiers, and one might hope that a market for these would develop.
One wonders if there might be some sort of psychological resistance to buying two parts of
the audio chain with a gap (the power amplifier) between them. We can, I think, confidently
predict that some enthusiasts would favour different makes of power amplifier for the LF,
MID, and HF channels. There would be much room for entertaining debate if you like that
sort of thing. We might even speculate that third-party active crossovers might be markted
to replace those from the speaker manufacturer.

We also saw that it is highly desirable to use multiway cables between the active crossover
and the power amplifiers, for tidiness as well as the best technical performance. A market
could emerge for 3-way or 6-way leads. Ideally each audio line should be individually
screened to prevent capacitive crosstalk between them, especially on long cable runs, but
this puts the cost of the cable up substantially. Conventional line outputs have a series
resistor in the output to ensure stability when faced with cable capacitance from signal to
ground, resulting in a typical output impedance of 50–100Ω. This is enough to allow the
capacitance between adjacent and unshielded signal conductors to significantly degrade
the crosstalk performance. A most effective solution to this problem is the use of so-called
“Zero-impedance” line outputs on the crossover. This technology typically achieves an
output impedance of a fraction of an Ohm, and can reduce crosstalk by 40 dB or more; it is
equally stable into long cable runs, and the extra cost is trivial. Zero-impedance outputs are
fully described in Chapter 17 on line output stages.
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An unbalanced 6-way interconnection uses 6 signal feeds and at least one ground wire, and
so requires at least 7 pins in the connector used.

Since an active crossover system is expected to reach high levels of quality, the use of
balanced interconnections needs examination. The hot and cold signals from each channel
can be wrapped by a single grounded screen, but ideally there would be separate assemblies
of this sort for each channel, which makes for rather non-standard cable. Conventional
balanced operation naturally increases the number of contacts on the connectors used to at
least (6 × 2) + 1 = 13, though multiple ground connections would be good, not only to
reduce voltage drops due to ground currents, but also to avoid alarming the superstitious
end of the audio market.

This assumes that the outputs are truly balanced, in that there are two outputs in anti-phase.
While this gives a handy 6 dB increase in level over the link, the potential 6 dB improvement
in signal-to-noise ratio is likely to be rendered irrelevant by the noise from the electronics.
If we could drop the requirement for anti-phase outputs then we could have a quasi-balanced
cable with 6 signal feeds, one cold line to sense the source-end ground, and one ground wire.
The single cold line would be distributed to the cold inputs of six balanced input amplifiers at
the receiving (power amplifier) end. The danger is, of course, that people would condemn it
as “ not a real balanced connection” though it would almost certainly give an equally good
performance as regards common-mode rejection. This plan would require a minimum of
8 pins in the connector.

1.12 Multi-Way Connectors

A multi-way cable requires multi-way connectors. It would be nice if active crossovers
became so popular that a committee designed a special connector for us (like the
HDMI connector, for example), but realistically that isn’t likely to happen soon. It is
therefore worth looking at what existing connectors are capable of meeting our needs.
What we must strive to avoid is a connector configuration already in common use,
because in the real world people are prone to plug stuff into any socket that will
physically accept it.

XLR connectors have the benefit of being fairly familiar, but they only go up to 7 pins. This
is fine for 3-way balanced use, but only allows unbalanced 6-way operation (six audio feeds
plus a common ground). Since we are dealing with higher-end systems, it seems inappropriate
to rule out balanced operation.

The familiar standard DIN connectors have a 13.2 mm diameter metal body and go up to
8 pins, so we can have fully balanced 3-way operation, or 6-way quasi-balanced operation,
but not fully balanced 6-way usage. These connectors have some unfortunate associations
with the low-quality DINs in the past, but today reliable high-quality versions are freely
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available and are used for MIDI links and stage lighting control. They are not popular with
those who have to solder cables into them, but then this is probably true of any small
multi-way connector.

The smaller Mini-DIN connectors are 9.5 mm in diameter and officially come in seven
patterns, with the number of pins from 3 to 9, though there are at least two non-standard
10-pin versions which are not approved by the Deutsches Institut für Normung, (DIN) the
German standards body. Once more we can have fully balanced 3-way operation, or 6-way
quasi-balanced operation, but not a fully balanced 6-way mode. Mini-DINs are sometimes
called “Video camera connectors” though they have in fact been used for a very wide
variety of uses, including computer power supply connectors, so there is an element of risk
there.

The 9-way D-type connector is inexpensive, and offers screw retention, but it is hard to
argue that it has anything of a high-end audio air about it. It is also likely to get plugged
into the wrong place, whereas standard-format connectors like XLRs or DINs with an
unusually large number of pins are much safer. Once more we can have fully balanced
3-way operation, or 6-way quasi-balanced operation, but not a fully balanced 6-way
mode.

There are various proprietary connector systems; for example the Neutricon by Neutrik goes
up to 8-pin. It is stocked by Farnell so is easy to source.

The 15-way D-type connector has the same problem of lack of glamour as the 9-way, but
it is the only easily sourced connector which will allow fully balanced 6-way operation.
The two spare ways can be usefully pressed into service as extra ground connections.

1.13 Subjectivism

As I warned you in the preface, this book has no truck with faith-based audio. There is no
discussion of oxygen-free copper, signal cables that only work one way, magic capacitors
hand-rolled on the thighs of Burmese virgins under a full moon, or loudspeaker cables that
cost more than a decent car. Valve technology is ignored because it is inefficient and
obsolete, and despite much ill-informed special pleading, it has absolutely no magical
redeeming features. You will find here no gas-fired pentodes, nor superheated triodes fed
with the best Welsh steam coal and still bespattered with the mud of the Somme. It would
of course be possible to design a complex active crossover using valves, but even if you
accepted mediocre performance as regards noise and distortion, the result would be very
expensive, very hot, and very heavy.

You will, I think, find enough real intriguing intellectual challenges in crossover design to
make it unnecessary to seek out non existent ones.
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CHAPTER 2

How Loudspeakers Work

This chapter is not in any way a guide to how to design loudspeakers, nor is it a complete
explanation of how they work; what it does do is look at their functioning from the point of
view of the crossover designer. The specific topic of time-aligning the drive units is dealt
with in Chapter 10 on delay compensation.

There are many ways to make a loudspeaker. Some of the less common types are
electrostatics, ribbon loudspeakers, electromagnetic planar loudspeakers, Heil air-motion
transformers, and the rather worrying Ionophone, but here I must concentrate on the most
popular concepts: sealed boxes, ported reflex boxes, ABR systems, transmission line
loudspeakers, and horns.

2.1 Sealed-Box Loudspeakers

A sealed enclosure, as shown in Figure 2.1a, is the simplest. It gives a good transient
response, assuming a correct choice of Q, good low-frequency power handling because the
drive unit cone is always loaded, and has less sensitivity to misaligned parameters than
other types. On the other hand, sealed enclosures have higher low-frequency cutoff points
and lower sensitivity than the other loudspeaker types for the same box volume.

A loudspeaker in a sealed box has two important factors working on it—the mass of the
moving parts of the driver and the compliance (“springiness” of the air in the box). These
two factors make up a second-order system, like a weight bouncing on a spring, and the
effect is that the loudspeaker response is that of a second-order lowpass filter with a 12 dB/
octave rolloff as frequency falls. Driver cone excursion increases at 12 dB/octave with
decreasing frequency for constant SPL, so cone excursion tends to be constant below the
cutoff frequency.

Such filters can have different values of Q; the higher the Q the more peaked the response
(as shown in Figure 2.2). The Q is an important choice in the design, and is often referred to
as the “alignment” by reference to a filter type. Thus a Butterworth alignment uses a Q of
0.707 (1/√2) and gives a maximally flat response, just like a second-order Butterworth filter.
This is not necessarily the ideal Q; higher Qs give significantly more LF output below the
cutoff frequency, but at the expense of response peaking, and too high a Q gives a boom-box
or “one-note bass” effect, which is not usually what is wanted. A Q of 0.5 gives a good
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(a) (b) (c)

Sealed box Ported box ABR system

ABR

Drive unit

(d) (e)

Horn loudspeakerTransmission line

Figure 2.1: The basic loudspeaker arrangements: sealed box, ported reflex, ABR,
transmission line, and horn.

Figure 2.2: Sealed-box loudspeaker LF responses with a cutoff frequency of 100 Hz and
various Qs.
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transient response (Q = 0.707 gives overshoot on square waves) but is often criticised for
being “too taut” or over-damped, and the LF output clearly suffers.

For a given drive unit, the system Q is determined by the box volume. The bigger the box, the
lower the Q; the responses in Figure 2.2 correspond to a range of box volumes of about 50 times.

The box may be left completely empty, or it may be lined or wholly filled with acoustic
damping material, such as bonded acetate fibre (BAF) or long fibre wool. This not only absorbs
internal reflections, but for the “fill-’er-up” approach, alters the thermodynamic properties of the
enclosed air so that the enclosure behaves as though slightly larger than its physical size.

Sealed box loudspeakers are normally classified into two kinds: the infinite baffle type and
the air suspension type. If you have a large enclosure where the compliance of the air inside
is greater than the compliance of the drive unit suspension, so that most of the restoring
force comes from the latter, it is regarded as an infinite baffle type. A small enclosure
where the compliance of the air inside is less than the compliance of the drive unit
suspension by a factor of three or more, is regarded as an air suspension type.

The efficiency of a drive unit in a sealed box is proportional to the cube of the drive unit
resonance frequency (the Thiele–Small parameter Fs) [1] so attempts to get a lot of low-
frequency extension with a given drive unit and a small box volume inevitably result in low
efficiency. Nowadays amplifier power is relatively cheap, but there may be problems with
large cone excursions and voice-coil heating. Other sorts of loudspeaker enclosures that
reinforce the LF output with the rear cone radiation are often used to increase the efficiency,
as we shall now see.

2.2 Reflex (Ported) Loudspeakers

The alternative loudspeaker types all, in different ways, return low-frequency energy from
the rear of the drive unit in the correct phase to reinforce that radiated from the front.

Reflex or ported loudspeakers, (sometimes called vented boxes) as shown in Figure 2.1b,
have a pipe-like port which allows the passage of air in and out of the box. The mass of air
in the port resonates with the compliance of the air in the box, causing the port output to be
in phase with the forward radiation of the drive unit at low frequencies, and allows the bass
response to be extended without the lower efficiency that results when that is done with a
sealed box. At frequencies below the port resonance the port output is in anti-phase, causing
the output to fall at 24 dB/octave rather than 12 dB/octave as for the sealed box. The
response looks like Figure 2.2, but with steeper rolloffs. This does not result in a notch in
the response, as occurs in the ABR system, but the increased slope makes things more
difficult if you are planning low-frequency response extension by equalisation in the
crossover, as the matching of equaliser and driver/box responses is more critical.
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While a ported loudspeaker can have lower drive unit distortion, greater power handling, and
a lower cutoff frequency than a sealed box system using the same drive unit, there are snags.
Below the cutoff frequency the drive unit quickly becomes unloaded and its excursion
increases dramatically, worsening non-linear distortions and threatening mechanical damage.
To guard against this a subsonic filter should always be used when the source is vinyl. It has
been persuasively argued that the arrival of CDs, with extended bass but no subsonic
disturbances, caused a major increase in the popularity of ported loudspeakers. The transient
response of a ported loudspeaker is considered to be not so good as for a sealed box system
with the same drive unit. Ported box systems are significantly more sensitive to misaligned
parameters than are sealed box systems, and require more careful design.

At low frequencies large amounts of air are moving through the port; to minimise chuffing
noises from turbulent air flow it should have the largest diameter possible consistent with
the resonance required and be flared at both ends.

2.3 Auxiliary Bass Radiator (ABR) Loudspeakers

Auxiliary bass radiator loudspeakers (also called passive radiator loudspeakers) work in a
similar way to ported loudspeakers. The mass of air in the port is replaced by the mass of
the auxiliary bass radiator, which is essentially an LF drive unit with the usual cone and
suspension but no voice coil or magnet, as shown in Figure 2.1c. The response of an
auxiliary bass radiator loudspeaker is therefore very similar to that of a ported loudspeaker
using the same driver. However, the LF cutoff frequency will be somewhat higher, and the
rolloff slope will be steeper, due to the presence of a notch in the frequency response which
corresponds to the free air resonant frequency of the ABR. This causes a steeper rolloff
below the system’s tuned frequency Fb, (the resonant frequency of LF driver and box
together) and a poorer transient response. Normally the notch is well below the loudspeaker
passband (say below 20 Hz), where the response has already dropped considerably; so
despite the rapid phase changes associated with the notch, it is normally considered to be of
little or no audible significance; it is not practical to equalise it away. The larger the ABR,
the more mass its cone will have, and the lower its resonance frequency will be for the
same target Fb, pushing the notch further away from the bottom of the loudspeaker
passband. There is much more flexibility in design as the ABR cone mass can be altered.
The ABR unit may be mounted above or below the main LF drive unit. Two ABR units are
sometimes combined with a single active LF driver unit; if so, they are mounted on either
side so that the inertial forces cancel out and put less excitation into the front baffle.

ABRs eliminate port turbulence noises and port resonances and give good LF extension for
a given box volume. They are however more complex to design than ported types, and are
more costly due to the extra auxiliary bass radiator.
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2.4 Transmission Line Loudspeakers

A true transmission line or “acoustic labyrinth” loudspeaker sends the energy from the rear of
the drive unit down an infinite pipe, where it is gradually absorbed and never heard of again.
Since infinite pipes rarely fit in well with domestic surroundings, practical “transmission line”
loudspeakers are a compromise. The rear radiation passes down a length of duct chosen so
that it is in the correct phase to reinforce the forward radiation at low frequencies. To
get worthwhile reinforcement the duct needs to be a quarter of a wavelength long at the
frequency of interest, so it shifts the phase of the rear output by 90°. At 40 Hz the wavelength
of sound is 8.58 metres, and a quarter of that is 2.145 metres, which is an impractically long
duct unless it is folded at least twice, as shown in Figure 2.1d, where the bobbles represent
absorbent material lining the duct. Transmission line loudspeakers are often described as non-
resonant, but without the quarter-wave resonance (which could be suppressed by using
enough absorbent stuffing in the duct) there will be no enhancement of the bass response.

The low-frequency reinforcement works in the same way as a ported box, and the
response falls at 24 dB/octave, once again making low-frequency response extension by
equalisation in the crossover more difficult. Transmission line loudspeakers are not used
in sound reinforcement because the duct greatly increases the volume and weight of the
box, without offering any advantages over a ported system; they have the same
disadvantage in the domestic environment. Compared with sealed-box, ported, and ABR
designs, they are not popular.

2.5 Horn Loudspeakers

An acoustic horn is used to improve the coupling efficiency between a drive unit and the
air. It acts as an acoustic transformer that provides mechanical impedance matching,
converting large pressure variations over a small area into low pressure variations over a
large area, giving a greater acoustic output from a given driver. Horns have a low-frequency
limit set by the flare rate and the mouth size; the slower the flare rate, the lower the
frequencies a horn can reproduce for a given length. A horn with an area flare rate of
30% per foot is considered to be effective down to about 30 Hz. The flare may have an
exponential or tractrix flare; conical flares, as used on old phonographs, have a poorer low
frequency response. The flare in Figure 2.1e is illustrative only.

For these reasons horns with an extended low-frequency response are physically large, and
only practical if folded in some way. This is not quite as clever as it appears because
bouncing the sound round corners can cause frequency response anomalies at the upper end
of the working range, due to reflections and resonances. Horn loudspeakers are widely used
in sound reinforcement because of their high efficiency.
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Constant directivity horns are a relatively recent development where an initial exponential
section is combined with a final conical flare, dispersing the shorter high-frequency
wavelengths more effectively. They require special equalisation, and this is covered in
Chapter 11.

2.6 Diffraction

Diffraction affects loudspeaker operation for the simple reason that high frequencies have
shorter wavelengths than long frequencies. At high frequencies, a loudspeaker cone radiates
sound mostly in a forward direction, into what is called “half-space”; in other words a
hemisphere facing forwards. At low frequencies, the longer wavelengths of the sound bend,
or diffract, around the sides and rear of the enclosure, so radiation occurs into “full-space,”
which is a sphere with the loudspeaker at its centre. In other words the loudspeaker
becomes omnidirectional. The difference between these two modes appears as a lower
output on the forward axis at low frequencies. In the quite unrealistic conditions of an
anechoic chamber the low frequency loss is 6 dB, halving the SPL. In the special case
where the loudspeaker enclosure is spherical, the transition between the two modes is
smooth and can be approximated by a first-order shelving response, as shown in Figure 2.3,
which is derived from the classic paper on the subject by Olson in 1969 [2].

This effect is sometimes called the “6 dB baffle step” or the “diffraction loss” of the
enclosure (“step” is actually not a very good description—it is actually a very gentle rise).
The frequency at which this occurs is proportional to the enclosure dimensions, and the
effect can be compensated for by simple shelving equalisation.

While spherical loudspeaker enclosures are perfectly practical (a notable example being the
Cabasse La Sphère [3], which claims to be “a true 4-way co-axial point source”. they are
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Figure 2.3: HF rise of 6 dB due to diffraction around a spherical loudspeaker enclosure
24 inches in diameter (after Olson, 1969).
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never likely to be very popular. Apart from anything else, they need special stands to stop
them rolling around the room. There are also problems because the internal reflection paths
are all the same length. (I once knew a chap who built a pair of spherical loudspeakers out
of GRP, using full-range drive units. He was unable to resist the temptation to paint them
like a giant pair of eye-balls, which did not create a restful effect.)

For any shape other than spherical, the diffraction business becomes more complicated. Any
other shape has some sort of edge or edges, and when the sound waves from the drive unit
strike them, a negative pressure wave is formed which radiates forward and sums with the
direct output from the drive unit. This creates an interference effect that adds wobbles to the
basic frequency response with its 6 dB rise; these wobbles can be as large as the step itself.
This edge effect is illustrated in Figure 2.4.

About the worst thing you can do when choosing a loudspeaker enclosure is to mount it
in the end of a cylinder, as in Figure 2.5. This has an equal distance from the drive unit
to every part of the edge at the front, and so produces the most accentuated response
deviations, exceeding 10 dB. You will note that the horizontal distance between peaks or
between dips on the graph decreases as the frequency increases; this is simply because the
graph has a logarithmic frequency scale but the diffraction effect, being based on multiples
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−

Figure 2.4: Extra sound waves generated by diffraction at the corners of a
loudspeaker enclosure.
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of wavelength, is linear. Although the response to be corrected should be constant, because
it depends on the mechanical dimensions of the enclosure, any attempt to equalise away
these variations would take quite a bit of doing. The obvious conclusion is that this shape
of enclosure is of no use to man or beast, and should be shunned.

Rectangular (or to be strictly accurate, rectangular parallelepiped, i.e., with all edges
parallel) boxes are of course much easier to fabricate than spheres or cylinders, and are
correspondingly more popular. The simplest shape is the cube, which has the advantage
over the cylinder that the path length from the drive unit to the front edges varies. This
helps to smooth out the response wobbles, but as Figure 2.6 shows, they are still substantial,
the difference between the first peak and the first dip being about 8 dB.
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Figure 2.5: Serious response disturbances due to corners, superimposed on 6 dB rise; cylindrical
loudspeaker enclosure 24 inches in diameter and 24 inches long (after Olson, 1969).
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Figure 2.6: Reduced response disturbances due to corners, superimposed on 6 dB rise; cubic
loudspeaker enclosure 24 inches in on a side (after Olson, 1969).
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Figure 2.7 shows the result of converting the flat face of the forward baffle into a truncated
pyramid, to make the edges less sharp. The frequency response deviations are now much
less pronounced, not exceeding 2 dB, apart from the inherent 6 dB rise. Olson gives the
following information about its dimensions: “The length of the edges of the truncated
surface is 1 ft. The height of the truncated pyramid is 6 in. The lengths of the edges of the
rectangular parallelepiped are 1 ft. and 2 ft. The loudspeaker mechanism is mounted in the
centre of the truncated surface. The lengths of the edges of the rectangular parallelepiped are
2 ft. and 3 ft. The loudspeaker mechanism is mounted midway between two long edges and
1 ft. from one short edge.”

The vast majority of loudspeakers are of course rectangular boxes, as shown in Figure 2.8.
These give a much worse response than the previous example because of the sharp edges of
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Figure 2.7: Much reduced response disturbances superimposed on 6 dB rise; truncated
pyramid and rectangular parallelepiped loudspeaker enclosure;

dimensions given in text (after Olson, 1969).
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Figure 2.8: Response disturbances due to sharp corners, superimposed on 6 dB rise; rectangular
loudspeaker enclosure; dimensions given in text (after Olson, 1969).
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the front baffle, with deviations of up to 6 dB. The lengths of the edges of the rectangular
box were 2 ft. and 3 ft. The drive unit was mounted midway between two long edges and
1 ft. from the top short edge.

Using the information derived from these enclosure shapes, Olson suggested an enclosure
that would give good results while still fitting into a domestic setting rather better than a
sphere. The results are given in Figure 2.9, and the response deviations are about 2 dB;
not as good as the sphere, but far better than the simple rectangular box. Olson say about
its dimensions: “A rectangular truncated pyramid is mounted upon a rectangular
parallelepiped. The lengths of the edges of the rectangular parallelepiped are 1, 2, and
3 ft. The lengths of the edges of the truncated surface are 1 ft. and 2½ ft. The height of
the truncated pyramid is 6 in. One surface of the pyramid and one surface of the
parallelepiped lie in the same plane.”

There are a few interesting points about the Olson tests that are not normally quoted.
Firstly, the drive unit he used was specially designed and had a cone diameter of only
7/8 of an inch, so it was small compared with the wavelengths in question and could be
treated as a perfect piston; that is why it looks so small on the enclosure sketches. All the
measurements were done on-axis in an anechoic chamber. Secondly, while the reference that
is always given is the 1969 JAES paper, because it is accessible, the original paper was
presented at the Second Annual Convention of the AES in 1950. This accounts for the
somewhat steampunk look of the measuring equipment pictured in the paper.

Other workers in this field have reported that further reduction in the response ripples can
be obtained by optimising the driver position and rounding the enclosure edges.
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Figure 2.9: Much reduced response disturbances due to corners, added to 6 dB rise; Olson
optimal loudspeaker enclosure; dimensions given in text (after Olson, 1969).

36 Chapter 2



2.7 Modulation Distortion

With any crossover the drive units have to handle a range of frequencies, and this leads to
the problem known as modulation distortion. What has been called “total modulation
distortion” [4] is made up of two components: amplitude modulation distortion and
frequency modulation distortion. The first is intermodulation distortion caused by non-
linearities in the drive unit. The second is a result of the Doppler effect, a low-frequency
movement of the cone causing frequency modulation of the higher frequencies present. Both
modulation distortion components are reduced by limiting the range of frequencies that the
drive units handle and by using steep crossover slopes.

Further Reading

If you want to get deeper into loudspeaker design issues, two excellent books are Loudspeakers by Newell and
Holland, [5] and The Loudspeaker Design Cookbook by Vance Dickason [6].
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CHAPTER 3

Crossover Requirements

3.1 General Crossover Requirements

The desirable characteristics of a crossover system are easy to state, but not so easy to
achieve in practice. There is a general consensus that there are five principal requirements
that apply to all crossovers, be they active or passive, and that they should be ranked in
order of importance thus:

1. Adequate flatness of summed amplitude/frequency response on-axis
2. Sufficiently steep rolloff slopes between the output bands
3. Acceptable polar response
4. Acceptable phase response
5. Acceptable group delay behaviour

To some extent, the amount of space devoted in this book to each requirement is dependent
on their relative importance as set out in this list.

3.1.1 Adequate Flatness of Summed Amplitude/Frequency Response On-Axis

This requires that the output of each filter is appropriate in both amplitude and phase over a
sufficient frequency range so that when summation occurs the overall amplitude/frequency
response is flat. Note that this requirement does not place restrictions on the phase of the
summed result; in many cases this will show considerable phase shift that varies across the
audio band. This issue is addressed in requirement 4 below.

Crossovers that sum to a completely flat amplitude response include the first-order
crossover, the second-order Linkwitz–Riley crossover, the third-order Butterworth crossover
and the fourth-order Linkwitz–Riley crossover. A new addition to this list is the Neville
Thiele Method notch crossover.

There are many crossover types that can be made to sum very nearly flat by tweaking the
filter cutoff frequencies. For example, the second-order Bessel crossover can be made flat
to within ±0.07 dB by using a frequency offset ratio of 1.45 times, and the third-order
Linkwitz–Riley crossover can be made flat to within ±0.33 dB by applying a frequency
offset ratio of 0.872 times. There is much more on this in Chapter 4.
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3.1.2 Sufficiently Steep Rolloff Slopes between the Filter Outputs

The filter rolloff slopes must be fast enough to prevent driver damage. Even a small amount
of LF energy can rapidly wreck a tweeter. The slopes must be steep enough to not excite
areas of poor drive unit frequency response, such as resonances outside normal band of
usage; this applies only to mid-range drive units and tweeters, as the LF drive unit
resonance will always be used. In addition, the linearity of drive units is very often worse
outside their intended frequency range, so steeper slopes will give less non-linear distortion,
and that has got to be a good thing.

Restricting the frequency range sent to each drive unit will also minimise frequency
modulation distortion caused by the Doppler effect (see Chapter 2). It is also desirable to
make the frequency range over which crossover occurs as narrow as possible to minimise
the band over which lobing occurs due to two drive units radiating simultaneously.

Unless specially designed drive units are used, the minimum practical slope is usually
considered to be 12 dB/octave which requires a second-order crossover. Steeper slopes such as
18 dB/octave (third-order) and 24 dB/octave (fourth-order) are generally considered to be very
desirable; 48 dB/octave (eighth-order) slopes are sometimes used in sound reinforcement.

3.1.3 Acceptable Polar Response

An even and well-spread polar response is desirable because it increases the amount of
space in which a good sound is obtained. It is also desirable to avoid a large amount of
radiated energy from being directed at the floor in front of the loudspeaker, from which it
will reflect and cause unwanted comb-filtering effects by interference. Loudspeakers
normally give a good polar response in the horizontal on-axis plane, assuming the drive
units are mounted in a vertical line as usual. This, however, causes problems in the vertical
plane, for in the crossover region two drive units separated in position are radiating
simultaneously, and their outputs will interfere, giving reinforcements and cancellations in
the radiation pattern at different angles, known as lobing. This is a result of having two
drive units separated in space and there is nothing the crossover designer can do about this
except make the crossover frequency range as small as possible.

However, it gets worse. If the crossover outputs to each drive unit are in phase, then the
main lobe points forward on the horizontal axis, and stays there. If, however, there is a
constant phase shift between the outputs, as for first-order crossovers (90° phase shift) or
third-order crossovers (270° phase shift) then the main lobe is tilted toward the drive unit
that is phase lagging. This is usually the LF unit, so the main energy is being unhelpfully
directed towards the floor. This is a frequency-dependent effect because it only occurs in
the crossover region and is at its greatest at the crossover frequency itself. It is sometimes
simply called “lobing error.”
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It is therefore clear that if we are going to keep the main lobe of the summed acoustic
output on the axis it is highly desirable that the lowpass and highpass outputs are in phase
in the crossover region [1]. This property is possessed only by second-order crossovers
(assuming one output is inverted to get a flat response, otherwise the phase-shift is 180°)
and fourth-order crossovers with no inversion. This is one reason for the popularity of the
fourth-order Linkwitz–Riley crossover.

All the above depends on the drive unit time-delay compensation being correct; the drive
units must be either physically mounted or electrically compensated so that the direct sound
from each one arrives at the listener’s ear at the same time over the whole of the crossover
frequency range. Otherwise, the main lobe will have a frequency-dependent tilt toward the
driver with the longest air path to the ear.

A good polar response therefore requires that the crossover outputs be in phase and that the
time-delay compensation be correct.

3.1.4 Acceptable Phase Response

An acceptable phase response for the combined output is also required. Most crossovers are
not linear-phase or minimum phase but have the phase response of a first-order allpass
filter, with the phase changing by 180° over the audio band. The best-known of these are
the first-order (inverted), the second-order Linkwitz–Riley, and third-order Butterworth
crossovers. The fourth-order Linkwitz–Riley crossover has the phase response of a second-
order allpass filter, with the phase changing by 360° over the audio band. These phase
responses are generally agreed to be inaudible with music signals so the fourth requirement
is not too onerous. There is a separate section on the issue of phase perception later in this
chapter.

3.1.5 Acceptable Group Delay Behaviour

Group delay is simply a measure of how much a signal is delayed. This is directly
connected with an acceptable phase response for the combined output, and in fact the group
delay is completely determined by the phase shift. Group delay is mathematically the rate of
change of the total phase shift with respect to angular frequency (i.e., frequency measured in
radians per second rather than Hertz).

Group delay would be of little interest if it was constant, but as the rate of change of phase
varies across the audio band, with the phase response of an allpass filter, the group delay
also varies. The change is sometimes smooth, but may show a pronounced peak near the
crossover frequency. This variation would, if it was sufficiently severe, cause a time-
smearing of acoustical events and would sound truly dreadful, but you must not mistake
this with the use of the word “smearing” in hi-fi reviews, where it is purely imaginary.
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The thresholds for the perception of group delay variation are well known because of their
historical importance on long telephone lines. The most accepted thresholds were given by
Blauer and Laws in 1978 [2], and are shown in Table 3.1.

These times are given in milliseconds, and a typical group delay for a 1 kHz crossover
would be something like 10 times less. The section on phase perception later in this chapter
is concerned with the audibility of allpass filters, and the conclusion is firm that neither
their phase-shift nor their group delay can be heard on normal musical signals.

The word “group” is derived from “group velocity” in wave-propagation theory, but for our
purposes it is simply the amount by which a signal at a given frequency is delayed.

3.2 Further Requirements for Active Crossovers

In addition to the general requirements for all crossovers given above, there are further
special requirements for active crossovers. As explained in Chapter 1, if you are adding an
extra unit into the signal path it must be as transparent as possible if overall quality is not to
take a step backwards. The ultimate goal is total transparency so that the introduction of the
crossover causes no degradation at all.

Some further requirements for active crossovers, in no particular order, are:

1. Negligible extra noise
2. Negligible impairment of system headroom
3. Negligible extra distortion
4. Negligible impairment of frequency response
5. Negligible impairment of reliability

It would be easy to add further requirements to this list, such as no degradation in EMC
immunity, or of safety, or a modest power consumption, but these apply to any piece of
electrical equipment. Those listed above are pretty clearly the most important.

3.2.1 Negligible Extra Noise

While passive crossovers have many limitations, as described in Chapter 1, they do not add
noise to the signal. I am sure someone will now point out that crossover inductors do have

Table 3.1: Variation of Group Delay Threshold with Frequency

Frequency Group Delay

500 Hz 3.2 ms
1 kHz 2.0 ms
2 kHz 1.0 ms
4 kHz 1.5 ms
8 kHz 2.0 ms
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some resistance and thus must generate Johnson noise, but I am quite certain that −152 dBu
of noise (which is what you would get from a 1Ω resistance) added to a loudspeaker-level
signal is one of the lesser problems facing the audio business.

In contrast, the average active crossover performs its processing at line level, or possibly below,
and the relative complex structure of a high-quality crossover may allow lots of opportunities
for the signal-to-noise ratio to be degraded. Since active crossovers are placed after the main
system volume control, turning down the volume will not turn down its noise contribution and
with poor design the result could easily be unwelcome levels of hiss from the loudspeakers.

For this reason I have deemed it important to consider noise performance at every step while
describing the varied internal circuit blocks of an active crossover. Chapter 14 describes how to
minimise noise by using low-impedance design, by using active gain controls, and by adopting
the best order for the stages in the crossover. It also deals with the very important possibility of
running the crossover at higher nominal internal levels than the input and output signals,
provided the placement of gain controls in the whole sound system makes this feasible, so the
circuit noise is relatively lower and we get better signal/noise ratios. The intriguing possibility
of running the HF crossover path at a still higher level than the others because of the relatively
small amount of energy at the top end of the audio spectrum is also looked at in detail. Still
another technique is optimising the order of stages in each crossover path; making sure the
lowpass filters come last, after the highpass and allpass delay-compensation filters in the path
will mean that the noise from upstream is lowpass filtered and may be reduced by several dB.
Finally, Chapter 16 on line inputs demonstrates that the conventional balanced line input stage
is a rather noisy beast, and shows a number of ways in which to improve it.

I have attempted to bring all these low-noise techniques together in a demonstration
crossover design in Chapter 19 at the end of this book. The measured results for the
all−5532 version show a signal/noise ratio of 117.5 dB for the HF path output, 122.2 dB for
the MID output, and 127.4 dB for the LF output, which I think proves that using all the
above noise reduction techniques together can give some pretty stunning results.

Note however, that this crossover will still be a few dB noisier than a naked power
amplifier where the input goes straight to the input transistor pair; such power amplifiers
have an Equivalent Input Noise (EIN) of about −120 dBu if well designed [3]. However,
almost any sort of balanced input in the power amplifier will reverse this situation and the
crossover will produce less noise than the amplifier. This point is examined in more depth
at the end of Chapter 19.

3.2.2 Negligible Impairment of System Headroom

As described in the previous section, it can be very advantageous to the noise performance
to run an active crossover with elevated internal levels, so long as the placement of the gain
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controls in the whole system permits this. The scenario you are trying to avoid is having a
level control between the crossover and the power amplifier that somehow (not me, guv!)
gets turned down so it attenuates excessively. Then somebody turns up the volume control
on the preamp or pushes up the mixing desk output faders to compensate. This means there
is an excessive level inside the crossover, an unexpected signal peak comes along, and…
crunch.

This is not a hard situation to avoid. If the active crossover has output level controls that
are essentially gain trims with a limited range then it should not be possible to introduce
excessive attenuation. In other cases headroom problems are avoided simply by having
one competent person with control over the whole system. In hi-fi applications the
maximum input levels are fairly well defined by the FSD of the digital source. In other
cases, the mechanical limits of the wax cylinder or the vinyl disc impose a less well-
defined but still very real limit. In sound reinforcement applications the input levels are
much less predictable, but a combination of control from the mixing desk and the use of
compressor/limiters should prevent excessive levels from getting as far as the active
crossover.

3.2.3 Negligible Extra Distortion

The most significant source of distortion in the average sound system is either the
loudspeakers, or if the signal source is vinyl disc, the process of cutting grooves and then
wiggling needles about in them. This has never been and never will be accepted as
justification for giving up on the design of very linear preamplifiers and power amplifiers.
While progress has been made toward making power amplifiers as distortion-free as
small-signal circuitry, there are still major technical challenges to be overcome and at
present the most significant source of distortion in the electronic domain is almost always
the power amplifier. For this reason it may not be too hard to design a signal path that is
significantly more free of distortion, especially the crossover distortion that we all abhor,
than the average power amplifier. Nevertheless, as I have said before, we are inserting an
extra signal-processing box into the signal path, and it behoves us to make the degradation
it introduces as small as economically possible. This is not too hard from the cost point of
view as the active crossover, even if built to the highest standards, is likely to be much
cheaper than the extra power amplifiers required for multi-way operation.

3.2.4 Negligible Impairment of Frequency Response

This may seem like a strange requirement in a piece of equipment whose whole raison
d’être is radical modification of the spectrum of the signals it handles, but here I want to
distinguish between the frequency response modifications you want and those you don’t.
Even if we assume that an active crossover has a well-conceived filter structure, correct
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filter characteristics, suitably low component sensitivities, and is built with components of
accurate value, it would still be possible to degrade the frequency response by using an
over-aggressive ultrasonic filter or an inappropriate subsonic filter, and these stages should
get their full share of attention.

3.2.5 Negligible Impairment of Reliability

There is nothing that upsets the paying customer more than equipment that stops working
(OK, if it sets fire to the house that would probably annoy them rather more), so I make no
apology for putting this rather general requirement in. We are dealing with opamp circuitry
using modest supply rail voltages, the general levels of voltage and current are low, and the
opamps even have internal overload protection. So as long as the designer knows what
they’re about there is no reason why any components should be much stressed. There are a
couple of not-quite-obvious things that could go wrong in the power supply, such as
regulator heatsinks that are normally OK but prove to be too small when the mains is 10%
high in a hot country, or ill-conceived decoupling capacitors that cause the supply to fail to
start on an unpredictable basis. These design landmines are dealt with in Chapter 18 on
power supply design.

3.3 Linear Phase

A linear-phase crossover has a combined output phase-shifted by an amount proportional to
frequency; in other words it introduces a pure time-delay only, and the group delay is
constant. Non-linear-phase crossovers have phase-shifts that change non-linearly with
frequency and act like allpass filters; for this reason they are often called allpass crossovers.
Now while linear phase is clearly desirable on a purely theoretical basis, in that it makes the
crossover more transparent and closer to perfection, it is difficult to achieve. There is
certainly no settled consensus that it is necessary for a good acoustic performance, and the
bulk of evidence is that it is simply not necessary for satisfactory results on normal music.
There is more on this issue in the section below on phase perception.

The best-known crossover types with linear phase are first-order non-inverted crossovers,
filler-driver crossovers, and subtractive crossovers with time delay such as those put forward
by Lipshitz and Vanderkooy in 1983 [1].

3.4 Minimum Phase

Minimum phase, or minimal phase, is a term that is sometimes confused with linear phase.
In fact they are not only not the same thing, but almost opposites. A minimum-phase system, in
our case a filter, has the minimum phase shift possible to get the amplitude/frequency response
it shows. A minimum-phase filter is also one where the phase/frequency response can be
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mathematically derived from the amplitude/frequency response, and vice-versa. Furthermore,
the effect of a minimum-phase filter can be completely cancelled out in both phase and
amplitude by using a reciprocal filter that has the opposite effect. A good example of this is
given in Figure 11.1 in Chapter 11 on equalisation, where it is demonstrated that a peaking
equaliser can be exactly cancelled out by a dip equaliser, and a square-wave put through them
both is reconstructed.

There are, as you might expect, several much more precise mathematical ways of defining
the minimum-phase condition [4], but they are not helpful here. In general you cannot say
that a minimum-phase filter is better than a non-minimum-phase filter, as it depends what
you are trying to do with said filter.

Most crossover filters, such as highpass and lowpass types in their various kinds are
inherently minimum phase. The classic exception to this is the allpass filter used for time-
delay correction. Since an accurate allpass filter has a completely flat amplitude/frequency
response, you cannot deduce anything at all from it about the phase/frequency response.
The phase-shift of an allpass filter in fact varies strongly with frequency, as described in
Chapter 10 on time-delay compensation, but the amplitude/frequency response gives you no
clue to that. It is also impossible to undo the effect of an allpass filter because its particular
phase-shift characteristics give a constant delay at suitably low frequencies, and you cannot
make a filter that has a negative delay. That would mean foretelling the future, and on the
whole would probably not be a good thing.

The first-order crossover is minimum phase when its outputs are summed normally; it has
a flat phase plot at 0°. If one output is inverted, however, while the SPL and power
responses are still flat, the summed output has a first-order allpass phase response, the
phase swinging from 0° to −180° over the frequency range. It is therefore no longer
minimum-phase.

As we just noted a linear-phase crossover acts as a pure time delay, and so cannot be
minimum-phase. You cannot, however, say that a crossover which includes allpass filters
for time-delay correction can never be minimum phase, because they are correcting for
physical misalignments and what counts is the summed signal at the ear of the listener.

3.5 Absolute Phase

Another phase issue is the perception of absolute phase. In other words, if the polarity of
a signal is inverted (it is not relevant whether it is heard via a single or multi-way
loudspeaker) does it sound different? The answer is yes, providing you use a single tone
with a markedly asymmetrical waveforms, such as a half-wave rectified sinewave or a
single unaccompanied human voice. Otherwise, with more complex signals such as music,
no difference is heard.
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Obviously an active crossover must have all its outputs in the correct phase with each other
(in some cases correct means phase-inverted) or dire response errors will result, but it is
also necessary to make sure that the outputs are in the correct phase relationship to the
crossover input signal.

Almost all hi-fi equipment such as preamplifiers and power amplifiers are now designed to
preserve absolute phase. Mixing consoles have always been so designed to prevent
unwanted cancellation effects on mixing signals.

3.6 Phase Perception

Some of the crossovers described in this book have quite dramatic phase changes in the
summed output around the crossover points, so the sensitivity of human hearing to phase
shift is an important consideration. If the phase-shift is proportional to frequency then the
group delay is constant with frequency and this is a linear-phase system, as described
above; we just get a pure time-delay with no audible consequences. However, in most
cases the phase-shift is not remotely proportional to frequency, and so the group delay
varies with frequency. This is sometimes called group delay distortion, which is perhaps not
ideal as ‘distortion’ implies non-linearity to most people, while here we are talking about
a linear process.

Most of the components in the microphone-recording-loudspeaker chain are minimum-
phase; they impose only the phase-shift that would be expected and can be predicted
from their amplitude/frequency response. The great exception to this is… the multi-way
loudspeaker. The other great exception was the analogue magnetic tape-recorder,
which showed rapid phase-changes at the bottom of the audio spectrum, usually going
several times round the clock [5]. Fortunately we don’t need to worry about that any
more.

We are, however, going to have multi-way loudspeaker systems around for the foreseeable
future, and most of them have allpass crossovers. Clearly an understanding of what
degradation, if any, this allpass behaviour causes is vital. Much experimentation has been
done and there is only space for a summary here.

One of the earliest findings on phase perception was Ohm’s Law. No, not that one, but
Ohm’s Other Law, which is usually called Ohm’s Acoustic Law, and was proposed in
1843 [6]. In its original form it simply said that a musical sound is perceived by the ear as
a set of sinusoidal harmonics. The great researcher Hermann von Helmholtz extended it in
the 1860s into what today is known as Ohm’s Acoustic Law, by stating that the timbre of
musical tone depends solely on the number and relative level of its harmonics, and not on
their relative phases. This is a good start, but does not ensure the inaudibility of an allpass
response.
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An important paper on the audibility of midrange phase distortion was published by
Lipshitz, Pocock and Vanderkooy in 1982 [7] and they summarised their conclusions as
follows:

1. Quite small phase non-linearities can be audible using suitable test signals.
2. Phase audibility is far more pronounced when using headphones instead of

loudspeakers.
3. Simple acoustic signals generated in an anechoic environment show clear phase

audibility when headphones are used.
4. On normal music or speech signals phase distortion is not generally audible.

At the end of the abstract of their paper the authors say: “It is stressed that none of
these experiments thus far has indicated a present requirement for phase linearity in
loudspeakers for the reproduction of music and speech.” James Moir also reached the
same conclusion [8].

An interesting paper on the audibility of second-order allpass filters was published in 2007
[9], which describes a perception of “ringing” due to the exponentially decaying sinewave
in the impulse response of high Q all-pass filters (For example Q = 10). It was found that
isolated clicks show this effect best, while it was much more difficult to detect, if audible at
all, with test signals such as speech, music, or random noise. That is the usual finding in
this sort of experiment—that only isolated clicks show any audible difference. While we
learn that high-Q allpass filters should be avoided in crossover design, I think most people
would have thought that was the case anyway.

Siegfried Linkwitz has done listening tests where either a first-order allpass filter, a second-
order allpass filter (both at 100 Hz), or a direct connection could be switched into the audio
path [10]. These filters have similar phase characteristics to allpass crossovers and cause
gross visible distortions of a square waveform, but are in practice inaudible. He reports “I
have not found a signal for which I can hear a difference. This seems to confirm Ohm’s
Acoustic Law that we do not hear waveform distortion.”

If we now consider the findings of neurophysiologists, we note that the auditory nerves do
not fire in synchrony with the sound waveform above 2 kHz; so unless some truly subtle
encoding is going on (and there is no reason to suppose that there is), then perception of
phase above this frequency would appear to be inherently impossible.

Having said this, it should not be supposed that the ear operates simply as a spectrum
analyser. This is known not to be the case. A classic demonstration of this is the phenomenon
of “beats.” If a 1000-Hz tone and a 1005-Hz tone are applied to the ear together, it is
common knowledge that a pulsation at 5 Hz is heard. There is no actual physical component
at 5 Hz, as summing the two tones is a linear process. (If instead the two tones were
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multiplied, as in a radio mixer stage, there would be new components generated) Likewise
non-linearity in the ear itself can be ruled out if appropriate levels are used.

What the brain is actually responding to is the envelope or peak amplitude of the combined
tones, which does indeed go up and down at 5 Hz as the phase relationship between the
two waveforms continuously changes. Thus the ear is in this case acting more like an
oscilloscope than a spectrum analyser.

It does not however seem to work as a phase-sensitive detector.

The conclusion we can draw is that a crossover whose summed phase response is that of a
first-order or second-order allpass filter is wholly acceptable. This obviously implies that
a group delay characteristic that emulates a first- or second-order allpass filter is also
completely acceptable.

3.7 Target Functions

A target function for a loudspeaker system is the combined crossover and loudspeaker
response that you are aiming for. Drive units are hopefully fairly flat over the frequency
range that we hope to use them, but if this is not the case, then their response obviously has
to be taken into account. Response irregularities may be corrected by equalisation (see
Chapter 11), performed either by adding dedicated equalisation stages to the relevant
crossover path or by modifying the characteristics of the crossover filters. The latter uses
less hardware but is much more difficult to understand unless properly documented.

In some cases the inherent properties of the drive unit and the enclosure may form part of
the target function. For example, a suitably damped LF unit and enclosure will have a
second-order Butterworth-type maximally flat rolloff at 12 dB/octave. If this is combined
with a second-order Butterworth highpass filter in the crossover, then this makes up a
Linkwitz–Riley fourth-order alignment which can be used to crossover to a separate
subwoofer.
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CHAPTER 4

Crossover Types

There are many types of crossover, classified in various ways. The categories listed here
define what the crossover does, not how it does it. It is essentially a catalogue of target
functions. It does not matter how the filter responses are obtained; that may be by filtering
alone or a combination of filtering and drive unit responses.

4.1 All-Pole and Non-All-Pole Crossovers

In discussions of crossover design, and in filter design generally, the terms “pole” and
“zero” tend to be freely scattered through the text. These terms relate to the complex
mathematical equation that describes the response of a filter or other frequency dependent
system such as a servomechanism. A complex equation is one involving j, the square root
of −1, and not just a complicated equation. This equation is often called the transfer
function; it usually comes in the form of a fraction, and the poles derive from the bottom
half (the denominator), while the zeros derive from the top half (the numerator). Both are
distinguished by their frequencies, so you might say: “There is a pole at 1 kHz.”

If that is as clear as mud, don’t panic. As I said in the preface, this book attempts to avoid
getting involved in the whole complex algebra business. For our purposes, a pole causes the
frequency response to turn downwards by 6 dB per octave, as in a simple first-order RC
lowpass filter. A zero causes the frequency response to turn upwards by 6 dB per octave,
but it is not equivalent to a first-order CR highpass filter; that is represented by the
combination of a pole and a zero. You can see why this stuff is hard to understand.

Poles sometimes occur in pairs (called conjugate pairs) and such a pair acts as a resonator,
creating a response peak whose height depends upon the Q of the circuit. Zeros can also
occur in conjugate pairs; a notch filter has a conjugate pair of poles combined with a
conjugate pair of zeros.

An all-pole crossover is composed entirely of all-pole filters. These are filters such as
Butterworth, Bessel, and Linkwitz–Riley types which have a monotonic rolloff. In other
words, once the response starts going down it does not come back up again.

Non-all-pole crossovers contain filters such as the inverse–Chebyshev and elliptical (Cauer)
types that have zeros as well as poles in their responses and their rolloffs are not monotonic.
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For example, an inverse–Chebyshev filter has notches in the stopband. Notch-type
crossovers contain either inverse–Chebyshev filters, or notch filters as such, like the Bainter
filter. These filters incorporate zeros as well as poles, so they are also non-all-pole
crossovers. Notch crossovers are dealt with in Chapter 5.

4.2 Symmetric and Asymmetric Crossovers

Symmetric crossovers have filters with the same slope at the crossover point. For example,
a two-way second-order crossover has 12 dB/octave slopes for both HF and LF filters.

Asymmetric crossovers have differing slopes at the crossover point; the HF filter might have
a 18 dB/octave slope while the LF filter has a 12 dB/octave slope. Asymmetric crossovers
do not in general sum to flat unless a rolloff in the response of one of the drivers is being
used to make the slopes equal in terms of acoustic output.

Subtractive crossovers in their straightforward (non-delayed) form always give asymmetric
slopes for orders greater than one because the output derived by subtraction always has a
6 dB/octave slope, whatever the slope of the filter. A slope of 6 dB/octave is usually inadequate
unless especially capable wide-range drive units are employed. Adding a time delay in the path
going to the subtraction stage can give equal slopes, but the delay needs to be very precise for
this to extend over an adequate frequency range, and this appears to be a major problem with
the concept. This problem is explored in Chapter 6 on subtractive crossovers.

4.3 All-Pass and Constant-Power Crossovers

Crossovers are classified as either “All-Pass Crossovers” (APC) or “Constant-Power
crossovers” (CPC) in accordance with the way that the outputs recombine.

An All-Pass Crossover has filter outputs that sum in the air in front of the loudspeaker to
create a sound pressure level (SPL) with a flat amplitude/frequency response. The human
ear is only sensitive to the pressure changes at the ear hole, and has no way to integrate the
acoustic power bouncing around a room. If the filter outputs are summed electrically instead
of acoustically, as a test of proper recombination, then the filter outputs should sum to a flat
voltage response, voltage being equivalent to SPL. This is sometimes called the amplitude
response. Summation is by vector addition (i.e., phase must be taken into account) of the
highpass output VHP with the lowpass output VLP:

VSUM = VHP +VLP (4.1)

APC crossovers are the usual choice because they give the loudspeaker a flat on-axis
frequency response, and this is usually where the person who pays for the audio system
sits; however, this certainly does not guarantee a flat off-axis response. The phrase
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“all-pass,” rather than something like “flat response,” is used to emphasise that while
the summed amplitude/frequency response may be flat, the summed phase response is
that of an allpass filter. The phase response of most crossovers is that of a first-order
allpass filter, with the phase changing by 180° over the audio band; the best-known of
these being the first-order (inverted), the second-order Linkwitz–Riley, and third-order
Butterworth types. The fourth-order Linkwitz–Riley crossover has the phase response of a
second-order allpass filter, with the phase changing by 360°. There is more information
on allpass filters in Chapter 10.

A Constant-Power Crossover has filter outputs that sum in the air in front of the loudspeaker
to create a flat frequency response in terms of power rather than sound pressure level. The
power response of a loudspeaker is the sum of all its off-axis and on-axis amplitude/frequency
responses; it is the frequency response of the total acoustical power radiated into a given
listening space. Because the signals are not phase-correlated, phase is ignored and summation
is by RMS addition of the highpass output VHP with the lowpass output VLP:

VSUM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVHPÞ2 + ðVLPÞ2

q
(4.2)

CPC crossovers are not popular because they do not in general give a flat on-axis frequency
response. However, they are sometimes said to be beneficial in reverberant environments
where the off-axis output makes a significant contribution to the sound arriving at the listener.
This is usually an undesirable (but sometimes unavoidable) situation as the characteristics of
the listening space then have a greater effect on sound quality. For this reason the principles
of CPC crossover design constitute a relatively small part of this book.

4.4 Constant-Voltage Crossovers

It sounds as though a constant-voltage crossover would be the same thing as an allpass
crossovers, but in fact they are quite different. Constant-voltage crossovers operate by subtracting
the output of a filter (which is one output) from the unfiltered input to generate the other output;
in this book they are called “subtractive crossovers” as I think that term is a bit clearer. If the
output from a lowpass filter is subtracted from the unfiltered input you get a highpass output.
Constant-voltage crossovers have the property, rare amongst crossover types, of being linear-
phase and so able to “reconstruct the waveform”; in other words, when you sum the two outputs
you get back the waveform you put in. This process is described in detail below and also in
Chapter 6 on subtractive crossovers. The big snag is that the output obtained by subtraction has a
slope of only 6 dB/octave, whatever the slope of the filter, and this is usually inadequate.

The constant-voltage crossover was first properly described by Dick Small, one of the great
pioneers of scientific loudspeaker design, in 1971 [1].
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4.5 First-Order Crossovers

A first-order crossover has the great advantage that it is the only type that can produce
linear-phase and minimum-phase response and a flat amplitude response. As a consequence,
it is the only type that allows a waveform to be reconstructed when an HF and LF path are
added together. It is potentially attractive for passive crossovers as it is the simplest
crossover and so requires the smallest number of expensive crossover components and has
the lowest power losses.

There is only one type of first-order crossover, just as there is only one sort of first-order
filter. It is only when you go to second-order filters that you get a choice of characteristic,
such as Butterworth, Bessel, and so on. It is however possible to use different cutoff
frequencies for the highpass and lowpass filters to manipulate the crossover behaviour—see
the Solen split first-order crossover described below.

A first-order crossover has some serious disadvantages. The slopes of a first-order crossover are
a gentle 6 dB/octave and this does not normally provide enough separation of the frequencies
sent to the drive units. Tweeters are likely to be damaged by excessive coil excursions when fed
with inappropriately low frequencies. LF drive units are unlikely to be damaged by high
frequencies, but if operated outside their frequency design range they are likely to show an
irregular response and poor linearity. Likewise, the 6 dB/octave slope is usually too shallow to
prevent activation of a tweeter’s resonance frequency (which is usually below the crossover
frequency), giving rise to an unwanted peak in the response. It is generally considered that if a
first-order crossover is used, the drive units must be well-behaved for at least two and
preferably three octaves on either side of the crossover frequency.

Actually achieving the maximally flat amplitude response and minimum-phase operation
requires very careful driver alignment, and also requires the listener to be exactly the same
distance from each drive unit. These problems are consequences of the large overlap in
operation of the drive units.

A basic first-order crossover is shown in Figure 4.1, where the first-order crossover filters
are shown as simple RC networks. The crossover frequency, which is the ‒3 dB cutoff
frequency for each filter, is 1 kHz; this can be obtained by using 220 nF capacitors for C
and 723.4Ω resistors for R. This crossover frequency is used for all the examples in this
chapter, not because it is a good crossover frequency—very often it isn’t—but because it’s
a convenient way of displaying the results, putting the crossover point nicely in the middle
of the plot. Using other crossover frequencies gives exactly the same behaviour, but the
plots are shifted sideways. The circular summing element to the right represents how the
two acoustic outputs from the HF and LF drive units add linearly in the air in front of the
loudspeaker. It represents pure mathematical addition and does not load or affect the two
filters in any way.
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Figure 4.2 shows the amplitude response of the two outputs and their sum. The sum is
completely flat with frequency, laying on top of the 0 dB line in the plot. Neither output has
been phase-inverted before summation. If one output is phase-inverted, the summed
response is still dead flat—this is a property that no higher-order crossover possesses.

The power response is shown in Figure 4.3. Since the two contributions to the total power are
uncorrelated (because of multiple room reflections and so on), they add in an RMS-fashion; in
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R

Sum Summed response

Summation in airCrossover
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+

First-order highpass f0

In

First-order lowpass f0

Figure 4.1: A 1 kHz crossover using first-order lowpass and highpass filters.

Figure 4.2: Frequency response of first-order 1 kHz crossover; both filter outputs plus their sum
(the straight line at 0 dB).
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other words you take the square root of the sum of the squares of the two levels. For the first-
order crossover, the power response is also absolutely flat. Figure 4.3 therefore looks identical
to Figure 4.2, though it was obtained by RMS summation rather than simple addition.

The two outputs have a constant 90° phase-shift between them, as shown in Figure 4.4. The
phase of the summed outputs is always zero, as shown by the horizontal line at 0°. The
crossover is minimum phase.

If however the highpass output is phase-inverted before summation, the summed response
has a phase that swings from 0° to −180°, as shown in Figure 4.5. This is precisely the
phase response of a first-order allpass filter, as described in Chapter 10, and demonstrates
why the phrase “allpass crossover” crops up so often in this subject. The crossover is no
longer minimum phase. Note that in Figure 4.5, the phase of the highpass output is shown
before it is inverted. Please note that for this and all other phase plots in this chapter the 0°
reference is the lowpass output at 20 Hz.

While a phase response that moves through 180° over the audio band may appear to be
highly questionable, the consensus is that it is completely inaudible with normal music, and
can only be detected by the use of special test signals such as isolated clicks. This is
discussed in detail in Chapter 3.

With one output phase-inverted, the two outputs always have a phase difference of 90°, and
this affects the radiation pattern of the two drive units in the frequency range where they

Figure 4.3: Power response of first-order 1 kHz crossover; both filter outputs plus their sum
(the straight line at 0 dB).
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Figure 4.4: Phase response of first-order 1 kHz crossover; both filter outputs plus their sum
(straight line at 0°).

Figure 4.5: Phase response of first-order 1 kHz crossover; both filter outputs plus allpass sum
when highpass output is inverted.
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are both delivering a significant output. Because of the gentle filter slopes, this range is
wider than in higher-order crossovers. With the normal (non-inverted) version, the result is
“lobing error” which is a tilting of the vertical coverage pattern, pointing it downwards by
15° from the horizontal; when the crossover has one output inverted the tilt is 15° upwards.
This assumes that the time alignment of the tweeter and woofer are correct at the crossover
frequency to prevent differing time delays to the listener’s ear; first order crossovers are
particularly sensitive to this because of the broad driver overlap. The tilt will increase and
lobing will become more severe if the drivers are unduly separated on the baffle face. For a
first-order crossover this effect is considered to be significant over at least two octaves.

The normal (non-inverted) connections show a flat group delay because the phase response
is flat at zero. The inverted connection, however, has the group delay versus frequency
response shown in Figure 4.6, with a flat section at 318 usec, rolling off slowly to zero over
the crossover region.

The wide frequency overlap of a first-order crossover means that quite small time-alignment
errors can cause large anomalies in the amplitude/frequency response. Vance Dickason, in
his excellent Loudspeaker Design Cookbook [2], shows how a mere 0.5 inch misalignment
can cause a peak or dip of 2.5 dB in a broad band centred on 3 kHz; the peak or dip effect
depends on whether one output is inverted or not. A 1-inch misalignment causes amplitude
ripples of up to ±4 dB, while a 2-inch misalignment causes errors of up to 10 dB. This is a
serious argument against first-order crossovers.

Figure 4.6: The group delay response of a first-order 1 kHz crossover, one output inverted.
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A first-order crossover has the unique property of being able to reconstruct the waveform
put into it. If you put a square wave into the crossover, and then sum the LF and HF
outputs, you get a squarewave back; see Figure 4.7. The input waveform has levels of 0 V
and +1.0 V; this is purely to make the middle plot clearer, and input levels of −0.5 V and
+0.5 V, symmetrical about zero, give exactly the same reconstruction of the waveform. No
other type of all-pole crossover has this ability.

As you read through this chapter, you will see that in some ways first-order crossovers have
some uniquely desirable features, such as the ability to reconstruct the waveform, but also
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Figure 4.7: Reconstruction of a square-wave by summing the highpass and lowpass output of a
first-order crossover. Non-inverted connection.
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some serious disadvantages. The 6 dB/octave slopes are too gentle for use with normal drive
units, and time alignment is frighteningly critical. Despite these disadvantages the positive
features of a first-order crossover are so powerful that there does seem to be a distinct trend
toward investing in driver technology in order to create units that are suitable for first-order
operation. A recent example is the KEF Q-series of loudspeakers [3].

4.5.1 First-Order Solen Split Crossover

The so-called Solen split first-order crossover is a variation on the standard first-order
crossover (Solen is a company that supplies passive crossover parts.) This scheme attempts
to improve the slow crossover from one drive unit to the other by putting the crossover
point for each filter at −6 dB rather than the usual −3 dB (as in Figure 4.2). This applies a
frequency offset to the cutoff (−3 dB) frequencies of each filter, so that the lowpass filter
now has a cutoff of 579 Hz and the highpass filter now has a cutoff of 1.726 kHz, pulling
apart them apart by a factor of 2.98 times or 1.68 octaves. The pulling-apart process is
presumably where the term “split” comes from. It may somewhat ease the demands on the
drive units, but what of the amplitude response?

Figure 4.8 shows that, as we might expect, pulling apart the two cutoff frequencies has
caused the summed response to sag in the middle, by 6 dB in fact. This is obviously going
to sound like rubbish, but we get a better result if we reverse the phase to one of the drive
units—a common manoeuvre in crossover design.

In passive crossover design phase-inverting one of the outputs is extremely simple; just
swap over the two wires to the drive unit in question; everything is done in the box and
no one is any the wiser. Active crossovers, however, will need to use some kind of phase-
inverting stage.

Figure 4.9 demonstrates that with one of the phases reversed we still get a dip, but is now
only 1.2 dB deep; information on this crossover scheme is scanty, but that is presumably
how it is supposed to work. It might be possible to reduce the deviation from perfect
flatness by partial cancellation of the dip with a response irregularity in one of the drivers.
It is however still difficult to get enthusiastic about a crossover with 6 dB/octave slopes.

4.5.2 First-Order Crossovers: 3-Way

It is difficult to make a first-order 3-way crossover because the slow 6 dB/octave slopes
do not provide adequate separation into three bands across the audio spectrum. There is in
any case little point because drive units capable of handling the wide frequency ranges
inherent in such a crossover would probably be equally suitable for a first-order 2-way
crossover setup.
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Figure 4.9: Frequency response of Solen split first-order 1 kHz crossover; both filter outputs
plus the sum with one output reversed (phase-inverted).

Figure 4.8: Frequency response of Solen split first-order 1 kHz crossover; both filter outputs
plus their in-phase sum. Dotted line at −6 dB.
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4.6 Second-Order Crossovers

The use of a second-order crossover promises relief from the lobing, tilting, and time
alignment criticality of first-order crossovers, because the filter slopes are now twice as
steep at 12 dB/octave. A very large number of passive crossovers are second-order, because
they are still relatively simple, and this simplicity is very welcome as it reduces power
losses and cuts the total cost of the large crossover components required. Neither of these
factors applies to active crossovers; the extra power consumption and the extra cost of
making a fourth-order crossover rather than a second-order crossover are very small.

All second-order filters have a 180° phase-shift between the two outputs, which causes a
deep cancellation notch in the response at the crossover frequency when the HF and LF
outputs are summed. Such a response is of no use whatever and the standard cure is to
invert the polarity of one of the outputs. With a second-order crossover using Butterworth
filters, this gives not a flat response but a +3 dB hump at the crossover frequency. As we
shall see, the size of the hump can be much reduced by using a frequency offset; in other
words the highpass and lowpass filters are given different cutoff frequencies. An offset
factor of 1.30 turns the +3 dB hump into symmetrical amplitude ripples of ±0.45 dB, which
is the flattest response that can be achieved for the Butterworth crossover by this method.

Second-order crossovers have much less sensitivity to driver time misalignments because of
their 12 dB/octave slopes. Vance Dickason [2] has shown that for a second-order Butterworth
crossover, a 1-inch time misalignment gives errors of only fractions of a dB, while a 2-inch
misalignment gives maximal errors of 2 dB. The corresponding figures for a first-order
crossover are 4 dB and 10 dB respectively. The frequency-offset technique can also be used to
reduce the effect of time-alignment errors on the amplitude/frequency response.

A second-order crossover gives better, though by no means stunning, protection of the drive
units against inappropriate frequencies, less excitement of unwanted behaviour outside their
intended frequency range, and less modulation distortion. Since one output has to be
inverted to get a usable amplitude response, the outputs are in phase instead of 180° phase-
shifted and so there should be no lobing error, ie tilt in the vertical coverage pattern.

4.6.1 Second-Order Butterworth Crossover

The Second-order Butterworth crossover is perhaps the best-known type, despite the fact
that it is far from satisfactory. A classic bit of crossover misdesign that has been published
in circuit ideas columns and the like a thousand times is shown in Figure 4.10. You take
two second-order Butterworth filters with the same cutoff frequency, one highpass and one
lowpass, and there you have your two outputs. As before, the summing device represents
how the two outputs add linearly in the air in front of the loudspeaker.
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As Figure 4.11 shows all too clearly, this does not work well; in fact “catastrophic” would
be a more accurate description. Each filter gives a 90° phase-shift at the crossover
frequency, one leading and one lagging. The signals being summed are therefore a total of
180° out of phase and cancel out completely. This causes the deep notch at the crossover
frequency seen in Figure 4.11.

Since a 180° phase-shift is the root of the problem, that at least can be eliminated by the
simple expedient of reversing the connections to one of the drivers, normally the high-
frequency one of the pair. Figure 4.12 shows the result—the yawning gulf is transformed
into a much less frightening +3 dB hump centred at the crossover frequency.

In a passive crossover this reversed connection can be hidden inside the speaker enclosure along
with the crossover components, but in an active crossover the issue is more exposed. You will
need to either build a phase-inversion into the active crossover, which again effectively hides the
phase-reversal from the user, or specify that one of the power amplifier-speaker cables be
reversed. A lot of users are going to feel that there is something not right about such an
instruction, and building the inversion into the crossover is strongly recommended.

Clearly our +3 dB hump is much better than an audio grand canyon, but accepting that
much deviation from a flat response is clearly not a good foundation for a crossover design.
That hump is going to be very audible. It might be cancelled out by an equalisation circuit
with a corresponding dip in its response, but there is a simpler approach. Looking at
Figure 4.12, it may well occur to you, as it has to many others, that something might be
done by pulling apart the two filter cutoff frequencies so the response sags a bit in the
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Figure 4.10: A doomed attempt to make a crossover using two second-order
Butterworth filters.
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Figure 4.12: Second-order Butterworth crossover, with the phase of one output reversed; the
crevasse has become a more usable +3 dB hump. The dashed line is at −3 dB.

Figure 4.11: The frequency response resulting from the in-phase summation of two
second-order Butterworth filters: a disconcerting crevasse in the combined response.

The dashed line is at −3 dB.
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middle, as it were. There is no rule in crossover design, be it active or passive, that requires
the two halves of the filtering to have the same cutoff frequency.

Figure 4.13 shows the result of offsetting each of the filter cutoff frequencies by a factor of
1.30 times. This means that the highpass filter cutoff frequency is changed from 1.00 kHz to
1.30 kHz, while the lowpass cutoff becomes 1.00/1.30 = 0.769 kHz. Crossover now occurs
at −6 dB. With the phase inversion, the offset factor of 1.30 turns the hump into
symmetrical amplitude ripples of ±0.45 dB above and below the 0 dB line; this represents
the minimum possible response deviation obtainable in this way. Now the amplitude
response is looking a good deal more respectable, if not exactly mathematically perfect, and
it is very questionable whether response ripples of this size could ever be audible. You may
wonder if the frequency-offset process has rescued the response with outputs in-phase; the
answer is that it is not much better. There is no longer a notch with theoretically infinite
depth, but there is a great big dip 9 dB deep at the bottom, and such a response is still of no
use at all.

The frequency offsets required for maximal flatness with various types of crossover are
summarised in Table 4.1 at the end of this chapter.

Figure 4.13: Two second-order Butterworth filters with 1.30 times frequency offset, in normal and
reversed connection. With the phase of one output reversed; the +3 dB hump is smoothed

out to a mere ±0.45 dB ripple. The normal-phase connection still has a serious dip
9 dB deep. The dashed line is at −3 dB; the two filter cutoff (−3 dB) frequencies

are now different.
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The power response for the second-order Butterworth crossover with no frequency offset is
shown in Figure 4.14; it is a perfect straight line. This qualifies it as a Constant Power
Crossover (CPC); it is a pity that the power response is much less important than the pressure
response. The power response is the same whether or not one of the outputs is phase-reversed.
When the two outputs are squared and added to get the total power, the negative sign of the
reversed output disappears in the squaring process.

When looking at this power response plot, it is important to appreciate that each crossover
output is still shown at −3 dB at the crossover frequency, meaning the power output from it
is halved. The two lots of half-power sum to unity, in other words 0 dB.

Earlier we saw that a frequency offset of 1.30 times was required to get near-flat amplitude
response. How is that going to affect the perfectly flat power response of Figure 4.14? The
answer, predictably, is that any change is going to be for the worse, and Figure 4.15 shows
that there is now an 8 dB dip in the power response.

As mentioned earlier, second-order filters have a 180° phase-shift between the two outputs.
This is shown in Figure 4.16, where the phase of the sum lies exactly on top of the trace
for the lowpass output. The phase of the sum is that of a first-order allpass filter, the same
phase characteristic as that of the first-order crossover. This is inaudible with normal music

Figure 4.14: Power response of second-order Butterworth crossover with no frequency offset—the
sum is perfectly flat at 0 dB. Each crossover output is still at −3 dB at the crossover frequency,

meaning the power is halved. The two half-powers sum to 0 dB. Outputs in phase.
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Figure 4.15: Power amplitude response of second-order Butterworth crossover with 1.30x
frequency offset—rather less than perfect, showing a −8 dB dip at the crossover frequency.

Figure 4.16: Phase response of second-order Butterworth crossover with one output inverted;
the outputs are always 180° out of phase. The phase of the sum lies exactly on top of

that of the lowpass output. Highpass output shown before inversion.
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signals. For reasons of space, phase and group delay plots are from here on only given for
the more interesting crossover types.

The summed group delay for the inverted connection is shown in Figure 4.17. It has a level
section at 226 usec, and a gentle peak of 275 usec just below the crossover frequency. Note
that the level section shows less group delay than the first-order crossover.

When we were looking at first-order crossovers, you will recall that it was said that no other
crossover could solve the waveform reconstruction problem, that is, to get out the waveform
that we put in after summing the outputs. How does a second-order Butterworth cope with
the square-wave reconstruction problem?

The answer from Figure 4.18 is that it fails completely, and inverting one of the filter
outputs makes thing even worse. The phase-shifts introduced by the second-order filters
make it impossible for reconstruction to occur. While it is not very obvious from
Figure 4.18, the first and second cycles of the simulation are not quite identical; since we
have a circuit with energy storage elements (capacitors) and we are starting from scratch,
it takes a little time for things to settle down so you obtain the result for continuous
operation. In some cases it is not uncommon for 20 cycles to be required to reach
equilibrium. Not every writer on the subject of audio has appreciated this fact, and major
embarrassment has resulted.

Figure 4.17: The group delay response of a second-order Butterworth crossover,
one output inverted.
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The second-order Butterworth crossover does not sum to flat even with one output inverted,
though frequency offsetting can give a big improvement. The 12 dB/octave slopes are
usually considered inadequate.

4.6.2 Second-Order Linkwitz–Riley Crossover

The Butterworth crossover filter can be made very nearly flat by tweaking the cutoff
frequencies of the two filters. An alternative and much better approach in the second-order
case is to alter the Qs of the filters. Setting the Q of each filter to 0.5, with identical cutoff
frequencies, turns the second-order Butterworth crossover into a second-order Linkwitz–
Riley crossover with each output −6 dB at the crossover point, as seen in Figure 4.19. The
flat response qualifies it as an allpass crossover network.

Figure 4.18: Attempted reconstruction of a square-wave by a second-order Butterworth crossover
without offset. Total failure!
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The two outputs are still 180° out of phase for the normal connection, and give the same
yawning gulf in the response as the Butterworth. With the reversed connection the signals
add as for the Butterworth case, but they are now 3 dB lower, so there is no hump. The
summation gives a completely flat response, without the ripple you get with a frequency-
offset second-order Butterworth crossover.

The reversed connection has a −3 dB dip in the power response at the crossover frequency.
In this respect it is not as good as the first-order crossover, which has a flat power response
as well as a flat voltage (or SPL) response. However, as we have seen, the power response
of a crossover is usually a minor consideration.

The second-order Linkwitz–Riley crossover is neither linear phase nor minimum phase. The
phase-response plot looks indistinguishable from that of the second-order Butterworth
crossover, though there are minor differences. The summed group delay does not peak but
rolls off slowly around the crossover frequency.

4.6.3 Second-Order Bessel Crossover

The Bessel filter has a much slower rolloff than the Butterworth, but also has a maximally
flat group delay; in other words it stays flat as long as possible before it rolls off, while the

Figure 4.19: The frequency response of a second-order Linkwitz–Riley crossover. The in-phase
summation of two filters still has a cancellation crevasse, but with one output reversed the

sum is exactly flat at 0 dB. The dashed line is at the −6 dB crossover level.
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Butterworth group delay has a peak in it. This makes the Bessel filter an interesting
possibility for crossovers with flat group delay characteristics.

The second-order Bessel crossover without any frequency offset gives a −8 dB dip for the
in-phase connection, as in Figure 4.20, but a more promising broad +2.7 dB hump with one
output reversed, as in Figure 4.21. This looks very like the Butterworth hump in Figure 4.9,
so it seems very likely we can also reduce this one by applying frequency offset to the filter
cutoffs.

The first attempt, a frequency offset of 1.30 times, as used in the second-order Butterworth
case, reduces the size of the hump to +1.1 dB at its centre, but this time no dips below the
0 dB line have appeared. This differing behaviour looks ominous, and suggests that the
hump may get flatter and flatter with increasing offset, but never actually reach a definite
maximally flat condition.

However, this is a great example of a situation where you should not give up too soon. If
we keep increasing the offset, then the shape of the summed response changes, until at an
offset ratio of 1.45 we obtain a dip and two flanking peaks, as in Figure 4.22. The deviation
from 0 dB is less than ±0.07 dB, so this result is actually much better than the second-order
Butterworth crossover, which at maximal flatness had deviations of ±0.45 dB. Such small
deviations as ±0.07 dB will be utterly lost in drive-unit tolerances. This offset ratio gives
crossover at −6.0 dB.

Figure 4.20: The frequency response of a second-order Bessel crossover summed in-phase has
a dip going down to −8 dB. The dashed line is at −3 dB.
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Figure 4.21: The frequency response of a second-order Bessel crossover summed with one
output phase-reversed has a +2.5 dB hump. The dashed line is at −3 dB.

Figure 4.22: The frequency response of a second-order Bessel crossover summed with one output
phase-reversed and a frequency offset of 1.449 times has deviations from the 0 dB line of less

than 0.07 dB. Note much enlarged vertical scale covering only ±1 dB.

72 Chapter 4



The phase response plot looks very similar to that of the second-order Butterworth
crossover, but the rate of change around the crossover region is slightly slower due to the
lower Q of the filters. The summed group delay does not peak but rolls off slightly more
slowly than the Butterworth around the crossover frequency.

The second-order Bessel is not linear phase, though it deviates from it less than do the
second-order Butterworth or Linkwitz-Riley types. It is not minimum phase.

A very good discussion of Bessel crossovers is given in [4].

4.6.4 Second-Order 1.0 dB-Chebyshev Crossover

All Chebyshev filters have ripples in their passband response, and given the problems we
have had achieving a near-flat response when we were using filters without such ripples,
things don’t look too hopeful. Using 1.0 dB-Chebyshev filters, which in second-order form
peak by 1 dB just before rolloff, we get Figure 4.23, which shows the in-phase result. There
is a deep central dip rather like that of the second-order Bessel crossover, except that this
one is even deeper at −14 dB.

Figure 4.23: The frequency response of a second-order 1.0 dB-Chebyshev crossover. In-phase
summation gives a deep dip of −14 dB. The crossover is at 0 dB, because the cutoff
frequency of this filter is defined as the point in the rolloff where the response returns

to 0 dB after the 1.0 dB peak.
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Reversing the phase of one of the outputs gives us a 6 dB hump, substantially higher than
that of the reversed-phase second-order Bessel crossover; see Figure 4.24. Flattening this by
using frequency offset is a tall order, but we will have a go.

As the frequency offset ratio is increased, a dip develops in the centre of the hump and
moves below the 0 dB line, until we reach the optimally flat condition, which unfortunately
is not that flat. The deviations are ±1.6 dB at an offset ratio of 1.53 times, and look too big
to be a basis for sound crossover design; see Figure 4.25. The large 1.53 times offset ratio
causes the crossover point to be at −5.6 dB.

The power response has significantly more ripple than the optimally flat amplitude
response.

The phase response plot looks very similar to that of the second-order Butterworth
crossover, but changes faster around the crossover frequency. The summed group delay has
a very big peak just below the crossover frequency; while it is probably not audible, it is
certainly not desirable.

It would be possible to try other types of Chebyshev filters as second-order crossovers;
Chapter 7 gives details on how to design Chebyshev filters with 0.5 dB, 1 dB, 2 dB, and
3 dB of passband ripple. There seems to be no reason to think that the versions with greater
passband ripple would be any better than the 1.0 dB version, and every reason to think that

Figure 4.24: The frequency response of a second-order 1.0 dB-Chebyshev crossover. Summation
with one output phase-reversed gives a peak of +6 dB. Vertical scale has been moved up by

5 dB to accommodate the peak.
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they would be worse. The high filter Qs required to realise the 2 dB and 3 dB filters imply
very poor group delay characteristics with serious peaking.

4.7 Third-Order Crossovers

Third-order crossovers have the advantage of greater separation between the drive units
than either first- or second-order designs can give. The steeper 18 dB/octave slopes make
it less likely that drive unit irregularities such as the tweeter resonance will be excited,
and allow modulation distortion to be reduced. Third-order crossovers are also less
sensitive to driver time-delay misalignments because there is less frequency overlap in the
filter outputs. The third-order Butterworth crossover gives a flat amplitude response and
a flat power response.

On the other side of the ledger, the filter outputs are always 270° apart in phase, which can
result in lobing and tilting of the coverage pattern in the range where the drivers overlap,
but this range is narrower than for second-order crossovers. Inverting one output reduces
this to 90°, and as with the first-order crossover, there is a −15° downward tilt in the
crossover region.

Third-order crossovers have further reduced sensitivity to driver time misalignments because
of their steeper 18 dB/octave slopes. According to Vance Dickason [2], a third-order

Figure 4.25: The frequency response of a second-order 1.0 dB-Chebyshev crossover with one
output phase-reversed, and a frequency offset of 1.53 times. The deviation is ±1.6 dB

about the 0 dB line.
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Butterworth crossover and a 2-inch time misalignment gives a maximal error of 2.5 dB,
while the corresponding error for a first-order crossover is 10 dB. As before, the frequency-
offset technique can also be used to reduce the effect of time-alignment errors on the
amplitude response.

Third-order crossovers are generally the most complicated passive types that are popular,
though fourth-order and fifth-order passive crossovers have been used.

4.7.1 Third-Order Butterworth Crossover

Figure 4.26 shows the amplitude response of a third-order Butterworth crossover with
outputs in phase and with no frequency offset. The response is ruler-flat, and it remains
ruler-flat when one of the outputs is reversed. The power response is also flat, as it was for
the first-order crossover; all odd-order Butterworth crossovers have a flat power response.
It is thus both an APC and a CPC crossover; it is not linear phase or minimum phase. The
crossover point is at −3 dB.

The flat power response is illustrated in Figure 4.27.

Figure 4.26: The frequency response of a third-order Butterworth crossover. In-phase or
phase-reversed summation of the two outputs gives a flat line at 0 dB. The dashed line

is at the −3 dB crossover level.

76 Chapter 4



The summed phase response of the normal (non-inverted) connection is that of a second-
order allpass filter, with the phase changing by 360° over the audio band. If the polarity of
one output is inverted, the amplitude response remains perfectly flat but the summed phase
response is improved to that of a first-order allpass filter, with the phase changing by only
180° over the audio band. This is shown in Figure 4.28

With outputs normal (not inverted) their phase difference is a constant 270°, but with one
output inverted this is reduced to 90°, the same as the first-order crossover. It therefore tilts
the polar pattern in the same way, but the frequency range over which this is significant is
much reduced because of the steeper slopes of a third-order crossover.

Figure 4.29 shows the how the faster phase changes for the normal connection cause a big
peak in the group delay. The inverted connection has no peak and looks much more
satisfactory. Note that the group delay at low frequencies is 318 usec, exactly the same as
for the first-order crossover.

The third-order Butterworth crossover is one of the better ones. It has flat amplitude and
power responses, and a first-order phase response when one output is inverted. On the
downside, it has the lobe-tilting problem of all odd-order crossovers, and many people feel
that the 18 dB/octave slopes are not really steep enough.

Figure 4.27: The power response of a third-order Butterworth crossover. The RMS
summation of the two filter outputs gives a straight line at 0 dB. The dashed line is at

the −3 dB level.
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Figure 4.28: The phase response of a third-order Butterworth crossover, for normal
and inverted connections.

Figure 4.29: The group delay response of a third-order Butterworth crossover.
The normal connection has a big peak in delay, but with one output inverted

there is just a roll-off.
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4.7.2 Third-Order Linkwitz–Riley Crossover

The response of the third-order Linkwitz–Riley crossover alignment is shown in Figure 4.30.
The summed amplitude response has a dip of exactly −3 dB at the crossover frequency,
and each filter output is at −6 dB. In this case, reversing the phase of one output does not
convert it into a hump, but gives exactly the same response with the same dip, because of the
differing phase relationships. As we have seen, a hump in the response can be flattened by
using a frequency offset that lowers the cutoff frequency of the lowpass filter, and raises
the cutoff frequency of the highpass filter. Clearly a dip cannot be dealt with like that, as
pulling apart the crossover frequencies, as we have done before, is just going to make the
dip deeper.

Instead, if we take the phase-reversed case and push the two cutoff frequencies together, by
using an offset ratio of 0.872 times, so the HP cutoff is now 0.872 kHz and the LP cutoff is
1.15 kHz, we get the maximally flat result with only ±0.33 dB of ripple. See Figures 4.31
and 4.32. The crossover point is now at ‒4.5 dB. This procedure only works with one phase
reversed. If applied to the in-phase case we just dig a deeper hole for ourselves; the dip
becoming −4.4 dB deep at the bottom.

There is no point in inverting one output as regards the amplitude response (assuming no
offset is applied), because it is unchanged. We do, however, get a much better phase

Figure 4.30: The frequency response of a third-order Linkwitz-Riley crossover. The in-phase
summation of the two filter outputs gives a −3 dB dip. The dashed line is at −3 dB.
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Figure 4.32: Zooming in on the frequency response of a third-order Linkwitz–Riley crossover,
with frequency offset of 0.872 times and reversed-phase summation. Ripple is only ±0.33 dB.

Figure 4.31: The frequency response of a third-order Linkwitz–Riley crossover, with frequency
offset of 0.872 times. The reversed-phase summation of the two filter outputs now gives a ripple of

only ±0.33 dB.
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response, as for the third-order Butterworth. A second-order allpass phase response is
converted to a first-order allpass phase response. The latter only is shown in Figure 4.33.

You will notice that the phase response shown in Figure 4.33 looks very much the same as
for the Butterworth version in Figure 4.28 above. There seems little point in using valuable
space by repeating diagrams that are very similar, and so phase responses are only shown
for selected crossovers.

The third-order Linkwitz–Riley (without frequency offset) has a power response with a
−3 dB dip at crossover; it is not a CPC type.

The third-order Linkwitz–Riley crossover is neither linearphase nor minimumphase. The
group delay has a peak just below the crossover frequency.

4.7.3 Third-Order Bessel Crossover

If a Bessel filter characteristic is used for a third-order crossover, the in-phase summation,
as in Figure 4.34, shows a deep dip that bottoms out at −13.5 dB. This looks distinctly
unpromising.

Phase-inverting one of the outputs gives a +3.0 dB hump, as in Figure 4.35, which is very
reminiscent of what we got from the second-order Butterworth crossover with one output
phase-reversed, though in this case the hump is rather narrower because we are using

Figure 4.33: The phase response of a third-order Linkwitz–Riley crossover, for inverted
connection only.
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Figure 4.35: The frequency response of a third-order Bessel crossover, resulting from summation
with one of the filter outputs phase-reversed. The dashed line is at −3 dB.

Figure 4.34: The frequency response of a third-order Bessel crossover resulting from in-phase
summation and giving a nasty dip. The dashed line is at −3 dB.
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third-order filters. This immediately suggests that the hump could be dealt with as before,
by frequency offsetting the filters and so spreading their cutoff frequencies apart.

In this case offsetting each filter cutoff frequency by a ratio of 1.22, so that the highpass
cutoff is at 1.22 kHz while the lowpass cutoff is at 1/1.22 = 0.820 kHz, gives the maximally
flat sum with a peak and two dips each at 0.35 dB away from the 0 dB line; see Figure 4.36.
The crossover point is now at −4.6 dB instead of −3 dB.

4.7.4 Third-Order 1.0 dB-Chebyshev Crossover

Using 1.0 dB-Chebyshev filters gives us the unpleasant peak at +4 dB, seen in Figure 4.37,
with 1 dB dips on either side. This does not look like a good starting point for a flat
crossover. You can see that the crossover point is now at −1 dB, because the cutoff
frequency of a third-order Chebyshev filter is defined as the point where the rolloff response
has fallen again to the level of the 1 dB dip after rising briefly back to 0 dB.

If one output is inverted we get instead a gentle dip, as in Figure 4.38, which looks more
promising as a subject for frequency offsetting. As we saw with the third-order Linkwitz–
Riley crossover, to tackle a dip in the combined response, it is necessary to push the curves
together rather than pull them apart, and so the offset ratio will be less than 1.0.

Figure 4.36: The frequency response of third-order Bessel crossover, summation with one output
phase-reversed and both cutoff frequencies offset by 1.22x for maximal flatness. Ripple is only

±0.35 dB. Note vertical scale now has ‒20 dB at bottom.

Crossover Types 83



Figure 4.38: The frequency response of a third order 1.0 dB-Chebyshev crossover, resulting from
summation with one of the filter outputs phase-reversed. The dashed line is at −1 dB.

Figure 4.37: The frequency response of a third-order 1.0 dB-Chebyshev crossover, with in-phase
summation; a +4 dB peak with dips either side. The dashed line is now at −1 dB.
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An offset ratio of 0.946 (making the highpass cutoff 0.946 kHz and the lowpass cutoff
1/0.946 = 1.057 kHz), gives the maximally flat response shown in Figure 4.39. The response
deviations are ±1.6 dB, and once more the Chebyshev filter does not look like a promising
start for a crossover design.

4.8 Fourth-Order Crossovers

The fourth-order crossovers give still greater separation between the drive units than the
first-, second-, or third-order types. The 24 dB/octave slopes minimise the chance of exciting
out-of-band drive unit irregularities like the tweeter or mid-range resonance will be excited.
Modulation distortion will be further reduced, though probably not to a great extent. The
sensitivity to driver time-delay misalignments is further lessened due to the narrower
crossover region. The fourth-order Butterworth crossover does not gives a flat summed
amplitude response but the fourth-order Linkwitz–Riley famously does. For the Butterworth
and Linkwitz–Riley versions, inverting one output gives a useless response with a deep
notch at the crossover frequency.

Since fourth-order filters are used, their extra phase-shift gives outputs that are 360° apart,
which is the same as being in-phase and so eliminates lobing errors and tilting of the
vertical coverage pattern in the crossover region; this is a major advantage.

Figure 4.39: Zooming in on the frequency response of a third-order 1.0 dB-Chebyshev crossover,
with frequency offset of 0.946 times and reversed-phase summation. Ripple is ±1.6 dB,

vertical scale ±2 dB.
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Fourth-order crossovers have further reduced sensitivity to driver time misalignments
because of their steeper 24 dB/octave slopes. Vance Dickason records [2] that a fourth-order
Butterworth crossover and a 2-inch time-misalignment give an amplitude response error of
about 1 dB, smaller than that of any other crossover examined so far.

Despite their advantages, fourth-order filters are rarely used in passive crossovers, because
the greater number of expensive inductors increases the losses due to their resistance, and
increasing the inductor wire gauge to reduce these losses puts the cost up even more.
Fourth-order crossovers also require a greater number of big capacitors.

I was inspired by Vance Dickason [2] to investigate some more exotic filters as possible
candidates for crossovers; the linear-phase filter, the Gaussian filter, and the Legendre filter.
It has to be said that on examination none look very promising. Other unusual filters such
as transitional and synchronous types are looked at in Chapter 7.

4.8.1 Fourth-Order Butterworth Crossover

The fourth-order Butterworth sums to give a +3.0 dB hump at the crossover frequency, as
in Figure 4.40, while the summation with one phase reversed gives a deep crevasse as in
Figure 4.41; this is the exact opposite of the behaviour of the second-order Butterworth.
A frequency offset of 1.128 times reduces the hump to a maximally flat ripple of ±0.47 dB,
as seen in Figure 4.42.

Figure 4.40: The frequency response of a fourth-order Butterworth crossover, resulting from
in-phase summation. The dashed line is at −3 dB.
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Figure 4.42: Zooming in on the frequency response of a fourth-order Butterworth crossover with
in-phase summation, and an optimal frequency-offset ratio of 1.128 times. The error is

±0.47 dB.

Figure 4.41: The frequency response of a fourth-order Butterworth crossover with reverse-phase
summation. The dashed line is at −3 dB.
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The fourth-order Butterworth crossover produces a flat power response and so it is a CPC
crossover. The outputs are 360° apart in phase at all times. This is equivalent to being in-
phase and so there is no tilting of the vertical coverage pattern in the crossover region. The
summed group delay has a significant peak just below the crossover frequency.

Given that the best possible amplitude response flatness obtainable by frequency offset is ±0.47
dB, there seems no reason to use the fourth-order Butterworth in preference to the fourth-order
Linkwitz-Riley crossover. The phase and group delay plots are therefore not shown.

4.8.2 Fourth-Order Linkwitz–Riley Crossover

The fourth-order Linkwitz–Riley is considered by many the best crossover alignment of the
lot. The in-phase response sums to completely flat, making it an APC type; see Figure 4.43.
(The reversed-phase response in Figure 4.44 has a deep crevasse at the crossover frequency
and is of no value.) The outputs are 360° apart in phase at all times so there is no lobe-
tilting in the crossover region. The crossover point is at −6 dB. There is a −3 dB dip in the
power response so it is not a CPC crossover.

One of the beauties of this type of crossover is the ease of its design. It is normally made
by cascading two second-order Butterworth filters with identical cutoff frequencies, and
identical Qs of 0.7071 (1/√2). Thus, it is sometimes called a “squared Butterworth” filter, or,
less logically, a “−6 dB Butterworth” filter.

Figure 4.45 shows the −3 dB dip in the power response. The two outputs are at −6 dB at
the crossover point, and are regarded as uncorrelated, so they RMS-sum to give −3 dB.

Figure 4.43: The frequency response of a fourth-order Linkwitz–Riley crossover, resulting from
in-phase summation. The dashed line is at −6 dB.
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Figure 4.45: The power response of a fourth-order Linkwitz–Riley crossover, resulting from
in-phase summation. The dashed line is at −3 dB.

Figure 4.44: The frequency response of a fourth-order Linkwitz–Riley crossover, resulting from
phase-inverted summation. The dashed line is at −6 dB.
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While this is not ideal, it is a modest dip, and the use of fourth-order filters means it is not
wide, so the effect on the reverberant energy in a listening space will be correspondingly
small.

Figure 4.46 illustrates how the outputs are 360° apart in phase at all times. This is
equivalent to being in-phase and so eliminates tilting of the vertical coverage lobes in the
crossover region. The summed phase swings through 360° across the audio band and thus
emulates a second-order allpass filter.

The summed group delay in Figure 4.47 has a flat LF region at 450 usec, which is a longer
delay than any of the lower-order crossovers we have looked at; however it is much less
than the 3.2 msec audibility threshold at 500 Hz, as quoted in Chapter 3. The group delay
shows a moderate peak of 540 usec just below the crossover frequency.

Passive versions of the fourth-order Linkwitz–Riley are relatively uncommon because of the
power losses and the number of components in a passive fourth-order crossover, but one
example of a loudspeaker using the technology was the KEF Model 105 [5] of which the
first version was released in 1977.

The fourth-order Linkwitz–Riley crossover is widely considered to be the best. It sums
to a flat amplitude response, and its power response has a dip of limited width and only

Figure 4.46: The phase response of a fourth-order Linkwitz–Riley crossover, in-phase connection.
There is a constant 360° phase difference between the two outputs. (The summed phase trace

is on top of the lowpass output trace).
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−3 dB deep. There is no lobe tilting and the 24 dB/octave slopes are considered adequate
for the vast majority of drive units. On the debit side, the phase response is that of a
second-order allpass filter rather than a first-order, and the group delay is relatively long
at 450 usec, and has a peak.

4.8.3 Fourth-Order Bessel Crossover

The fourth-order Bessel has its crossover point at −3 dB. It sums to give a −2.6 dB dip at
the crossover frequency, as in Figure 4.48, while the summation with one phase reversed
gives a +2 dB hump and two −1 dB dips, as in Figure 4.49. The phase-reversed case does
not look like a suitable case for frequency-offset treatment as pulling the cutoff frequencies
apart will pull down the hump but deepen the dips, while pushing them together will pull
up the dips but make the hump worse.

It looks more promising for the in-phase case, but pushing the cutoffs together for this
crossover actually deepens the dip due to the phase-shifts involved. Pulling them apart by
an increasing amount makes the dip more shallow to begin with, but before the response
begins to straddle the 0 dB line, it undergoes a fairly complicated set of changes with two
new dips appearing either side of the central one, and they deepen as the offset ratio
increases.

Figure 4.47: The group delay response of a fourth-order Linkwitz–Riley crossover,
in-phase connection.
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Figure 4.49: The frequency response of a fourth-order Bessel crossover, with reversed-phase
summation. The dashed line is at −3 dB.

Figure 4.48: The frequency response of a fourth-order Bessel crossover, resulting from in-phase
summation. The dashed line is at −3 dB.
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In this situation it is hard to say what constitutes the maximally flat solution, but a promising
candidate is shown in Figure 4.50, where a frequency offset of ratio of 1.229 times gives
only −0.18 dB at the crossover frequency, with dips either side that are −0.3 dB deep.

The summed group delay response has a moderate peak just below the crossover
frequency.

4.8.4 Fourth-Order 1.0 dB-Chebyshev Crossover

Using the 1.0 dB-Chebyshev characteristic for each filter gives an in-phase summed
response with a central peak at the crossover frequency of +2.22 dB, with the dips on either
side going down to +0.15 dB, as in Figure 4.51. These dips are above 0 dB because a
fourth-order Chebyshev filter has its passband ripples above the 0 dB line. All even-order
Chebyshev filters have response peaks above 0 dB, while all odd-order Chebyshev filters
have dips below it.

The summed response with one output phase-inverted, seen in Figure 4.52, looks very much
the same, except that the central peak is taller at +3.65 dB. Neither summed response looks
as though it could be significantly flattened by the use of a frequency offset, and I have not
attempted it.

Figure 4.50: Zooming in on the frequency response of a fourth-order Bessel crossover, with an
offset ratio of 1.229 times and in-phase summation. Vertical scale is ± 1 dB.
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Figure 4.52: The frequency response of a fourth-order Chebyshev crossover, resulting from
reversed-phase summation. The dashed line is at −3 dB.

Figure 4.51: The frequency response of a fourth-order Chebyshev crossover, resulting from
in-phase summation. The dashed line is at −3 dB.
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4.8.5 Fourth-Order Linear-Phase Crossover

There is not a great deal of information out there about the design of linear-phase filters,
and some of what there is appears to be contradictory. The crossover here uses linear-phase
filters as defined by Linear-X Systems Filtershop [6], which for a fourth-order linear-phase
filter consists of two cascaded second-order stages; the first has a cutoff frequency of 1.334
and a Q of 1.316, while the second has a cutoff frequency of 0.7496 and a Q of 0.607.
With this filter structure the crossover point is at −4.5 dB. The summed response with the
outputs in-phase has a gentle +1.2 dB hump at crossover, dipping very slightly below the
0 dB line on either side; see Figure 4.53.

The summation with one output phase-reversed has a deep hole in it but is notable because
it has an unusual flat portion at −8.7 dB around the crossover frequency, as in Figure 4.54.
It is in fact very flat indeed, to within 0.01 dB across the visibly flat part. While this is
strange and rather interesting, the deep dip does not look like a good starting point for the
frequency-offset process.

Applying frequency offset to the in-phase case of Figure 4.42, we find that an offset ratio of
1.0845 times gives a maximally flat response with deviation of ±0.66 dB around the 0 dB
line; see Figure 4.55. This is poor compared with other crossovers.

Figure 4.53: The frequency response of a fourth-order linear-phase crossover, resulting from
in-phase summation. The dashed line is at −3 dB.
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Figure 4.55: The frequency response of a fourth-order linear-phase crossover with a frequency
offset of 1.0845 times, and in-phase summation, showing errors of ± 0.66 dB.

The dashed line is at −3 dB.

Figure 4.54: The frequency response of a fourth-order linear-phase crossover, resulting from
reversed-phase summation. The dashed line is at −3 dB.
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Despite its promising name, the linear-phase filter crossover cannot be made to sum flatter
than ±0.66 dB, which makes it a very doubtful choice.

4.8.6 Fourth-Order Gaussian Crossover

As explained in Chapter 7, the Gaussian filter characteristic is based on time-domain
considerations, being designed for no overshoot on a step function input while keeping rise
and fall times as fast as possible. This response is closely connected to the fact that the
Gaussian filter has the minimum possible group delay. Gaussian filters come in various
kinds identified by a dB suffix, such as “Gaussian-6 dB” and “Gaussian-12 dB,” though the
differences in amplitude response are very small. The amplitude response is very similar
indeed to that of a Bessel filter.

Designing the lowpass and highpass filters for a cutoff of 1 kHz gives a crossover point at
−2.8 dB, as in Figure 4.56. The reversed-phase connection gives the crevasse in
Figure 4.57, which will not be considered further.

Looking at Figure 4.56, it is clear that the filter cutoff frequencies need to be pushed together
to get a flatter summed response. The depth of the dip is minimised at −1.05 dB by a
frequency-offset ratio of 0.8045 times; thus the highpass filter cutoff becomes 0.8045 kHz and
the lowpass filter cutoff becomes 1/0.8045 = 1.243 kHz, giving the response in Figure 4.58.
Altering the ratio either up or down gives a deeper dip.

Figure 4.56: The frequency response of a fourth-order Gaussian crossover, resulting from in-phase
summation. The dashed line is at −3 dB.
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Figure 4.58: The frequency response of a fourth-order Gaussian crossover with a frequency
offset of 0.8045 times to give minimal depth of dip. In-phase summation.

The dashed line is at −3 dB.

Figure 4.57: The frequency response of a fourth-order Gaussian crossover, resulting from
reversed-phase summation. The dashed line is at −3 dB.
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Once again, there is not a great deal of information to be had on Gaussian filters, and some
of what there is appears to be contradictory. The crossover here uses Gaussian filters as
defined by Linear-X Systems Filtershop [6], which for the fourth-order consist of two
cascaded second-order stages; the first has a cutoff frequency of 0.9930 and a Q of 0.636,
while the second has a cutoff frequency of 1.0594 and a Q of 0.548. It is very possible that
if you use a different design methodology from me—see Chapter 7 for more details—you
will get different cutoff frequencies. This is irritating but not a cause for despair as adjusting
the frequency-offset ratio to suit is straightforward.

However, the Gaussian alignment appears to have no great advantages. Its rolloffs are slow;
if that suits your design intentions the Bessel crossover has a better maximal flatness. (The
Bessel has two dips −0.3 dB deep as opposed to the Gaussian −1.05 dB single dip.)

The summed group delay response has a moderate peak just below the crossover frequency.

4.8.7 Fourth-Order Legendre Crossover

The Legendre filter (sometimes called the Legendre–Papoulis filter) is optimised for the
greatest possible slope at the passband edge without passband ripples—in other words it is
a monotonic filter, with a response that always goes downwards. It gives a faster rolloff
than the Butterworth characteristic, but the drawback is that the passband is not maximally
flat as is the Butterworth; instead it begins to slope gently down until the rapid roll-off
begins. This can be seen in Figure 4.59, which also shows that in-phase summation gives a

Figure 4.59: The frequency response of a fourth-order Legendre crossover, resulting from in-phase
summation. The dashed line is at −3 dB.
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narrow hump reaching +1.4 dB at the crossover point. It may not be visible in the plot,
but the summed response actually dips below the 0 dB line by 0.1 dB on either side of
the hump.

A fourth-order Legendre filter is normally constructed by cascading a second-order stage
with a Q of 2.10 with another second-order stage of Q = 0.597. A Q of 2.10 is quite high
for a standard Sallen & Key filter and requires a capacitor ratio of 17.6 to achieve it; this
indicates that component sensitivity will be higher than usual and care will be needed to get
an accurate response.

The summation with one phase reversed has a shallow dip of −2.0 dB around the crossover
point, as shown in Figure 4.60. It is not too clear which of these can be best flattened by
the use of a frequency offset, so I tried both.

The rapid rolloff of the Legendre filters means that quite small amounts of frequency offset
have large effects. An offset ratio of only 1.029 times gives the maximally flat response for
the in-phase condition, illustrated in Figure 4.61. The twin peaks are +0.3 dB high and the
central dip is −0.39 dB deep.

Applying a frequency offset to the reversed-phase case gives an intriguing shape to the
curve but larger errors, the −2 dB dip reaching its minimum depth of −1.05 dB with an
offset ratio of 1.041 times, as shown in Figure 4.62. Clearly the in-phase option is better,

Figure 4.60: The frequency response of a fourth-order Legendre crossover, resulting from
reversed-phase summation. The dashed line is at −3 dB.
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Figure 4.62: The frequency response of a fourth-order Legendre crossover with a frequency offset
of 1.041 times, and reversed-phase summation. The dashed line is at −3 dB.

Figure 4.61: The frequency response of a fourth-order Legendre crossover with a frequency offset
of 1.029 times, and in-phase summation. The dashed line is at −3 dB.
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unless you are trying to keep abreast of the times, and perhaps compensating for a 1 dB
peak in a drive unit response.

The group delay of the summed output has a significant peak just below the crossover
frequency.

4.9 Higher-Order Crossovers

As we have seen, fourth-order crossovers provide a wide range of possible alignments,
and good slopes of 24 dB/octave, which are generally considered to be adequate for
maintaining separation between drive units. The fourth-order Linkwitz–Riley, with the
absolute flatness of its summed response and its delightfully straightforward filter design,
is considered by many the best crossover alignment known at present. The question
nonetheless arises if crossovers of fifth, sixth or higher order could give any further
advantages. There seems to be no consensus as to whether the extra steepness of the
slopes gives significant benefits, and there is an issue about the perceptibility of the group
delay. According to Siegfried Linkwitz, “Crossover filters of higher order than LR4 are
probably not useful, because of an increasing peak in group delay around the crossover
frequency.”

Nonetheless, crossovers of up to the eighth order (with 48 dB/octave slopes) are sometimes
used, mainly for sound reinforcement applications. These are usually of the Linkwitz–Riley
type. According to Dennis Bohn of Rane Corporation [7], going from a fourth-order
Linkwitz–Riley to an eighth-order Linkwitz–Riley halves the effective width of the
crossover region from 1.5 octaves to 0.75 octaves, and gives more linear drive unit operation
and greater driver protection, and hence better power handling. He makes the point that the
system designer must have a very good knowledge of the drive unit characteristics to use
such steep slopes effectively.

Eighth-order crossover filters raise questions about component sensitivity. Expensive
precision capacitors (and possibly resistors) are likely to be required. Eighth-order
crossovers are probably best realised by DSP techniques.

At least one company makes fifth-order passive crossovers. CDT Audio [8] manufactures
crossovers for automotive audio that are stated to effectively give fifth-order slopes by the
use of elliptical filters.

4.10 Determining Frequency Offsets

The frequency offsets required for maximal flatness are given above for the common (and
some not-so-common) crossover alignments. However, if you are bravely striking out on
your own with an unconventional filter not covered here, you may find it useful to be able
to determine your own frequency offsets for maximal response flatness.
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There are several ways of doing this. It would be possible to do it purely mathematically,
working from the complex filter responses and manipulating the cutoff frequencies by some
sort of optimisation technique. However, the rather heavyweight mathematics involved in
that approach does not appeal to all of us. An alternative simulation method which requires
a bit of work but no turn-the-paper-sideways algebraic manipulation is as follows:

1. Simulate the lowpass and highpass filters, designed for the same cutoff frequency,
(typically 1.0 kHz) and driven from the same signal source. Check that they are giving
the response shapes and cutoff frequencies that you expect.

2. Sum the two filter outputs. In most simulators this can be done simply by plotting the
arithmetical sum, so there is no need to add an electrical summing stage to the
simulation. The reverse-phase connection can be checked by plotting the difference of
the filter outputs instead of the sum.

3. If the summed response is not ruler flat, determine how it needs to be altered. Very
roughly, if there is a peak around the crossover frequency you will need to move the
filter cutoff frequencies apart (offset ratio greater than 1), and if there is a dip you need
to move them together (offset ratio less than 1).

4. Now there is a bit of work; move one of the cutoff frequencies, by changing the component
values in the relevant filter, and see how the response changes. Normally five or six
attempts will get the response as flat as you are going to get it; in many cases this means
equal deviations above and below the 0 dB line. Changing the cutoff frequencies is much
easier if you have designed the filters as Sallen & Key types and scaled the components so
that they are equal. For example, a fourth-order highpass Sallen & Key filter commonly
consists of two cascaded second-order stages. These will have two equal capacitors in each
stage, and by manipulating the resistor values it can be arranged that all four capacitors
have the same value. The cutoff frequency can then be changed by at worst typing in four
equal values; if your simulator has parameter facilities you should be able to set thing up so
typing in a single value changes all four capacitors.

5. You will note that in the previous step we performed the cut-and-try on one filter only,
to save effort. This means that the crossover frequency will move away from the
original design value, but ignore this as you concentrate on the shape of the summed
response. When you have the best response you can get, one cutoff frequency will be
unchanged at 1.0 kHz, but the other is altered to say 1.4 kHz. To get the crossover point
back where it should be, the 1.4 times ratio needs to be equally distributed between the
two filter cutoff frequencies. This is done by taking the square root of the ratio, so the
1.4 kHz cutoff becomes 1.183 kHz, and the 1 kHz cutoff becomes 1/1.183 = 0.845 kHz.
If you have got the calculations right, the crossover frequency will now be back at
1 kHz. It is wise to check that point with a final simulation.

Several examples of this process are given in the descriptions of the crossover alignments above.

Table 4.1 includes a summary of the frequency offsets required for maximal flatness with
the crossover alignments dealt with in this chapter.
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4.11 Summary of Crossover Properties

4.12 Filler-Driver Crossovers

The filler-driver crossover concept was introduced by Erik Baekgaard of Bang & Olufsen in
1977 [9]. It uses an extra drive unit in order to obtain a linear-phase response. This is one
of those not-too-common situations where wading through the complex algebra that
describes the crossover response is instructive. If you take the equation for the response of a
second-order Butterworth crossover, and then compare it with the corresponding
mathematical description of a linear-phase crossover, there is a missing term in the former.
The idea is to add an extra drive unit, called a “filler-driver” that will supply that missing
term, which is equivalent to a bandpass filter of low Q centred on the crossover frequency.

The second-order Butterworth alignment is normally used with one output inverted to get
somewhere near a flat response (without frequency offset it gives a broad +3 dB hump at
crossover). If the outputs are in-phase then there is a deep notch at the crossover frequency.
This notch is filled in precisely by the filler drive unit, as shown in Figure 4.63, where the
summed response is exactly flat, and additionally we get a flat phase response at 0° and a
flat group delay response. If we assume the filler drive unit has a flat response then it must
be fed via a bandpass filter that is −3 dB down an octave away from the centre frequency
on each side; this corresponds to a Q of 0.6667. Ways of realising the required filter appear

Table 4.1: Summarises the Properties of the Crossovers Examined So Far, Including the
Frequency Offsets Required for Maximal Flatness. (n/d = not determined)

Order Crossover Type Phase APC? CPC?
Lobe
Error? Freq-Offset x

Deviation
+/− dB

1 First-order In-phase Linear YES YES None Flat
1 First-order Reversed YES YES YES None Flat
2 Butterworth Reversed NO YES NO 1.30 0.45
2 Linkwitz–Riley In-phase YES NO NO None Flat
2 Bessel Reversed NO NO NO 1.45 0.07
2 1.0 dB-Chebyshev Reversed NO NO NO 1.53 1.60
3 Butterworth Either YES YES YES None Flat
3 Linkwitz–Riley Reversed NO NO YES 0.872 0.33
3 Bessel Reversed NO NO YES 1.22 0.35
2 1.0 dB-Chebyshev Reversed NO NO n/d 0.946 1.60
4 Butterworth In-phase NO YES NO 1.128 0.47
4 Linkwitz–Riley In-phase YES NO NO None Flat
4 Bessel In-phase NO NO n/d 1.229 0.30
4 1.0 dB-Chebyshev In-phase NO NO n/d n/d n/d
4 linear-phase In-phase NO NO n/d 1.084 0.66
4 Gaussian In-phase NO NO n/d 0.804 1.05
4 Legendre In-phase NO NO n/d 1.029 0.39
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to be strangely absent from most discussions of the filler-driver technique, so I present here
a straightforward method.

Since the required Q of 0.6667 is less than 0.707, it cannot be obtained with a standard
MFB (Rauch) filter. The Deliyannis version is used instead (see Chapter 10 for the design
procedure); the passband gain cannot be set independently, and we find we get a loss of
1.125 times (−1.03 dB), which must be made up. MFB filters also give a phase-inversion
that must be undone as the filler contribution must be in-phase; if its phase is reversed the
summed response is still dead flat but it is allpass rather than linear phase, with a peak in
the group delay. The A3 stage in Figure 4.64 neatly performs both corrections. Note that the
value of R5 eerily echoes the resistor values in the other filters. Component tolerance errors
will cause ripples in the amplitude, phase, and group delay responses.

Since the bandpass filter is a simple second-order affair, the slopes at either side of the
crossover frequency are only 6 dB/octave, which places quite severe demands on the filler
drive unit. The filler-driver concept can also be used with fourth-order Linkwitz–Riley
crossovers [10], but the filler slopes remain at 6 dB/octave.

While the filler-driver concept is unquestionably ingenious, it has not caught on. The filler-
driver takes up room on the baffle and makes it harder to get the two main drivers close
together, worsening time-alignment problems. It significantly complicates an active
crossover audio system, as we need an extra set of filters and an extra pair of power

Figure 4.63: The flat amplitude response of a second-order Butterworth crossover (in-phase) with
an added bandpass filler-driver.
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amplifiers, not to mention the two extra drive units (assuming stereo). These will not be
cheap because of the wide bandwidth of operation required, and cost is added to the
loudspeaker enclosures because of the extra cut-outs, terminals, etc. that are required.

4.13 The Duelund Crossover

This idea, originated by Steen Duelund [11], is also usually regarded as a filler-driver
crossover concept. It is even harder to explain without recourse to complex algebra, but the
basic plan is to use two cascaded bandpass filters to generate a MID output, rather than
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Figure 4.64: The schematic of a second-order Butterworth crossover (in-phase) with added
bandpass filler-driver output.
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simply filling in a notch. This output has 12 dB/octave slopes on each side rather than the
6 dB/octave slopes of the Baekgaard filler-driver. The demands on the driver concerned,
however, are still quite severe. There is much more information on the Duelund crossover
at [12] and [13].

4.14 Crossover Topology

For the sake of simplicity, all the crossovers we have looked at in this chapter are two-way;
they divide the audio spectrum into two bands only. For the purposes of illustration, a
1 kHz crossover frequency was used throughout. However, most active crossover systems
will use three- or four-way crossovers to split the audio spectrum into three or four bands,
to reduce the demands on the drive units and generally get the full benefits of active
crossover technology. This introduces some extra complications.

It would appear to be very simple to make a three-way crossover by combining two two-
way crossovers. We will use our usual example crossover specification with an LF/MID
crossover frequency of 400 Hz and a MID/HF crossover frequency of 3 kHz. There are
two highpass filters and two lowpass filters, and the standard way of connecting them is
shown in Figure 4.65.

It has however been pointed out by several people, amongst them Siegfried Linkwitz in
Linear Audio Volume 0 [13] and in [14], that this crossover topology is defective. If all
three outputs are summed, they do not sum to exactly flat. This is best illustrated when
two crossover frequencies are close together. Consider the fourth-order Linkwitz–Riley

Sum

Summation in airCrossover

MID out

LF out400 Hz LP

3 KHz LP

3 KHz HP

400 Hz HP
In

HF out

+

+

+

Figure 4.65: A three-way crossover made by combining a 400 Hz two-way crossover with a 3 kHz
two-way crossover. In-line topology.

Crossover Types 107



crossover in Figure 4.66, where the MID crosses over to the LF at 200 Hz, but this crosses
over again to a sub-woofer at 50 Hz; the rest of the crossover is left out to keep things
simple. This is what we might call an in-line crossover, because the filters follow one after
the other; the outputs from it are shown in Figure 4.67, where you will note that the LF
output never gets up to 0 dB as the crossover frequencies are only two octaves apart. As a
check we sum the subwoofer output SUB with the LF output of the 50 Hz highpass filter

(a)

Subwoofer out50 Hz LP

200 Hz LP

200 Hz HP

50 Hz HP

50 Hz LP

200 Hz LP

200 Hz HP

50 Hz HPLF out

MID out

Subwoofer out

LF out

MID out

(b)

In In

Figure 4.66: Three-way crossovers with frequencies at 50 Hz and 200 Hz: (a) in-line topology;
(b) branching topology.

Figure 4.67: Summed LF and MID outputs with in-line filter topology as in Figure 4.66. The 200 Hz
sum response is bent out of shape.
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(before it has been through the 200 Hz lowpass filter) and we get the dead flat line labelled
“50 Hz sum,” which proves that the 50 Hz Linkwitz–Riley filters are doing their stuff.

Next, we sum the MID and LF outputs; we expect an output that will rolloff around 50 Hz,
as we have not included the subwoofer output. What we get is labelled “200 Hz sum” in
Figure 4.67 and I think you can see at once that it has a warped look which indicates
something is wrong. The problem is that the LF signal has passed through the 50 Hz
highpass filter, while the MID signal has not. 50 Hz is only two octaves away from 200 Hz,
and while the amplitude response of the 50 Hz highpass filter is only down by 0.53 dB at
100 Hz and 0.03 dB at 200 Hz, the phase-shift is still 40° short of its ultimate value of 360°,
and this spoils the MID-LF summation.

The cure for this problem is to rearrange our in-line crossover into a branching
topology, as in Figure 4.66. Now both signals going to the 200 Hz filters have
passed through the 50 Hz highpass filter, and there is no extra relative phase-shift to
mess things up. The result is seen in Figure 4.68 where the “200 Hz sum” now has the
response we expect. The error with the in-line topology reaches a maximum of ‒0.74 dB
at 150 Hz.

That demonstrates the phase-shift effect. But what happens when we sum all three outputs,
as we will in real life? Figure 4.69 gives the unwelcome answer that something is now
amiss with the summation of the SUB and LF outputs; the summed level being 0.8 dB low

Figure 4.68: Summed LF and MID outputs with branching filter topology as in Figure 4.66. The
200 Hz sum response is now as expected.
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around 65 Hz. The problem is similar to the one we have just solved; the LF output has
been phase-shifted by going through the 200 Hz lowpass filter, but the SUB output has not.
Going back to the in-line topology makes it worse; the sag in the summed response is now
slightly deeper and much wider, extending from 40 Hz to 200 Hz.

Before we panic, we must recognise that bringing in a subwoofer output as a demonstration
deliberately put the crossover frequencies as close together as is plausible, and most
crossovers will have a much greater frequency spacing. If we go back to our example
crossover frequencies of 400 Hz and 3 kHz, using the branching topology as in Figure 4.70,
and sum all three outputs, then we get the much smaller error of a −0.20 dB dip around
530 Hz. If we try the alternative branching topology in Figure 4.70, then there is still
a −0.20 dB dip, but now around 2.2 kHz, as in Figure 4.71. The in-line topology gives
the same depth of dip but it is once more much wider, extending between the crossover
frequencies.

Clearly the branching topology is superior, but we do seem to have uncovered an inherent
problem with three-way crossovers. The MID output must go through two filters, and one
of the other outputs can be put through two filters by branching; but no matter which of the
two ways in Figure 4.70 you choose, the remaining output of the three can only go through
one filter. There will always be a phase-shift problem, though fortunately an error of
0.20 dB is going to be negligible compared with driver irregularities.

Figure 4.69: Summed SUB, LF, and MID outputs with branching filter topology as in
Figure 4.66b.
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Earlier in this chapter we made extensive use of offsetting the filter frequencies to minimise
response deviations. We can do that here. Applying an offset of 0.961 times to the 3 kHz
highpass filter and moving its cutoff down to 2.88 kHz, converts the ‒0.20 dB dip into an
innocuous ±0.11 dB ripple in the summed response, as in Figure 4.72. I think we can live
with that.

(a)

400 Hz LP 400 Hz LP

400 Hz HP

InIn
400 Hz HP3 kHz LP 3 kHz LP

3 kHz HP 3 kHz HPHF out

MID out

LF out

HF out

MID out

LF out

(b)

Figure 4.70: The three-way crossover of Figure 4.65 converted to the branching filter topology in
two different ways.

Figure 4.71: The summed LF, MID, and HF outputs, with branching crossover topology as in
Figure 4.70, show a −0.2 dB dip around 2.2 kHz.
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4.15 Crossover Conclusions

This has been a long chapter, and we have looked at a lot of different crossover types, with
yet more to be found in Chapter 5 on notch crossovers and Chapter 6 on subtractive
crossovers. To briefly summarise the best ones:

First-order crossovers have tempting properties but put great demands on the drive units.
The second-order Linkwitz–Riley crossover sums flat but does not have adequate slopes.
The third-order Butterworth crossover sums flat but shows lobing errors. The third-order
Linkwitz–Riley crossover does not sum flat. The fourth-order Linkwitz–Riley crossover
sums flat with no lobing errors and good slopes. Of the types not yet examined, I draw your
attention to the very clever NTM crossover in Chapter 6.
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CHAPTER 5

Notch Crossovers

The crossovers examined in Chapter 4 are all-pole crossovers, which means that the filters
used are relatively simple lowpass and highpass types, though of varying order and filter
characteristic (Butterworth, Bessel, etc.). It is also possible to contrive crossovers that have
notches (or to get mathematical, zeros) built into the rolloff, typically giving a much steeper
filter slope, to begin with at least, than an all-pole crossover of a practical order. This can
be very useful when drive units that are otherwise acceptable misbehave badly when taken
just outside their intended operating range. Neville Thiele [1] gives the example of a horn
loudspeaker being used near its cutoff frequency. He also cites the case of a mono
subwoofer, where its contribution must be rolled-off as quickly as possible out of band to
prevent it contaminating the stereo localisation cues from the main speakers.

5.1 Elliptical Filter Crossovers

A crossover design based on the use of elliptical filters was published by Bill Hardman in
Electronics World in 1999 [2] and this has been the basis for much discussion on the
subject. The amplitude response of the published design is shown in Figure 5.1. The
original version had a crossover point at 1.5 kHz, but I have modified the filter frequencies
for 1 kHz instead, to match all the other crossover response examples in this book. Nothing
else that might affect the response has been changed.

The two deep notches symmetrically placed on either side of the crossover point are at
529 Hz and 1.84 kHz, less than an octave away from the crossover point. It is obvious that
their presence greatly increases the initial roll-off slope, making it more effective than a
fourth-order Linkwitz–Riley alignment from this point of view.

It is, however, vital that the outputs of a crossover should sum to as nearly flat as possible, and
looking at the spiky nature of Figure 5.1, you are probably thinking that this is going to be very
difficult to arrange. In fact, it can be done relatively easily. Figure 5.2 shows the in-phase
summation; the central hump is only ‒0.13 dB down, while the dips on either side are about ‒0.9 dB
deep. The phase-reversed summation has a deep notch at the crossover frequency and is of no value.

Looking at Figure 5.2, one cannot help feeling it might be able to improve the flatness of
the summation by tweaking the filter frequencies. However, applying a frequency offset is
in fact not very helpful, because the centre rises much more than the dips do; for example,
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an offset ratio of 1.045 gives a central peak of +0.4 dB with dips of ‒0.7 dB, which is not
much improvement, if any, on the original Hardman alignment.

The elliptical filters used in this crossover are the usual combinations of notch filters and
all-pole filters. Figure 5.3 shows that the lowpass path is composed of a lowpass notch and

Figure 5.1: Amplitude response of the Hardman elliptical crossover.

Figure 5.2: Zooming in on the in-phase summation of the Hardman elliptical crossover.
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a second-order lowpass Sallen & Key filter; the latter has equal component values but a
non-standard Q which places it somewhere between a Linkwitz–Riley and a Bessel filter
characteristic. The highpass path is composed of a highpass notch and a second-order
highpass Sallen & Key filter with the same non-standard value of Q.

Figure 5.3 underlines the difference between a lowpass notch and a highpass notch. These are
not your more familiar symmetrical notches that go up to 0 dB on either side of the central
crevasse. A lowpass notch response starts out at 0 dB at low frequencies, drops down into the
crevasse, and then comes back to level out at a lower gain, say ‒10 dB; the lowpass notch can
be seen in both Figures 5.3 and 5.4. Conversely, a highpass notch has a response that is 0 dB
at high frequencies, drops down, and then comes back up to say ‒10 dB at low frequencies.

Figure 5.4 shows how it works for the lowpass path. The notch filter provides a lowpass notch;
as frequency increases there is some peaking just before the rolloff into the crevasse. This is
cancelled out by the low-Q, relatively slow rolloff from the all-pole lowpass filter, giving a fast
rolloff around the crossover frequency, and also gives a notch deepened by the increasing
attenuation of the lowpass filter. The ultimate rolloff slope, well above the notch frequency, is
only 12 dB/octave because it comes entirely from the second-order lowpass filter.

The original Hardman crossover used Bainter filters to create the notches followed by
second-order Sallen & Key filters. Bainter filters are popular for making elliptical filters of
the type shown here because they give good deep notches where the depth does not depend
on the matching of passive components, but only on the open-loop gain of the opamps. You
can see lovely deep notches in Figures 5.1 and 5.4; it is in a sense a pity that the notch
depth is not in any way critical to get a good summed response. So long as a distinct notch
is visible the effect on the summed response is negligible.

A design for a Hardman crossover is shown in Figure 5.5. While the essential filter
characteristics are closely based on those in the original article [2], the crossover frequency,
as noted, has been altered from 1.5 kHz to 1.0 kHz, and the general impedance level of the
circuitry reduced by a factor of approximately twenty, to reduce noise. Any further

Lowpass notch filter

Highpass notch filter

In

Second-order
lowpass filter

Second-order
highpass filter

LF out

HF out

Figure 5.3: Block diagram of the Hardman elliptical crossover architecture.
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impedance reduction would risk overloading the opamps (assumed to be 5532s) with a
consequent increase in distortion. As with many other circuits in this book, it has been
designed to use standard capacitor values, with the resistor values coming out as whatever
they do. It is much cheaper to get an exact value by combining resistors rather than by
combining capacitors. The simplest way to scale the circuit to implement other crossover
frequencies is to change all the capacitors in the same ratio.

Figure 5.5 shows that the two Bainter notch filters for lowpass and highpass are very
similar, with only three components differing in value. This sort of convenient behaviour is
what makes the Bainter filter so popular. The relationship between R3 and R4 in the
lowpass filter, and between R13 and R14 in the highpass filter, determine the kind of notch
produced. If R4 is greater than R3, you get a lowpass notch. If R3 = R4, you get the
standard symmetrical notch. If R3 is greater than R4, you get a highpass notch. The value
of R6 (or R16) sets the notch Q.

There are, however, some aspects of this circuit that are less convenient. The lowpass notch
response does not actually start out at 0 dB at low frequencies; instead it has a gain of +10.6
there. The response then drops into the crevasse, and comes back up to 0 dB. There is then
the gain of +1.3 dB from the lowpass filter, giving a total of 11.9 dB of passband gain, which
may not fit well into the gain/headroom scheme planned for the crossover. The highpass
notch response has a passband gain of 0 dB at high frequencies, and after the notch comes
back up to ‒10.8 dB. With the final highpass filter added the passband gain is +1.2 dB.

Figure 5.4: How the Hardman elliptical lowpass filter works. The upper plot is the output of the
lowpass notch filter only, the second plot adds in the effect of the lowpass filter.
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Figure 5.5: Schematic diagram of a Hardman elliptical crossover with a crossover frequency of 1 kHz. The outputs
are at different levels—see text for details.

A
llrights

reserved
.

119



Therefore we have a level difference of 11.9 ‒ 1.2 = 10.7 dB between the two outputs, and this
will have to be accommodated somewhere in the crossover system design. There is more
information on the Bainter filter and other notch filters in Chapter 9.

A most interesting paper on the use of Chebyshev filters (ripples in the passband), inverse-
Chebyshev (notches in the stopband), and elliptical filters (ripples in the passband and notches
in the stopband) with the added feature of a variable crossover frequency, was published in
the JAES by Regalia et al. in 1987 [3]. It is well worth studying.

5.2 Neville Thiele MethodTM (NTM) Crossovers

One of the better-known notch crossovers is the Neville Thiele MethodTM crossover,
introduced by Neville Thiele in an AES paper in 2000 [1]. This does not appear to consist
of elliptical filters as such (as far as my knowledge of elliptical filters goes, anyway), but a
rather more subtle arrangement that sums to unity much more accurately than the Hardman
crossover we have just looked at. One of the few examinations of this technique that has
been published is that by Rod Elliot [4].

I should say at once that the Neville Thiele MethodTM or NTM is a proprietary technology
addressed by US Patent 6,854,005 and assigned to Techstream Pty Ltd, Victoria, AU, and
that if you plan to use it for anything other than a private project you might want to talk to
them about licensing issues. The information given here is published by permission and is
derived solely from the public-domain references [1] and [5], which I have to say are not an
easy read. I have never seen a schematic of a manufactured crossover using this technology,
nor have I ever deconstructed any related hardware.

Using references [1] and [4], it appears that the lowpass path of a sixth-order NTM
crossover filter (eighth-order versions are also possible) consists of a bridged-T lowpass
notch filter, followed by a second-order lowpass filter with a Q of about 1.6; this is
followed in turn by two first-order filters. This structure, together with the matching
highpass path, is shown in Figure 5.6.
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Figure 5.6: Block diagram of an NTM crossover.
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The result of this rather complicated-looking block diagram is shown in Figure 5.7.
Each filter output has a fast rolloff after the crossover point, terminating in a shallow
notch; the response then comes back up a bit but then settles down to an ultimate
24 dB/octave rolloff. The filter responses may not look very promising for summation,
but in fact they do add up to an almost perfectly flat response when the phase of one
output is reversed. If summed in-phase there is a central crevasse about 12 dB deep, of
no use to anyone.

Figure 5.8 shows a much closer view of the summed response. The bump below the
crossover frequency peaks at +0.056 dB, while the flat error in level above the crossover
frequency is at ‒0.031 dB. Since these very small errors are asymmetrical about the
crossover point, it seems more likely that they are due to opamp limitations or similar
causes, rather than anything inherent in the crossover. They are negligible compared with
transducer tolerances, or with the summation errors of crossovers that approximate flatness
by using frequency offsetting; the performance is much better than that of the Hardman
elliptical crossover, which has flatness errors of 0.9 dB.

Figure 5.9 attempts to show how the NTM crossover works; the response of each filter
stage in the lowpass path is shown separately. (The responses of the two first-order filters
have been combined into a single response for the two when cascaded.) The bridged-T filter
creates a lowpass response that comes back up to ‒5 dB after it has been down in the notch.
You will note that the notch is much shallower than that of the more complex Bainter filter

Figure 5.7: The NTM crossover. The dotted line is ‒6 dB.
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Figure 5.9: The operation of a lowpass of an NTM crossover filter, which combines the lowpass
notch, a peaking second-order lowpass filter, and two cascaded first-order lowpass filters.

(The last is shown as one plot here.)

Figure 5.8: Zooming in on the summation of the NTM crossover, showing very small errors.
The vertical scale is ±1 dB.
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Figure 5.10: Schematic of my NTM implementation with a crossover frequency of 1 kHz.
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used for the Hardman crossover, but this has only a very small effect on the summed
response, and the simplicity of the bridged-T circuit is welcome. You can see how the
response is ‒3.0 dB at 1 kHz.

The next stage in the crossover is a second-order lowpass filter with a cutoff frequency of
1.0 kHz and a Q of approximately 1.6. This is quite a high Q for a second-order filter and
gives considerable peaking of the response before the ultimate 12 dB/octave rolloff.

The two first-order filters both have a cutoff frequency of 1.0 kHz, and so their combined
response is down ‒6 dB at 1.0 kHz, and also has an ultimate slope of 12 dB/octave. The
action of these two stages together could be described as that of a synchronous filter, as
described in Chapter 7. If implemented as RC networks they must be separated by a
suitable unity-gain buffer to give the correct response.

Figure 5.10 shows the schematic of my version of an NTM crossover based wholly on the
information given in [1] and [4].

An interesting point is that the two first-order filters can be combined into a single Sallen &
Key second-order stage with a Q of 0.5. As Figure 5.11 shows, the component values used
are exactly the same, and you might wonder if anything is gained by doing this. The answer
is a resounding yes; Figure 5.10 is incomplete in that it does not show output buffers after the
final first-order filters. These will be required to drive whatever equalisation or output
networks follow the crossover, because the final RC network must not be loaded if it is to
give the correct response. Using a Sallen & Key second-order stage makes this output buffer
unnecessary and so saves an opamp section. This modification is shown in Figure 5.11.
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CHAPTER 6

Subtractive Crossovers

6.1 Subtractive Crossovers

What you might call the standard crossover architecture has a lowpass filter to generate the LF
signal for the bass drive unit, and a corresponding highpass filter to create the HF signal for the
tweeter/midrange driver. (Obviously that only describes a two-way crossover and a three-way
crossover has more filters.) That is not, however, the only way to do it, and one of the
alternatives is the subtractive crossover. In this you just have one filter, say the lowpass which
gives the LF signal, and you make the HF signal by subtracting the LF signal from the original
input, so that HF = 1 − LF. This process is illustrated in Figure 6.1, which shows a first-order
subtractive crossover. Higher-order subtractive crossovers can be implemented by replacing the
first-order filter with a higher-order version; Figure 6.3 shows a second-order subtractive
crossover. There is no necessity for the one filter used to be the lowpass type. It is equally
possible to use a highpass filter, and generate the LF signal by subtracting the highpass filter
output from the original input. Subtractive crossovers are also called derived crossovers as one
output is derived from the other instead of being filtered independently, and constant-voltage
crossovers because of the way that their outputs sum to reconstruct the original waveform. The
constant-voltage crossover, first properly described by Dick Small [1], one of the great pioneers
of scientific loudspeaker design, is a subtractive crossover.

The attraction of the subtractive crossover is that it promises a perfect response—surely the
subtraction process, followed by the summation that takes place in the air in front of the
speaker, must give a ruler-flat combined response? Well, the answer is that it does—but
not in a way that is generally useful. Exactly why this is so will be described shortly.

Subtractive crossovers also promise—and indeed deliver—perfect waveform
reconstruction. It is described in Chapter 4 how a first-order conventional crossover can
do this reconstruction, but second-order and higher conventional crossovers cannot,
because of their phase-shift behaviour. Nonetheless, this ability is not as advantageous as
it appears, because it is of little value when compared with the serious compromises
inherent in the simple subtractive crossover.

The subtractive process also offers perfect matching between the crossover characteristics of
the HF and LF paths. Since there is only one filter, there cannot be a mismatch between
filters because of component tolerances. Instead, we have the requirement that the
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subtraction must be done accurately, so that the HF signal really is 1 − HF rather
1 − 0.99 HF. This is straightforward to arrange because the subtractor will be subject only
to resistor tolerances, and accurate resistors are much cheaper than accurate capacitors.

An intriguing aspect of the subtractive crossover is the prospect of saving some serious
money on filter capacitors. Since only one filter is used, the number of expensive precision

Crossover Summation in air

HF

LF

Sum

+ Subtract

First-order
lowpass f0

In Summed response

−
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Figure 6.1: First-order subtractive crossover. The lowpass filter output is subtracted from the
incoming signal to get the HF output.

Figure 6.2: Frequency response of first-order crossover; both filter output plus their sum
(straight line at 0 dB) dashed line is at −3 dB.
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capacitors is halved. Certainly we have to pay for the subtractor circuit, but that is cheap by
comparison.

Relatively few designs for subtractive crossovers have been published; one example that
deserves examination was put forward by Christhof Heinzerling in Electronics World in
2000 [2]. This design includes what looks to me like rather ambitious biquad equalisation to
extend the bass response of the LF unit, and a boost/cut control for very low frequencies
based on the Baxandall circuit. While I don’t agree with every statement made in the article,
it is well worth tracking down and perusing.

Probably the best-known subtractive crossover is a design incorporating a time delay, based
on the work of Lipshitz and Vanderkooy [3], and published by Harry Baggen, in Elektor in
1987 [4]. The purpose of adding a time delay in one of the paths of a subtractive crossover is
to make the filter slopes equal (without it the output derived by subtraction always has an
inadequate 6 dB/octave slope) and obtain a linear-phase crossover. A linear-phase crossover
has a combined output phase-shifted by an amount proportional to frequency; in other words
it introduces a pure time delay only, while other crossovers have phase-shifts that change non-
linearly with frequency and act like allpass filters. The snag is that the time delay has to be
very accutrately matched to the filter to get the steeper crossover slopes.

All these issues are looked at in detail below.

6.1.1 First-Order Subtractive Crossovers

A first-order subtractive crossover is shown in Figure 6.1. The circular summing element to
the right is not part of the crossover, but simply shows how the acoustic outputs from the
HF and LF drive units sum together as air pressure in front of the loudspeaker box. It
signifies the purely mathematical process of addition and it does not affect the operation of
the crossover itself in any way. The circular subtracting element is of course part of the
crossover, but likewise it performs a pure subtraction and nothing else.

Figure 6.2 shows the response. The LF lowpass filter output is as expected, with its −3 dB
point at 1 kHz. The HF output obtained by subtraction is exactly the same as would be
obtained from a first-order highpass filter with a 1 kHz −3 dB cutoff frequency. The
summed response is a flat line at 0 dB, exactly as for the conventional first-order crossover.
The phase behaviour is also identical, and it reconstructs waveforms in the same way.

The main advantage is that there is only one filter, so there is no problem with filter
matching. The economic advantages are small because we have saved only one capacitor,
and the subtractor circuit may cost more than that. As always, the unsolvable problem with
first-order crossovers is that the 6 dB/octave slopes are just not adequate for directing
frequencies to the appropriate drive unit.
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6.1.2 Second-Order Butterworth Subtractive Crossovers

We have just seen how the first-order subtractive crossover gives some interesting results,
though these are in fact the same as you get with a conventional two-filter crossover, and
the advantages of the subtractive method are limited. A second-order crossover that can
reconstruct a waveform (as a subtractive crossover can) sounds, however, like it might be
more interesting. Figure 6.3 shows a second-order subtractive crossover, which you will
note is exactly the same as the first-order version, except that the first-order filter has been
swapped for a second-order filter.

If we choose a second-order Butterworth for our filter, we get the response of Figure 6.4,
which was probably not what you were expecting. The lowpass output is a maximally flat
Butterworth response, as it must be, but the derived HF output is very different. Firstly, its
slope is only 6 dB/octave, while the LF output has the expected 12 dB/octave slope. Worse
still, the HF output has a peak +2.4 dB high just above the crossover frequency; while the
final summed response may be flat, that peak represents a lot of extra energy being
delivered to the midrange/tweeter at a frequency below the crossover point, which is not
good place for it, probably leading to excessive coil excursions and increased distortion. It
is the phase-shift of the lowpass filter that causes the 6 dB/octave slope and the response
peaking.

What we have built here is an asymmetrical crossover—one with unequal slopes. The 6 dB/
octave slope of the HF output is not adequate for frequency separation of normal drive
units. You will note that the method I have used here derives the HF output from the LF

LF
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Figure 6.3: Second-order subtractive crossover. The Butterworth lowpass filter output is
subtracted from the incoming signal to get the HF output.
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output, and there is a good reason for that. The derived output always has a slope of 6 dB/
octave, as you will shortly see, and deriving the HF output makes it very clear that its
feeble slope extends well into the bass end of the plot, so an excessive amount of LF
energy is going to get into the midrange/tweeter, with a high risk of damage. If you really
wanted to use a subtractive crossover of the simple sort described here, you would derive
the LF output from the highpass filter output. That would give a decent slope to the
highpass output, and the 6 dB/octave lowpass slope would then be failing to keep HF out of
the LF drive unit. This will probably lead to some unfortunate response irregularities as the
LF drive unit will be working outside its intended frequency range, but it is not likely to be
damaged.

6.1.3 Third-Order Butterworth Subtractive Crossovers

A third-order subtractive crossover can be made in just the same way by replacing the
second-order lowpass filter with a third-order one, and carrying out the same subtraction. If
we plug in a third-order Butterworth, we find that the results are no better—in fact they are
rather worse; see Figure 6.5. The crossover is still asymmetrical, for despite the use of a
third-order filter instead of a second-order one, the HF output still only has a slope of 6 dB/
octave. The unwelcome peak in the response is still there; now it is at slightly below the

Figure 6.4: Frequency responses of second-order Butterworth subtractive crossover; both filter
outputs plus their sum (straight line at 0 dB) dashed line is at −3 dB.
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crossover frequency and it has grown to +4.0 dB in height. Third-order filters are clearly not
the answer.

6.1.4 Fourth-Order Butterworth Subtractive Crossovers

If we try a fourth-order Butterworth as the lowpass filter, the results are much the same;
see Figure 6.6. The LF output is the direct output of the lowpass filter, and so is what we
expect, rolling off at a satisfactory 24 dB/octave. The HF output slope stays stubbornly at
6 dB/octave, and the peak moves down a little in frequency and grows in height to +5.2 dB.
The crossover is still asymmetric- in fact it is more asymmetric, with the LF slope now
being four times that of the HF slope.

You may be thinking at this point that we are making a crass mistake by using Butterworth
filters, and some other filter characteristic like Bessel or Chebyshev would give better
results. The most popular fourth-order crossover is the Linkwitz-Riley alignment (equivalent
to two cascaded second-order Butterworth filters) so let’s see if using that for the lowpass
filter makes a revolutionary difference.

Not at all. As Figure 6.7 shows, the crossover is still highly asymmetrical because the
HF output still has that useless 6 dB/octave slope. The height of the peak is slightly less at
+4.3 dB, but that’s precious little help.

Figure 6.5: Frequency response of third-order Butterworth subtractive crossover; both filter
outputs plus their sum (straight line at 0 dB) dashed line is at −3 dB.
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Figure 6.6: Frequency response of fourth-order Butterworth subtractive crossover; both filter
outputs plus their sum (straight line at 0 dB) dashed line is at −3 dB.

Figure 6.7: Frequency response of fourth-order Linkwitz-Riley subtractive crossover; both filter
outputs plus their sum (straight line at 0 dB) dashed line is at −6 dB.
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6.2 Subtractive Crossovers with Time Delays

In 1983 Lipshitz and Vanderkooy [3] proposed that linear-phase crossover networks could
be produced by a subtractive method, the key idea being that a time delay inserted in the
unfiltered path would compensate for the phase-shift in the lowpass filter and allow
crossovers to be designed with symmetrical slopes of useful steepness. The basic
arrangement is shown in Figure 6.8.

To the best of my knowledge, the only practical design of this sort of crossover that has
been published was by Harry Baggen, in a famous article in Elektor in 1987 [4]. It was a
three-way crossover based on fourth-order Linkwitz–Riley filters. Since the highpass outputs
were derived by subtraction, using the time-delay concept, only two Linkwitz–Riley filters
were required, to some extent making up for the extra cost of the subtractors and the
second-order allpass filters used to create the delays. This crossover may be over twenty
years old, but its conceptual significance is such that it is still being actively discussed
today.

The block diagram of this crossover is shown in Figure 6.9. The crossover frequencies were
nominally 500 Hz and 5 kHz, but the actual frequencies calculated from the original
component values are 512 Hz and 5.12 kHz. The 512 Hz fourth-order Linkwitz‒Riley
lowpass filter gives the LF output; while its phase-shift is compensated for in the lower path
by the delay filter t1. A highpass signal is derived from it by Subtractor 1. The circuit
section including the 5.12 kHz lowpass filter, a delay block t2 and Subtractor 2, is as shown
in Figure 6.8, and derives the HF output. The signal from the 5.12 kHz lowpass filter then
has the signal from the 512 Hz lowpass filter subtracted from it to create the MID output;
note that another t2 delay block is inserted into this path to allow for the phase-shift in the
5.12 kHz lowpass filter.
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Figure 6.8: Basic subtractive crossover is at (a) adding a time delay in the unfiltered path (b) allows
symmetrical-slope crossover outputs to be derived.
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Since the three-way nature of the crossover makes it quite complex, I though it best to
examine the time-delay principle by looking at only one section of it. The MID/HF
subtractive crossover circuitry is shown in Figure 6.10, with the original component values.
The fourth-order Linkwitz-Riley lowpass filter is a standard configuration made up of two
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Figure 6.9: Block diagram of Elektor subtractive three-way crossover with time delays.
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Figure 6.10: Schematic of the MID/HF section of the Elektor subtractive three-way crossover with
the original component values.
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cascaded Butterworth second-order filters A1, A2. The time delay t2 in the other path is
realised by a second-order allpass filter, made up of a multiple-feedback bandpass filter A3
and the shunt-feedback stage A4. This implements the 1-2BP second-order allpass
configuration, where the signal is fed to a second-order bandpass filter, multiplied by two, and
then subtracted from the original signal. It is not what you might call intuitively obvious, but
this process gives a flat amplitude response and a second-order allpass phase response. Since
the MFB bandpass filter phase-inverts, the subtraction can be performed by simple summation
using A4. The MFB bandpass filter has unity gain at its resonance peak, so R7 needs to be
half the value of R8 to implement the scaling by two. The operation and characteristics of this
configuration are much more fully described in Chapter 10 on time-domain filtering.

We now have two signals, one lowpass filtered and one time delayed, and the former must
be subtracted from the latter to derive the highpass output. This can again be done by a
simple summing stage, in this case A5, because the delayed signal has been phase-inverted
by A4 so summing is equivalent to subtraction. The alert reader—and I trust there is no
other sort here—will have noticed that the phase of the signals going to the subtractor A5
in Figure 6.10 is the opposite of those shown in Figure 6.9; this is because in the complete
crossover the signal entering the MID/HF crossover circuitry has already been phase-
inverted by the delay circuitry t1.

You are possibly thinking that the impedance levels at which this circuitry operates are
rather higher than recommended in this book, and you are quite right. When the Elektor
crossover was published in 1987, the 5532 opamp was still expensive, and so the crossover
used TL072s. These opamps have much a much inferior load-driving capability, with even
light loading degrading their distortion performance, so low-impedance design was not
practicable.

Figure 6.11 shows the two outputs, with nice symmetrical 24 dB/octave slopes, crossing
over at −6 dB very close to 5 kHz. However, for this plot the vertical scale has been
extended down to −80 dB, and you can see that something goes wrong at about −60 dB,
with the derived HF output 24 dB/octave slope quite suddenly reverting to a shallow 6 dB/
octave. It is highly unlikely that a 6 dB/octave slope at such a low level could cause any
drive-unit problems, but alarm bells ring in the distance because this is a simulation, and
one of the most dangerous traps in simulation is that it enables you to come up with an
apparently sound circuit that actually depends critically on component values being exactly
correct. Further investigation is therefore called for…

I suspected that the abrupt shallowing of the slope was due to the delay not being exactly
matched to the lowpass-filter characteristics, and to test this hypothesis I increased the
allpass delay by about 2% by changing R5 to 22.5 kΩ and R6 to 45 kΩ. This raised the
level at which the derived highpass output slope became shallower quite dramatically to
−25 dB, as shown in Figure 6.12.
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Figure 6.11: The MID/HF crossover is only symmetrical down to −60 dB. Dashed line
is at −6 dB.

Figure 6.12: With a 2% time error the subtractive crossover is only symmetrical down to −25 dB.
Dashed line is at −6 dB.
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In reality you would probably find that the delay errors were larger, as they also depend
on C7 and C8 in the allpass filter, and these may not be more accurate than ±5%. If all
other components are completely accurate, setting C7 and C8 so they are both 5% high
causes the 24 dB/octave slope of the derived signal to become 6 dB/octave at only −15 dB,
which is certainly going to interfere with proper crossover operation. Setting both 5% low
gives the same result. Various other twiddlings and tweakings of C7 and C8 have similar
effects on the slope, which always reverts to −6 dB/octave. This is obviously not a
statistically rigorous analysis of the likely errors in the delay filter, but things are not
looking promising.

I then turned to the lowpass filter, introducing assorted 5% errors into the four capacitors
there. It did not come as a total shock to find once more that the derived signal slope was
severely compromised.

Since the whole process depends on subtraction, it seemed very likely that the components
defining the accuracy of the subtraction would be critical, and so it proved. For accurate
subtraction R10 has to be equal to R11; errors in R12 can only result in a gain error.
Increasing R11 by just 1% to 22.2 kΩ gives the disconcerting result seen in Figure 6.13,
where a notch has appeared at 1.6 kHz; above the notch the slope is increased from 3 kHz
on down, while at lower frequencies the response has become flat at just below −40 dB.
Changing R11 by 1% in the other direction to 21.8 kΩ, gives a similar levelling-out just
below −40 dB but the notch is absent. This is a really discouraging result, stemming from a
limit-of-tolerance (1%) change to one single component. Any process depending on
subtraction will have problems when the output is required to be low, because of the way
that errors are magnified when the difference between two large quantities is taken. This is
bad enough when just two components affect the result, but here we have one relatively
complex circuit trying to cancel out a property of another relatively complex circuit. There
is a lot that can go wrong.

These results strongly suggest that while a linear-phase crossover may be a very desirable
goal—though not everyone would agree with on that—this sort of subtractive crossover
needs to be constructed with an impractical degree of precision to work properly. Rod Elliot
has come to the same conclusion [5].

6.3 Performing the Subtraction

It is not hard to come up with a circuit that performs a subtraction. Any balanced line input
stage does this; it takes the in-phase (hot) input and subtracts the out-of-phase (cold) input
from it to remove common-mode signals occurring in the input cable or elsewhere. This
process is described in detail in Chapter 16, where a variety of balanced-input stages are
described. Here we only need a simple subtraction without variable gain or any other
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Figure 6.13: Altering the subtraction resistor R11 by 1% gives the derived highpass signal a notch and a flat section in its response.
Dashed line is at −6 dB.
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complicating features. We do, however, need an accurate subtraction; in the world of
balanced line inputs, this is described as a high common-mode rejection ratio.

The standard balanced-input/subtractor is shown in Figure 6.14. It is very often built with four
10 kΩ resistors as a compromise between noise performance and achieving reasonably high
input impedances, and the measured noise output using a NE5532 opamp is −105.1 dBu.
However, in an active crossover application we can assume that both inputs will be driven
from opamp outputs (almost certainly from more NE5532s) and so the resistor values can
be reduced drastically. This lowers the Johnson noise from the resistors and also means that
the opamp current noise is flowing through less resistance and so creating less voltage noise.
The effect of the opamp voltage noise is unchanged.

Reducing the four resistors from 10 kΩ to 820Ω, as in Figure 6.14, reduces the noise output
from −105.1 dBu to −111.7 dBu, a helpful improvement of 6.6 dB in performance for no
cost at all. The value of 820 Ω is chosen as it can be driven by another NE5532 without
significantly impairing its distortion performance. This is a good example of low-impedance
design.

If one of the inputs to be subtracted is phase-inverted, then simply summing the two inputs
together is equivalent to a subtraction. This is the method used in the Elektor crossover
described earlier in this chapter.
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CHAPTER 7

Lowpass & Highpass Filter
Characteristics

Active filters are the building blocks of active crossovers. Filter design is an enormous
subject, and it is of course quite impossible to cover even its audio aspects in a single
chapter. There are many excellent and comprehensive textbooks on filters [1–3], and there
would be no point in trying to create another one here. This chapter shows how to put
together the blocks that make up a filter, but the design of each block to component-value
level is covered in Chapter 8.

Filter design is at the root highly mathematical, and it is no accident that popular filter
characteristics such as Bessel and Chebyshev are named after mathematicians, who usually
did not live long enough to see their mathematics applied to practical filters. A notable
exception is the Butterworth characteristic, probably the most popular and useful
characteristic of all; Stephen Butterworth was a British engineer.

Here, however, I am going to avoid the complexities of pole and zero placement etc., and
concentrate on practical filter designs that can be adapted for use at different frequencies by
a simple process of scaling component values. Most filter textbooks give complicated
equations for calculating the amplitude and phase response at any desired frequency. This
gets very cumbersome if you are dealing with a lot of different filters. I have assumed
access to a SPICE simulator, which gives all the information you could possible want, much
more quickly and efficiently than wrestling with calculations manually or in a spreadsheet.
Free simulator packages can be downloaded.

Filters are either passive or active. Passive or LCR filters use resistors, inductors, and
capacitors only. Active filters use resistors, capacitors, and gain elements such as opamps;
active filter technology is usually adopted with the specific intent of avoiding inductors and
their well-known limitations. Nevertheless, there are some applications where LCR filters
are essential, such as the removal of high frequencies from the output of Class-D power
amplifiers, which would otherwise upset audio test gear. The answer, as described by Bruce
Hofer [4] is a passive LCR roofing filter.

There is no reason why you could not make a line-level passive crossover using only inductors,
capacitors, and resistors, but it is difficult to think of any reason why you’d want to.

The Design of Active Crossovers
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Likewise, you could design a crossover made up of active filters that used only inductors
and resistors (i.e., no capacitors) but this would also come under the heading of “perverse
electronics.”

7.1 Active Filters

Active filters do not normally use inductors as such, though configurations such as gyrators
that explicitly model the action of an inductor are sometimes used. The active element need
not be an opamp; the Sallen and Key configuration requires only a voltage follower, which
in some cases can be a simple BJT emitter-follower. Opamps are usual nowadays, however.
This chapter deals only with lowpass and highpass filters; bandpass, notch and allpass filters
are dealt with in later chapters.

7.2 Lowpass Filters

Lowpass filters have obvious uses in crossover design, keeping the MID and HF material
out of the LF path, and keeping HF material out of the MID path. They are also used to
explicitly define the upper limit of the audio bandwidth in a system, say at 50 kHz. This is
much better than letting it happen by the casual accumulation of a lot of first-order roll-offs
in succeeding stages. This bandwidth definition is not a duplication of input RF filtering
which, as described in Chapter 16, must be passive and positioned before the incoming
signals encounter any electronics at all, as active circuitry can demodulate RF. Lowpass
filters are used in sound reinforcement systems to protect power amplifiers and loudspeakers
against ultrasonic oscillation from outside sources or in the system itself. Lowpass filters are
defined by their order, Q, cutoff frequency, and characteristic, e.g., Butterworth.

7.3 Highpass Filters

Highpass filters are used in active crossovers for keeping the LF out of the MID and HF
paths, and keeping LF and MID material out of the HF path. They are also commonly used
to explicitly define the lower limit of the audio bandwidth in a system, say at 20 Hz. In this
case relying on the happenstance accumulation of first-order LF roll-offs is distinctly
dangerous because loudspeakers are vulnerable to damage from unduly low frequencies.
Highpass filters are defined by their order, Q, cutoff frequency, and characteristic.

7.4 Bandpass Filters

Bandpass filters as such are not much used in crossover design, except perhaps occasionally
as part of an equalisation scheme, but they are of great utility as a basis from which to
make notch filters and allpass filters by subtractive methods.

142 Chapter 7



The Q required rarely exceeds a value of 5, which can be implemented with relatively
simple active filters, such as the multiple-feedback type. Higher Q’s or independent
control of all the resonance parameters require the use of the more complex biquad or
state-variable filters. Bandpass and notch filters are said to be “tuneable” if their centre
frequency can be altered relative easily, say by changing only one component value.
Bandpass filters are dealt with in detail in Chapter 9. They are defined by their Q and centre
frequency.

7.5 Notch Filters

Notch filters are used in some active crossovers, for example [5]. They are an integral part
of elliptic filters, inserting zeros (notches or nulls) in the stop-band. When someone says
“notch filter” we naturally think of the most common version—the symmetrical notch which
goes back up to 0 dB on either side of the central crevasse. However, there are also lowpass
notch and highpass notch filters, and these are highly relevant to crossover design. Notch
filters are dealt with in detail in Chapter 9. They are defined by their Q and centre
frequency.

7.6 Allpass Filters

Allpass filters are so-called because they have a flat frequency response, and so pass
all frequencies equally. Their point is that they have a phase-shift that does vary with
frequency, and this is often used for delay correction in active crossovers. You may
occasionally see a reference to an all-stop filter, which has infinite rejection at all
frequencies; this is a filter designer’s joke, sort of. Allpass filters are dealt with in
detail in Chapter 10.

7.7 The Order of a Filter

Strictly speaking, the order of a filter is the highest power of frequency that occurs in the
complex algebraic equation that describes its behaviour. Since that is the sort of
complication we are trying to avoid, we have to here rely on somewhat less formal
definitions. For example, the ultimate roll-off slope of a lowpass or highpass filter is 6 dB/
octave times the order of the filter. A first-order filter (which is just a single RC time-
constant) rolls off at 6 dB/octave, a second-order filter at 12 dB/octave, and so on. For most
kinds of filter the number of capacitors is equal to the order of the filter.

A bandpass filter must be at least second-order; it can also be fourth-order, which represents
two bandpass filters cascaded, perhaps with their centre frequencies offset to give a flattish
section rather than a sharp peak at the frequencies of interest; in radio receivers this is
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referred to as staggered tuning. It is impossible to have a first-order bandpass or notch
(band-reject) response.

7.8 Filter Cutoff Frequencies and Characteristic Frequencies

The cutoff frequency of a lowpass or highpass filter is a measure of where in the spectrum
its roll-off starts. In many cases it is defined as the frequency at which the gain is down by
−3 dB (= 1/√2). The word “cutoff” is perhaps unfortunate because it seems to imply a
frequency response that drops suddenly, like falling off a cliff. So-called “brickwall” filters
with very fast roll-offs do exist, but the filters used in active crossover design are rarely
higher than fourth-order and the start of the roll-off is actually quite gentle. However,
nobody’s going to change the word now.

Filter types like the Butterworth and Bessel characteristics have their cutoff frequencies
defined at the −3 dB point, whereas the Linkwitz-Riley filter may be defined at the −3 dB
or the −6 dB point. To an extent the choice of attenuation is arbitrary; it would be quite
possible to design these filters with cutoff defined at −4.5 dB or whatever, but there would
be no point at all in doing so. For the Butterworth filter in particular, using −3 dB makes
the mathematics very simple.

Other filters like the Chebyshev type, which has amplitude ripples in the passband, have
their cutoff defined as the point where the gain passes through 0 dB for the last time as the
frequency increases (in the lowpass case) and the steady roll-off begins.

The characteristic frequency of a lowpass or highpass filter is not at all the same thing as its
cutoff frequency, and the two terms should not be confused. Taking lowpass filters as an
example, the amplitude response off all second-order filters will eventually become a 12 dB/
octave straight line heading downwards. If you extend that line upwards and to the left it
will eventually cut the 0 dB gain line, and the point where it cuts it is the characteristic
frequency. You can design a Bessel filter and a Chebshev filter so that their responses
converge on the same 12 dB/octave line and so have the same characteristic frequency, but
they will have different cutoff frequencies.

Characteristic frequencies are not widely used in crossover design but they are useful when
dealing with state variable filters; this is discussed in an excellent article by Ramkumar
Ramaswamy [6]. This book uses cutoff frequencies exclusively.

7.9 First-Order Filters

A first-order filter is just a single RC time-constant, with an ultimate roll-off of 6 dB/octave.
Some writers seem to regard first-order filters as having a fixed Q of 0.5, though quite how
this might be helpful is unclear. This is absolutely NOT the same thing as a second-order
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filter with a Q of 0.5. There is no such thing as a Butterworth first-order filter or a Bessel
first-order filter; just a first-order filter. Most filter design software does not issue a warning
if you ask for a “Butterworth first-order filter”—it simply serves up a first-order filter with
no further comment. The cutoff frequency for a first-order filter is always that frequency at
which the output has fallen to −3 dB (1/√2) of the passband gain.

A filter made up only of cascaded first-order stages with the same cutoff frequency is called
a synchronous filter; it has a very slow roll-off and is in general not very useful. It is,
however, described later in this chapter.

7.10 Second-Order and Higher-Order Filters

Second-order bandpass responses are basically all the same, being completely defined
by centre frequency, Q, and gain. Second-order and higher highpass and lowpass filters are
also defined by cutoff frequency, Q, and gain but come in many different types or
characteristics, one of which is selected as a compromise between the need for a rapid
roll-off, flatness in the passband, a clean transient response, and desirable group-delay
characteristics. The Butterworth (maximally flat) characteristic is the most popular for many
applications, not least because it is refreshingly simple to design. Filters with passband
ripples in their amplitude response, such as the Chebyshev or the elliptical types, have not
found favour for in-band filtering, such as in active crossovers, but were once widely used
for applications like ninth-order anti-aliasing filters in front of ADCs, and similar
reconstruction filters after DACs; the passband ripples being accepted as inescapable if the
filters were to be kept to an acceptable level of complexity. Such filters have mercifully
been made obsolete by oversampling, pushing the unwanted frequencies a long way up
the spectrum, so post-DAC filters are nowadays usually simple second- or third-order
Butterworth types.

The Bessel filter characteristic gives a maximally flat group delay (maximally linear phase
response) across the passband, and so better preserves the waveform of filtered signals, but
it has a much slower roll-off in amplitude response than the Butterworth.

The cutoff frequency for second- and higher-order filter is to a certain extent a matter of
definition. The cutoff frequency of a Butterworth filter is always taken as the −3 dB
frequency because this fits in very neatly with the delightfully straightforward design
equations. Bessel filters normally use the same definition, but a Linkwitz-Riley filter might
be specified as either −3 dB or −6 dB, the latter being useful because when a lowpass-
highpass pair of these filters is used to make a Linkwitz-Riley crossover, the filters are
−6 dB at the crossover frequency. The cutoff frequency definitions for Chebyshev filters
are more complicated, depending on whether the filter is odd-order or even-order; this is
dealt with later in this chapter.
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7.11 Filter Characteristics

There are many different types of recognised filter response, each with their own special
properties. Their study is complicated by the fact that some of them go by several different names,
and you need to keep a close eye on the terminology that an author is using. The well-known
filter types are shown in Table 7.1 below. Some lesser known types are shown in Table 7.2.

We will look at some of these filter types, in each case first examining the simplest possible
instances, the second-order versions; there are no first-order versions because a first-order
filter is just a first-order filter, in other words a simple single time-constant. All the filters in
this section are lowpass filters with a cutoff frequency of 1 kHz. In every case there is an
equivalent highpass filter.

For the simpler filters—the Butterworth, Linkwitz-Riley, and the Bessel—we will look at
the amplitude response, the phase-shift response, the response to a step input, and the
group-delay curve; we then go on to compare the response of the higher-order versions.
Chebyshev filters have a more complicated response and some explanation of this is
required before we get into the same details as for the earlier filters.

The filters used to generate the information are shown in Figure 7.1. They are all
unity-gain Sallen and Key configurations, differing only in Q. Full details of how

Table 7.1: The Popular Filter Types

Common Name Other Names Used Main Features

Butterworth Maximally flat Maximally flat amplitude, easy design

Linkwitz-Riley Butterworth-squared,
Butterworth-6 dB

Two cascaded make 4th order filter summing to
allpass

Bessel Thomson, Bessel-Thomson Maximally flat group-delay, slower roll-off than
Butterworth

Chebyshev Chebyshev Type-I Passband ripple, faster roll-off than Butterworth

Inverse Chebyshev Chebyshev Type-II Stopband has notches, faster roll-off

Elliptical Cauer, Zolotarev,
complete-Chebyshev

Passband ripple & stop band notches, fastest
roll-off

Table 7.2: Lesser-Known Filter Types

Common Name Other Names Used Main Features

Transitional Compromise between any two filter characteristics

Linear-Phase Butterworth-Thomson Compromise between Butterworth and Bessel

Gaussian Optimised for step risetime without overshoot

Legendre Legendre-Papoulis Passband monotonic but not maximally flat

Synchronous Very slow roll-off

Ultraspherical Generalisation of other filter types

Halpern Similar to Legendre
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to design Sallen and Key stages for a desired cutoff frequency and Q are given in
Chapter 8.

7.11.1 Butterworth Filters

The Butterworth filter characteristic is one of the most popular because it has a maximally
flat frequency response.

The cutoff frequency is defined as the –3-dB point. Butterworth filter design is relatively
easy in its high-order versions (third and above) because every stage making up the
complete filter has the same cutoff frequency—only the Qs vary. The second-order
Butterworth filter has a Q of 1√2 (= 0.7071). Some books use the term “damping factor”
a (= 1/Q) rather than Q, but here we will stick with Q. Pay attention, 007.

The Butterworth response was introduced by Stephen Butterworth (1885–1958) in 1930 [7]. It
is remarkable that not only was Butterworth a physicist engineer rather than a mathematician,
but in this case the filter is actually named after the person that put it into use.

Figure 7.2 shows the amplitude response, with a sharper “knee” than other filters such as
the Bessel. The ultimate slope is 12 dB/octave, determined by the fact that this is a second-
order filter. The phase-shift is shown in Figure 7.3; it is 90° at the cutoff frequency.

As Figure 7.4 demonstrates, the Butterworth response gives a modest degree of overshoot when
it is faced with a step input. Maximal flatness in the frequency response does not mean no
overshoot, and does not mean a flat group delay (Figure 7.5). For that you need a Bessel filter.

Figure 7.2: Amplitude response of second-order Butterworth lowpass filter (Q= 1√2= 0.7071).
Cutoff frequency is 1.00 kHz. Attenuation at 10 kHz is −40 dB.
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Figure 7.3: Phase response of second-order Butterworth lowpass filter. Cutoff frequency is
1.00 kHz. The phase-shift is 90° at 1.00 kHz. Upper trace is amplitude response.

Figure 7.4: Step response of second-order Butterworth lowpass filter. Cutoff frequency is 1.00 kHz.
There is significant overshoot of about 4%.
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7.11.2 Linkwitz–Riley Filters

The lowest Q normally encountered in a second-order filter is 0.50, which is used for
second-order Linkwitz–Riley (LR-2) crossovers. This is less than the Q of 0.58 used for
second-order Bessel filters. Note that 0.5 is the square of the Butterworth Q which is 0.7071
(1/√2). They are sometimes called Butterworth-squared filters because the fourth-order
version is often implemented by cascading two identical second-order Butterworth stages.
They are also called Butterworth-6 dB filters because there is a −6 dB level at the cutoff
frequency of the two cascaded filters.

Designing for 1.00 kHz, using the equations given later, you will actually get −6.0 dB
at 1.00 kHz; the −3 dB point is at 633.8 Hz. The phase-shift is 90° at 1.00 kHz. Use a
frequency scaling factor of 1.578, that is, design for 1.578 kHz and you will get −3 dB at
1.00 kHz. The phase-shift is then 90° at 1.578 kHz.

The cutoff frequency is defined as the –3-dB point.

Figure 7.6 demonstrates the slower roll-off of the Linkwitz–Riley compared with the
Butterworth filter. The attenuation at 10 kHz is −32.5 dB instead of −40 dB for the Butterworth.
The ultimate slope is still 12 dB/octave, as this is determined by the fact that this is a second-
order filter, and is not affected by the Q chosen. The phase response is shown in Figure 7.7.
There is no step-response overshoot (Figure 7.8) and no group-delay peak (Figure 7.9).

Figure 7.5: Group delay of second-order Butterworth lowpass filter. Cutoff frequency is
1.00 kHz. The delay peaks by 15% near the cutoff frequency.
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Figure 7.6: Amplitude response of second-order Linkwitz–Riley lowpass filter.
(Q= 0.50) −3 dB at 1 kHz. Attenuation at 10 kHz is −32.5 dB.

Figure 7.7: Phase response of second-order Linkwitz–Riley lowpass filter. −3 dB at 1.00 kHz.
The phase-shift is 90° at 1.578 kHz. Upper trace is amplitude response.
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Figure 7.9: Group delay of second-order Linkwitz–Riley lowpass filter. −3 dB at 1.00 kHz.
There is no peaking in the delay.

Figure 7.8: Step response of second-order Linkwitz–Riley lowpass filter.
−3 dB at 1.00 kHz. There is no overshoot.
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7.11.3 Bessel Filters

As is common in the world of filters, Bessel filters as such were not invented by Bessel at
all. Friedrich Wilhelm Bessel 1784–1846) was a German mathematician, astronomer, and
was long dead by the time that anyone thought of applying his mathematics to electrical
filtering. He systematised the Bessel functions, which, to keep the level of confusion up,
were actually discovered by Daniel Bernoulli (1700–1782).

The first man to put Bessel functions to work in filters was W.E. Thomson [8], and that
is why Bessel filters are sometimes called Thomson filters or Bessel–Thomson filters.
According to Ray Miller [9], Thomson was actually anticipated by Kiyasu [10] working in
Japan in 1943, but given the date it is not surprising that communications with the West
were somewhat compromised. It is important to remember that the term Bessel–Thomson
does not refer to a hybrid between Bessel and Thomson filters, because they are the same
thing. This is in contrast to Butterworth–Thomson transitional filters, which are hybrids
between Butterworth and Thomson (i.e., Bessel) filters.

The Bessel filter gives the closest approach to constant group delay; in other words the
group delay curve is maximally flat. The downside is that the amplitude response roll-off is
slow- actually very slow compared with a Butterworth filter. The cutoff frequency is defined
as the –3-dB point.

If you design for 1.00 kHz using the equations, you will actually get −4.9 dB at 1.00 kHz; the
−3 dB point is at 777Hz. There is however 90° phase-shift at 1.00 kHz. Use a frequency
scaling factor of 1.2736, that is, design for 1.2736 kHz and you will get −3 dB at 1.00 kHz.

The Bessel responses are shown in Figures 7.10–7.13. The attenuation at 10 kHz is −36 dB,
which is worse than the Butterworth (−40 dB), but better than the Linkwitz-Riley (−32.5 dB).

Note that the flat part of the group delay curve extends further up in frequency than for
the Linkwitz–Riley filter, and yet the group delay does not peak like the Butterworth filter.
If you want to combine maximally flat group delay with filtering, the Bessel filter is
mathematically the best answer possible. If you want to create group delay without filtering,
then you need an allpass filter, which gives delay with a flat frequency response. See
Chapter 10 on time-domain filtering.

7.11.4 Chebyshev Filters

Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician. His name can be
alternatively transliterated as Chebychev, Chebyshov, Tchebycheff, or Tschebyscheff.

There is only one kind of Bessel response, and only one kind of Butterworth response, but there
are an infinite number of Chebyshev responses, depending on the amount of passband ripple you
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Figure 7.10: Amplitude response of second-order Bessel lowpass filter (Q= 0.578). Cutoff
frequency is 1 kHz. Attenuation at 10 kHz is −36 dB.

Figure 7.11: Phase response of second-order Bessel lowpass filter. −3 dB at 1.00 kHz.
The phase-shift is 90° at 1.3 kHz. Upper trace is amplitude response.
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Figure 7.12: Step response of second-order Bessel lowpass filter. −3 dB at 1.00 kHz.
There is no overshoot.

Figure 7.13: Group delay of second-order Bessel lowpass filter. −3 dB at 1.00 kHz.
There is no peaking and it is maximally flat.
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are prepared to put up with in order to get a faster roll-off. As the ripple increases, the roll-off
becomes sharper. The passband ripple might range from 0.5 dB to 3 dB in practical use, with all
values between possible. There is, however, nothing whatever to stop you from designing a
Chebyshev filter with 0.1, 0.01, or even 0.0001 dB passband ripple, though there is very little
point in doing it, as the result is in practice indistinguishable from a Butterworth characteristic;
in fact with zero ripple it is a Butterworth characteristic. Filter design programs like Filtershop
will not let you attempt Chebyshev filters with more than 3 dB of passband ripple.

The Chebyshev filter accepts a non-flat passband as the price for a faster roll-off. The
transient response of a Chebyshev filter to a pulse input shows more overshoot and ringing
than a Butterworth filter.

It should be said that the famous “passband ripple” does not look much like ripple for
lower-order Chebyshev filters; in the second-order case it simply means that the response
peaks gently above the 0 dB line by the amount selected, and then falls away as usual; see
the 1 dB-Chebyshev response in Figure 7.14, which peaks by the desired +1 dB at 750 Hz,
and then passes through 0 dB at the cutoff frequency.

The fourth-order 1 dB-Chebyshev filter has two +1 dB peaks before roll-off, and this is
starting to look more like a real “ripple”; the response also passes through 0 dB at the
cutoff frequency. For all Chebyshev filters, even-order versions have peaks above the 0 dB
line, and a response going through 0 dB at cutoff. Odd-order versions have dips below it.

Figure 7.14: Amplitude responses of second-, third-, fourth-order 1 dB-Chebyshev lowpass filters,
showing the 1 dB ripples in the passband. Cutoff frequency is 1 kHz. Dotted line at −1 dB.
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For higher-order filters, each deviation from and return to the 0 dB line requires a second-
order stage in the filter.

Figure 7.15. shows how the response of an odd-order (third, in this case) 1 dB-Chebyshev
filter dips 1 dB below the 0 dB line, then goes back up to exactly 0 dB again before falling
to pass through the −1 dB line at the cutoff frequency. In the same way a 2 dB-Chebyshev
odd-order filter dips 2 dB below the 0 dB line, then goes back up to 0 dB before falling
to go through the −2 dB line at the cutoff frequency, and the same applies to a 3 dB-
Chebyshev odd-order filter.

It is important to realise that in a Chebyshev filter the frequencies at which the passband
ripples occur cannot be controlled independently. Once you have specified the passband
ripple and the cutoff frequency of the filter, that’s it—you have no more control over the
response. This means that attempts to use the ripples of a Chebyshev crossover filter to
equalise humps or dips in a drive unit response are unlikely to be successful. It is far better
to keep the crossover and equalisation functions in separate circuit blocks.

For a given filter order, a steeper cutoff can be achieved by allowing more passband ripple,
as shown by the fourth-order Chebyshev response in Figure 7.16, which has been designed
for 1 dB, 2 dB, and 3 dB of passband ripple. The improvement is, however, not exactly
stunning. Looking at the response at 3 kHz, the 1-dB case is down −33 dB, the 2-dB case is

Figure 7.15: Amplitude responses of third-order Chebyshev lowpass filter designed for 1 dB, 2 dB,
and 3 dB of passband ripple. The curves go through −1 dB, −2 dB, and −3 dB at the cutoff

frequency of 1 kHz.
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down −35 dB, and the 3-dB case is down −37 dB. In general, if you want a steeper roll-off
you go for a higher-order filter.

7.11.5 1 dB-Chebyshev Lowpass Filter

The second-order 1 dB-Chebyschev lowpass filter has a 1 dB peak in the passband at 750 Hz.
The amplitude response is shown in Figure 7.17; note that the attenuation at 10 kHz is −39 dB,
which is actually slightly worse than the −40 dB of the Butterworth filter. The other responses
are shown in Figures 7.18–7.20.

7.11.6 3 dB-Chebyshev Lowpass Filter

This has a 3 dB peak in the passband at 710 Hz, slightly lower than for the 1 dB-Chebyshev.
The amplitude response is shown in Figure 7.21; note that the attenuation at 10 kHz is
−43 dB, which is somewhat better than the −40 dB of the Butterworth filter. The other
responses are shown in Figures 7.22–7.24.

7.12 Higher-Order Filters

In many cases second-order filters do not give a fast enough roll-off. As we have seen,
going from a second-order Butterworth filter to a second-order 3-dB Chebyshev filter does

Figure 7.16: Amplitude responses of fourth-order Chebyshev lowpass filter designed for 1 dB,
2 dB, and 3 dB of passband ripple. All the curves go through 0 dB at the cutoff frequency of 1 kHz.
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Figure 7.17: Amplitude response of a second-order 1 dB-Chebyshev lowpass filter (Q= 0.9565).
Cutoff frequency is 1 kHz. Attenuation at 10 kHz is −39 dB.

Figure 7.18: Phase response of a second-order 1 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz.
The phase-shift is 90° at 1.1 kHz. Upper trace is amplitude response.
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Figure 7.19: Step response of a second-order 1 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz.
There is significant overshoot of 14%, followed by undershoot of 2%.

Figure 7.20: Group delay of a second-order 1 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz. There
is now considerable peaking in the delay, reaching 50%.
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Figure 7.21: Amplitude response of a second-order 3 dB-Chebyshev lowpass filter (Q= 1.305).
Cutoff frequency is 1 kHz. Attenuation at 10 kHz is −43 dB.

Figure 7.22: Phase response of a second-order 3 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz.
The phase-shift is 90° at 0.84 kHz. Upper trace is amplitude response.
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Figure 7.23: Step response of a second-order 3 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz.
There is a serious overshoot of 28%, followed by an undershoot of 8% and continuing damped

oscillation.

Figure 7.24: Group delay of a second-order 3 dB-Chebyshev lowpass filter. 0 dB at 1.00 kHz. The
peaking is now huge at 120%; note scale change to fit it in.
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not help much; in a 1 kHz filter we gain only 3 dB more attenuation at the expense of a
3 dB peak in the passband, which is not very helpful in most circumstances.

If you want a faster roll-off as well as a maximally flat passband, then the answer is to go
to a higher order of Butterworth filter. Likewise, if you have a 1 dB-Chebyshev filter that
gives a passband ripple you either want or can put up with, but if you need a steeper roll-
off, then a higher order filter is the way to go.

The mathematical equations describing the response of a second-order filter contains the
square of frequency, and cannot be simplified, but it is a mathematical fact (which I
devoutly hope you will take on trust, because this is not the place for me to prove it) that
any third-order equation of this sort (technically, a polynomial) can be broken down into a
second-order equation multiplied by a first-order equation, which represents a second-order
filter cascaded with a first-order filter. Furthermore, it is equally a fact that any complex
equation describing a high-order filter, be it fourth, fifth, or higher, can be factorised, into a
combination of second order and (sometimes) first order equations multiplied together. This
leads directly to making a high-order filter by cascading first- and second-order filters. Thus
a fourth-order filter can be made by cascading two second-order filters, and a fifth-order
filter can be made by cascading two second-order filters and a first-order filter, and so on.

It is not compulsory to break things down as much as possible, into second and first-order
stages; it would be quite possible to make a fifth-order filter by cascading a third-order
stage with a second-order stage. However, using only second- and first-order stages is
almost always the method adopted because although it may use more amplifiers, it is the
best way to achieve minimum component sensitivities; in other words the circuits are more
tolerant of component value tolerances. There is much more on component sensitivity in the
next chapter.

One thing you cannot do is make a fifth-order filter by cascading five first-order stages; nor
can you do it by cascading one second-order stage with three first-order stages. The rules
are that an odd-order filter will be composed of a number of second-order stages and one
first-order stage, while an even-order filter will be made up solely of second-order stages.

Putting together higher-order filters of the all-pole type (that term will be explained shortly)
is actually quite straightforward if you have the information you need. It is provided here.

The order of filter stages is important. Filter textbooks usually put the stages in order of
increasing Q, so that large signals will be attenuated by earlier stages and so are less likely to
cause clipping in the high-Q stages. This policy probably derives from telecommunications
practice, where clipping is much more of a problem than a small increase in the noise floor.
However, for high-order lowpass filters at least, if noise performance is more important, then
the order should be reversed, so that the low-gain low-Q stages attenuate the higher noise
from the earlier high-Q stages.
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7.12.1 Butterworth Filters Up to Eighth-Order

Figure 7.25 shows how to make Butterworth filters up to the eighth order. All you need to
know is the cutoff frequency and the Q of each second-order stage, and the cutoff frequency
of the first order stages. This information is given in Table 7.3. You are not very likely to
need seventh- or eight-order filters in a crossover design, but if you do, then the cutoff
frequencies and Qs are given at the end of Table 7.3; both seventh- and eighth-order filters
require four stages. The stages are arranged in the conventional way, in order of increasing
Q, though as explained in the previous section this may not always be the best order for
crossover work. The parameters are given to four decimal places, though not all of this
accuracy will be needed for practical circuit design.

Table 7.3: Frequencies and Q’s for Butterworth Filters up to Eighth Order. Stages Are Arranged
in Order of Q, with the First-Order Section at the End for the Odd Order Filters

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.0000 0.7071
3 1.0000 1.0000 1.0000 n/a
4 1.0000 0.5412 1.0000 1.3065
5 1.0000 0.6180 1.0000 1.6181 1.0000 n/a
6 1.0000 0.5177 1.0000 1.7071 1.0000 1.9320
7 1.0000 0.5549 1.0000 0.8019 1.0000 2.2472 1.0000 n/a
8 1.0000 0.5098 1.0000 0.6013 1.0000 0.8999 1.0000 2.5628

Second-order
f = 1.000 kHz
Q = 0.7071

Second-order
f = 1.000 kHz
Q = 0.5412

Second-order
f = 1.000 kHz
Q = 1.3065

Second-order
f = 1.000 kHz
Q = 0.6180
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f = 1.000 kHz
Q = 0.7071
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Figure 7.25: Butterworth lowpass filters up to sixth order made from second- and first-order stages
cascaded; all stages have the same cutoff frequency of 1.00 kHz.
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Butterworth filter design is relatively easy because every stage has the same cutoff
frequency—only the Q’s vary. To design a second-order Butterworth filter that is −3 dB at
1 kHz, you use the standard second-order filter design equations (see Chapter 8) to make a
single stage with a cutoff frequency of 1 kHz and a Q of 0.7071.

For a third-order Butterworth filter you consult Table 7.3, which shows you need a second-
order stage with a cutoff frequency of 1 kHz and a Q of 1.000, followed by a first-order
stage that also has a cutoff frequency of 1 kHz.

A fourth-order Butterworth filter has a second-order stage with a cutoff frequency of 1 kHz
and a Q of 0.5412, followed by another second-order stage with a cutoff frequency of 1 kHz
and a Q of 1.3065; The Q’s are always different. The process is the same for higher-order
filters. The amplitude responses for second-, third-, and fourth-order Butterworth filters are
compared in Figure 7.26.

Table 7.3 shows that the higher the order of the filter, the wider the ranges of Q’s used in it.
It is a handy property of Butterworth filters that the maximum Q’s needed are relatively low,
and therefore do not require very precise components to achieve acceptable accuracy.

The next few diagrams (Figures 7.27 to 7.29) demonstrate just how these high-order filters
work. In Figure 7.27 the upper trace is the output of the second order stage; because its Q is
1.0 rather than 0.7071 it peaks by +1 dB just before the roll-off. When this is combined with
the slow roll-off of the first-order stage, the combined response is held up by the peak to give

Figure 7.26: Amplitude responses of second-, third-, and fourth-order Butterworth lowpass filters.
Cutoff frequency is 1.00 kHz.
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Figure 7.27: Amplitude response of second-order stage, first-order stage, and the final output for a
third-order Butterworth lowpass filter. Cutoff frequency is 1 kHz.

Figure 7.28: Amplitude response of the two second-order stages in a fourth-order Butterworth
lowpass filter. Cutoff frequency is 1 kHz.
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a maximally flat response until it falls suddenly around the cutoff frequency. This naturally
only works if the first-order cutoff frequency exactly matches the second-order cutoff
frequency; properly mismatching these will give either an unduly slow roll-off or unwanted
peaking in the passband. The Q of the second-order stage also needs to be just right to get the
requisite amount of peaking. The higher the filter order, the more precise this matching needs
to be, and the greater the demands on component accuracy.

Because we have a second-order stage cascaded with a first-order stage, the ultimate roll-off
rate is 18 dB/octave.

The fourth-order filter is made up of two second-order stages cascaded. One of these has a
relatively low Q of 0.54 while the other has a relatively high Q of 1.31. Figure 7.28 shows
that the latter gives a sharper peak in the passband than the second-order stage did in the
third-order filter, and this sharper peak is cancelled out by the other second-order stage,
which rolls off faster than a first-order stage. Because we have two second-order stages
cascaded, the ultimate roll-off rate is 24 dB/octave.

The fifth order Butterworth filter of Figure 7.29 is more complicated, being made up of
three stages. As with the fourth-order filter, there are two second-order stages, one with high
Q and the other with low Q. The peaking in the high Q stage is higher, but interacts with
the low Q stage and the first-order stage to once more give a maximally flat passband.

Figure 7.29: Amplitude response of the three stages in a fifth-order Butterworth lowpass filter.
Cutoff frequency is 1 kHz.
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7.12.2 Linkwitz–Riley Filters Up to Eighth-Order

Linkwitz–Riley filters, with Butterworth filters, are the only ones that have all stages set to
the same cutoff frequency, as shown in Table 7.4. Unlike Butterworth filters, only a few
different values of Q are used. Using the table with the stage cutoff frequencies shown will
give an amplitude response −6 dB down at the cutoff frequency; this is the “natural” cutoff
attenuation for a Linkwitz–Riley filter. If you want to use the more familiar −3 dB criterion
for cutoff, then you will need to change all the stage frequencies in Table 7.4 to 1.543.

A comparison of second-, third-, and fourth-order order filters is shown in Figure 7.30.

Table 7.4: Frequencies and Qs for Linkwitz–Riley Filters up to Eighth Order. Stages
Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the

End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.0000 0.5000
3 1.0000 0.7071 1.0000 n/a
4 1.0000 0.7071 1.0000 0.7071
5 1.0000 0.7071 1.0000 1.0000 1.0000 n/a
6 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000
7 1.0000 0.5412 1.0000 1.0000 1.0000 1.3066 1.0000 n/a
8 1.0000 0.5412 1.0000 0.5412 1.0000 1.3066 1.0000 1.3066

Figure 7.30: Amplitude response of second-, third-, and fourth-order Linkwitz–Riley lowpass filters.
Note that 1 kHz cutoff is at −6 dB.
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You will note that the fourth-order filter is made up of two cascaded Butterworth filters
with Q= 1/√2 (= 0.7071) and this is the most common arrangement for fourth-order
Linkwitz–Riley crossovers. For Linkwitz–Riley filters above fourth order, higher Q values
must be used.

7.12.3 Bessel Filters Up to Eighth-Order

Bessel filters have different cutoff frequencies as well as different Q’s for each stage in the
higher-order filters. The cutoff frequencies here are based on the amplitude response being
3 dB down at the required frequency. Thus, to design a second-order lowpass Bessel filter
that is −3 dB at 1 kHz, you use the standard second-order filter design equations in Chapter 8
to make a stage with a cutoff frequency of 1.27 kHz and a Q of 0.5773.

A comparison of second-, third-, and fourth-order order filters is shown in Figure 7.31.

Table 7.5 shows the cutoff frequencies and Q’s for each stage. These are no longer all the
same, as they were for Butterworth and Linkwitz–Riley filters so a bit more care is required.
The frequencies are normalised on 1.000, so if you want a third-order Bessel lowpass filter
with a cutoff of 1.00 kHz, then you design a second-order stage with a cutoff frequency
of 1.452 kHz and a Q of 0.691, and cascade it with a first-order section having a cutoff
frequency of 1.327 kHz. A vital point is that if you want a highpass Bessel filter with a
cutoff of 1.00 kHz for the other half of a crossover, then you must use the reciprocal of

Figure 7.31: Amplitude response of second-, third-, and fourth-order Bessel lowpass filters. Cutoff
frequency 1 kHz. Compare Butterworth filters in Figure 7.26.
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the frequency in each case, because a highpass filter is a lowpass filter mirrored along the
frequency axis, if you see what I mean. Thus, a third-order highpass Bessel filter is made up
of a second-order stage with a cutoff frequency of 1/1.452 kHz = 688.5 Hz and a Q of 0.691,
cascaded with a first-order section having a cutoff frequency of 1/1.327 kHz = 753.6 Hz. The
lowpass and highpass third-order filters are both −3 dB at 1 kHz.

7.12.4 Chebyshev Filters Up to Eighth-Order

Like Bessel filters, Chebyshev filters have different cutoff frequencies as well as different
Q’s for each stage in the higher-order filters. Once again, if you want a highpass Chebyshev
filter, then you must use the reciprocal of the frequency in each case.

The stage frequencies and Q’s for Chebyshev filters with passband ripple of 0.5, 1, 2, and
3 dB are shown in Tables 7.6 to 7.9. You can see that as the passband ripple increases (and
the steepness of roll-off also increases), higher Q’s are required. For the high-order filters,
these high Q’s are a serious problem as they require great component precision to
implement them with the required accuracy. The usual Sallen & Key and Multiple-
FeedBack filter configurations are not up to the job and more sophisticated circuitry is
necessary. It is fair to say that filters like these nowadays are avoided like the plague; if an
eighth-order 3 dB-Chebyshev filter is the answer, then you might want to look at changing
the question. If such sharp filtering is really required (and that situation is not very likely in
crossover design), then it will probably be cheaper to convert to the digital domain and use
DSP techniques, which can provide stable and accurate filtering of pretty much any kind
you can imagine.

Table 7.5: Frequencies and Qs for Bessel Lowpass Filters up to Eighth Order. For Highpass Filters
Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order

Filters Have the First-Order Section at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.2736 0.5773
3 1.4524 0.6910 1.3270 n/a
4 1.4192 0.5219 1.5912 0.8055
5 1.5611 0.5635 1.7607 0.9165 1.5069 n/a
6 1.6060 0.5103 1.6913 0.6112 1.9071 1.0234
7 1.7174 0.5324 1.8235 0.6608 2.0507 1.1262 1.6853 n/a
8 1.7837 0.5060 1.8376 0.5596 1.9591 0.7109 2.1953 1.2258
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Table 7.6: Frequencies and Qs for 0.5 dB-Chebyshev Lowpass Filters up to Eighth Order. For
Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing

Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.2313 0.8637
3 1.0689 1.7062 0.6265 n/a
4 0.5970 0.7051 1.0313 2.9406
5 0.6905 1.1778 1.0177 4.5450 0.3623 n/a
6 0.3962 0.6836 0.7681 1.8104 1.0114 6.5128
7 0.5039 1.0916 0.8227 2.5755 1.0080 8.8418 0.2562 n/a
8 0.2967 0.6766 0.5989 1.6107 0.8610 3.4657 1.0059 11.5308

Table 7.7: Frequencies and Qs for 1 dB-Chebyshev Lowpass Filters up to Eighth Order.
For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of
Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.0500 0.9565
3 0.9971 2.0176 0.4942 n/a
4 0.5286 0.7845 0.9932 3.5600
5 0.6552 1.3988 0.9941 5.5538 0.2895 n/a
6 0.3532 0.7608 0.7468 2.1977 0.9953 8.0012
7 0.4800 1.2967 0.8084 3.1554 0.9963 10.9010 0.2054 n/a
8 0.2651 0.7530 0.5838 1.9564 0.8506 4.2661 0.9971 14.2445

Table 7.8: Frequencies and Qs for 2 dB-Chebyshev Lowpass Filters up to Eighth Order. For
Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing

Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 0.9072 1.1286
3 0.9413 2.5516 0.3689 n/a
4 0.4707 0.9294 0.9637 4.5939
5 0.6270 1.7751 0.9758 7.2323 0.2183 n/a
6 0.3161 0.9016 0.7300 2.8443 0.9828 10.4616
7 0.4609 1.6464 0.7971 4.1151 0.9872 14.2802 0.1553 n/a
8 0.2377 0.8924 0.5719 2.5327 0.8425 5.5835 0.9901 18.6873
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Comparisons of second-, third-, and fourth-order order Chebyshev filters of various kinds
can be seen above in Figures 7.14 to 7.16.

7.13 More Complex Filters—Adding Zeros

All the filter types we have looked at so far can be made by plugging together second-order
and first-order lowpass or highpass stages in cascade. This is true no matter how high the
filter order. They are technically known as “all-pole filters” which basically means that they
combine different sorts of roll-off, but once it is properly begun the response stays rolled-
off; it does not come back up again. There are no deep notches in the amplitude response;
once the roll-off is established it just keeps on going down. However, filters with notches in
their stopband that plunge to the infinite depths (in theory, at least) have their uses, and
their study makes up a large proportion of filter theory.

When a faster roll-off than Butterworth is required, without the passband amplitude ripples
of the Chebyshev, one possibility is the Inverse Chebyshev, which adds a notch in the
response just outside the passband. Notches have steep and accelerating slopes as you
approach the actual notch frequency, so the roll-off is much accelerated.

Elliptical (Cauer) filters permit ripple in the passband and have notches in the response just
outside the passband, and offer even steeper roll-off slopes. They are also very economical
on hardware. Suppose you need a serious lowpass filter that must roll-off from −0.5 dB to
−66 dB in a single octave (not very likely in crossover design, but stay with me). This
would need a 13th-order Butterworth filter, or an 8th-order Chebyshev, but a 5th-order Cauer
filter can do the job, with much greater economy in components and also in power, because
less opamps are required.

In filter design the notch frequencies are known as “zeros” because they are the frequencies
at which the complex equations describing the filter response give a value of zero—in other

Table 7.9: Frequencies and Qs for 3 dB-Chebyshev Lowpass Filters up to Eighth Order.
For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of
Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 0.8414 1.3049
3 0.9160 3.0678 0.2986 n/a
4 0.4426 1.0765 0.9503 5.5770
5 0.6140 2.1380 0.9675 8.8111 0.1775 n/a
6 0.2980 1.0441 0.7224 3.4597 0.9771 12.7899
7 0.4519 1.9821 0.7920 5.0193 0.9831 17.4929 0.1265 n/a
8 0.2243 1.0337 0.5665 3.0789 0.8388 6.8251 0.9870 22.8704
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words infinite attenuation. Real filters do not have infinitely deep notches, as the depth
usually depends on component tolerances and opamp gain-bandwidths.

The design procedures for these filters are not at all straightforward, and I am simply going
to show some design examples. These can have their component values scaled in the usual
away to obtain different cutoff frequencies.

It is of course always possible to add notches to a filter response by, for example, cascading
a Butterworth filter with a notch filter placed suitably in the stopband. This is, however,
not as efficient as using Inverse Chebyshev or Cauer filters (though it is conceptually much
simpler), because in the latter the notch is properly integrated with the filter response and so
better passband flatness and sharper roll-offs are obtained.

7.13.1 Inverse Chebyshev Filters (Chebyshev Type II)

The Inverse Chebyshev filter, also known as the Chebyshev Type II filter, does not have
amplitude ripples in the passband; instead it has notches (zeros) in the stopband. Like the
Chebyshev filter, it is directed towards getting a faster roll-off than a Butterworth filter
while meeting other conditions; it offers a maximally flat passband, a moderate group delay,
and an equi-ripple stop band. The cutoff frequency is usually defined to be at the −3 dB
level, though other definitions can be used. The Inverse Chebyshev filter uses zeros so it is
not an all-pole filter. These filters are complicated to design, and it would not be a good use
of space to try and plod through the procedures here. Instead, I am presenting a finished
design which can be easily scaled for different frequencies.

Figure 7.32 shows a simple fifth-order Inverse Chebyshev filter with a cutoff frequency of
1 kHz. It is made up of two lowpass notch filters followed by a first-order lowpass filter.
The most familiar notch filter is the symmetrical sort, where the gains on either side of the
notch are the same; there are, however, also lowpass notch filters where as the frequency
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Figure 7.32: A fifth-order Inverse Chebyshev lowpass filter. Made up of two lowpass notch filters
followed by a first-order lowpass. Cutoff frequency 1 kHz.
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increases, the response dives down into the notch, but comes up again to level out at a lower
gain, and highpass notch filters where the gain levels out to be lower on the low-frequency
side of the notch. There is more on this in Chapter 9 on bandpass and notch filters.

Here the two lowpass notch filters are of the Deliyannis-Friend [11], [12] type, which
consists basically of a Multiple-FeedBack (MFB) lowpass filter with an extra signal path
via the non-inverting input that generates the notch by cancellation. It is not exactly
obvious, but these filter stages are non-inverting in the passband. The notch depth is
critically dependent on the accuracy of the ratio set by R4, R5. The complete filter has an
overall gain in the passband of +1.3 dB. The filter structure is based on an example given
by Van Valkenburg [13].

The amplitude response in Figure 7.33 shows how the first notch in the stopband, at 1.22 kHz,
is very narrow and makes the roll-off very steep indeed. However, the response naturally also
starts to come back up rapidly, and this is suppressed by the second notch (at 1.88 kHz), which
has a lower Q and is therefore broader, and buys time, so to speak, for the final first-order filter
to start bringing in a useful amount of attenuation. Each time the response comes back up it
reaches −17 dB; this is what is meant by an equi-ripple stop band. Variations on this type of
filter with non-equal stop band ripples may not be officially Inverse Chebyshev filters, but they
can be useful in specific cases.

To scale this circuit for different frequencies you can alter the capacitors, keeping C1 = C2 and
C3 = C4 and the ratios of C1, C3, and C5 the same, or you can change resistors R1, R2, R3,

Figure 7.33: The amplitude response of a fifth-order Inverse Chebyshev lowpass filter. Note how
the passband is maximally flat before the very steep roll-off. Cutoff frequency 1 kHz.
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and R6, R7, R8, and R11 keeping all their ratios the same. You can, of course, change both
capacitors and resistors to get appropriate circuit impedances. R4 and R5 can be altered but
their ratio must remain the same, and likewise with R9 and R10; remember that the accuracy of
this ratio controls notch depth. R11 and C5 can be altered as you wish, quite separately from
any other alterations to the circuit, so long as their time-constant is unchanged.

More details on the design of Inverse Chebyshev filters can be found in Van Valkenburg [14].

7.13.2 Elliptical Filters (Cauer Filters)

Elliptical filters (also called Cauer filters) are basically a combination of Chebyshev and
Inverse Chebyshev filters; amplitude ripples in the passband are accepted as the price of a
faster roll-off, and there are also one or more notches (zeros) in the stopband to steepen the
roll-off rate. They have a sharp cut off, high group delay, and the greatest stop band
attenuation. They are sometimes called complete-Chebychev filters or Zolotarev filters.

As for the Chebyshev filter, the definition of an elliptic filter cutoff frequency depends on
the passband ripple amplitude. In most filter design software any value of attenuation can be
defined as the cutoff point.

The design of elliptical filters is not simple, and even the authors of filter textbooks that are
a morass of foot-long complex equations are inclined to say things like “…it is rather
involved…” and recommend you use published tables to derive component values.
Regrettably, the use of these tables is in itself rather hard going, so here I am just going to
give one example of how these filters are put together. This can be easily scaled for
different frequencies. There is another example in Chapter 5 on notch crossovers.

The amount of passband ripple in an elliptic filter is sometimes quoted as a “reflection
coefficient” percentage ρ, which as you might imagine is a hangover from transmission-line
theory, and not in my opinion a very helpful way of putting it.

Wilhelm Cauer (June 24, 1900–April 22, 1945) was a German mathematician and scientist.
He is most noted for his work on the analysis and synthesis of electrical filters [15] and his
work marked the beginning of the field of network synthesis. He was shot dead in his garden
in Berlin-Marienfelde in Berlin by Soviet soldiers during the capture of the city in 1945.

Elliptical filters are commonly implemented by combining a notch filter with an all-pole filter
such as a Butterworth type. The notches used are not in general symmetrical notches that go
up to 0 dB either side of the central crevasse—they are usually lowpass or highpass notch
filters. A lowpass notch response starts out at 0 dB at low frequencies, plunges into the
crevasse, and then comes up again to flatten out at a lower level, often −10 dB. When
combined with an all-pole lowpass filter this gives much better high-frequency attenuation
than a symmetrical notch. Conversely, a highpass notch has a response that is 0 dB at high
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frequencies, but comes back up to around −10 dB at low frequencies. There is more on
lowpass and highpass notches in Chapter 9 on bandpass and notch filters.

Figure 7.34 shows a simple third-order elliptical filter with a cutoff frequency of 1 kHz and a
reflection coefficient of 20%. The passband ripple is therefore very small at 0.2 dB, and there
is only one notch in the stopband. The filter structure is based on an example given by
Williams and Taylor [16]. The first stage around A1 is a lowpass notch filter, made up of a
twin-T notch filter with its Q (notch sharpness) enhanced by positive feedback through C1,
the amount being fixed by R5, R6 which set the closed-loop gain of A1. C4 is added to make
a lowpass notch rather than a symmetrical notch. The output of this second-order stage is the
upper trace in Figure 7.35, and you can see it has been arranged to peak gently just before the
roll-off. When this is combined with the first-order lowpass filter R7, C5, the final response is
the third-order lower trace in Figure 7.35. The 0.2 dB ripple in the passband is just visible.
You will observe that as the frequency increases, once the drama of the notch is over the
ultimate rollo-ff slope is only 6 dB/octave, because the lowpass notch response is now flat and
so only the final first-order filter is contributing to the roll-off. This is the price you pay for
implementing a fast roll-off with a filter that is only third-order. Fourth-order filters that have
an ultimate roll-off slope of 12 dB/octave are described in Chapter 5 on notch crossovers.

To scale this circuit for different frequencies you can alter all the capacitors, keeping their ratios
to each other the same, or the resistors R1–4 and R7. You can of course change both to get
appropriate circuit impedances. R5 and R6 can be altered but their ratio must remain the same.

We have compared the roll-off of the previous filters by looking at the attenuation at 10 kHz, a
decade above the 1 kHz cutoff frequency. That is less helpful here because of the way the
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Figure 7.34: A third-order elliptical lowpass filter. Made up of a lowpass notch filter followed by a
first-order lowpass. Cutoff frequency 1 kHz.
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amplitude response comes back up at high frequencies; the response at 10 kHz is −42 dB, but in
my simulation the attenuation at the bottom of the notch (at 2.6 kHz) was about −65 dB. The
passband gain is +12.7 dB, because of the positive feedback applied to the notch network, and
in many cases this will be less than convenient. Elliptical filters can sometimes be very useful
for crossover use, for if we have an otherwise good drive unit with some nasty behaviour just
outside its intended frequency range, the notch can be dropped right on top of it.

This elliptical filter and the Inverse Chebyshev filter are the only ones in this chapter that
are not all-pole filters. More details on the design of elliptical filters can be found in
Williams and Taylor [17], and Van Valkenburg [18].

7.14 Some Lesser-Known Filter Characteristics

The filter types described above are the classic types. Their characteristics depend on
particular mathematical relationships such as Bessel functions or Chebyshev polynomials.
There is however no rule that you must restrict yourself to using the “official” filters. There
are in fact an infinite number of filter characteristics that can be used if necessary. As an
example, look at a simple second-order filter. It only has two parameters that define its
behaviour—the cutoff frequency and the Q. It is the Q that determines the filter type; we
have just seen that a Q of 0.50 gives a Linkwitz–Riley filter, a Q of 0.578 gives a Bessel
filter, a Q of 0.707 gives a Butterworth filter, a Q of 0.956 gives a 1 dB-Chebyshev filter,
and so on; we have noted that the cutoff frequencies most be scaled appropriately for a

Figure 7.35: The amplitude response of the third-order elliptical lowpass filter. The lower trace is
the final output, and the upper trace is the signal from the first stage. Cutoff frequency 1 kHz.
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given filter type. There is however nothing whatever to stop you using a Q of 0.55, 0.66, or
whatever you feel you need.

The recognised kinds of second-order filter are summarised in Table 7.10. Things become
more complicated with filters of third-order and above, where more parameters are needed
to define the filter.

7.14.1 Transitional Filters

When people talk about “transitional filters” they are most often referring to filters that are a
compromise between Bessel and Butterworth characteristics [19]. Filtershop offers
transitional filters, but it describes them as a Gaussian passband spliced together with a
Chebyshev stop band. There are an infinite number of versions of such a filter, depending
on the attenuation level at which the splicing occurs; Filtershop offers 3 dB, 6 dB, and
12 dB options. All the filters described below are all-pole filters.

7.14.2 Linear-Phase Filters

As we have seen, Bessel filters have a maximally flat group delay, avoiding the delay peak
that you get with a Butterworth filter. Discussions on filters always remark that the Bessel
alignment has a slower roll-off, but often fail to emphasise that it is a much slower roll-off.
If the requirement for a maximally flat delay is relaxed to allow equi-ripple group delay of a
specified amount, then the amplitude roll-off can be much faster. The equi-ripple group
delay characteristic is more efficient in that the group delay remains flat (within the set
limits) further into the stop band.

This is very much the same sort of compromise as in the Chebyshev filter, where the rate
of amplitude roll-off is increased by tolerating a certain amount of ripple in the passband
amplitude response. Linear-phase filters are all-pole filters.

Filters of this kind are frequently referred to as “Linear Phase” filters, but are sometimes (and
more accurately) called Butterworth–Thomson filters. For some reason, they never seem to be

Table 7.10: Frequencies and Qs for Recognised Second-Order Filter Types

Filter Type Freq Q

Linkwitz-Riley 1.578 0.5000
Bessel 1.2736 0.5773

Butterworth 1.0000 0.7071
Chebyshev 0.5 dB 1.2313 0.8637
Chebyshev 1.0 dB 1.0500 0.9565
Chebyshev 2.0 dB 0.9072 1.1286
Chebyshev 3.0 dB 0.8414 1.3049
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called Butterworth–Bessel filters, though this means exactly the same thing. The parameter
m describes the move from Thomson to Butterworth, with m = 0 meaning pure Butterworth,
and m = 1 meaning pure Bessel. Any intermediate value of m yields a valid transitional filter.
Linear-phase filters can alternatively be characterised by an angle parameter, so you can have a
Linear-phase 0.05 degree filter, or a Linear-phase 0.5 degree filter. This refers to the amount of
deviation in the filter phase characteristics caused by allowing ripples in the group delay curve.

Figure 7.36 shows the amplitude responses of Bessel, Linear-phase 0.05 degree, Linear-phase
0.5 degree, Butterworth lowpass filters. This makes it very clear how linear-phase filters
provide intermediate solutions between the Bessel and Butterworth characteristics.

The frequencies and Q’s for linear-phase filters up to the 8th order are shown in Table 7.11.

7.14.3 Gaussian Filters

A Gaussian filter is essentially is essentially a time-domain filter, optimised give no overshoot
to a step function input while minimizing the rise and fall time; this response is closely
connected to the fact that the Gaussian filter has the minimum possible group delay. Gaussian
filters come in various kinds identified by a dB suffix, such as “Gaussian-6 dB” and
“Gaussian-12 dB,” which indicate the attenuation level at which the roll-off steepens, though
the amplitude response differences between them are very small. The amplitude response is
also very similar indeed to that of a Bessel filter, as demonstrated in Figure 7.37.

Figure 7.36: The amplitude response of Bessel, Linear-phase 0.05 degree, Linear-phase 0.5 degree,
Butterworth lowpass filters. Cutoff frequency is 1 kHz in all cases.
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Gaussian filters are named after Johann Carl Friedrich Gauss (1777–1855), a German
mathematician and scientist, because their mathematical derivation stems from the same
basic equations used to derive the Gaussian distribution in statistics.

Figure 7.38 compares the step response of third-order Gaussian-12 dB and Butterworth lowpass
filters. The Gaussian output rises faster than the Butterworth but has no overshoot at all. The
Bessel step response is similar to that of the Gaussian. Gaussian filters are all-pole filters.

The frequencies and Q’s for Gaussian filters up to the 8th order are shown in Table 7.12.

Figure 7.37: The amplitude response of third-order Bessel, Gaussian-6 dB, Gaussian-12 dB, and
Butterworth lowpass filters. Cutoff frequency is 1 kHz in all cases.

Table 7.11: Frequencies and Q’s for Linear-Phase Filters Up to Eighth Order. Stages Are
Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section

at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.0000 0.6304
3 1.2622 0.9370 0.7923 n/a
4 1.3340 1.3161 0.7496 0.6074
5 1.6566 1.7545 1.0067 0.8679 0.5997 n/a
6 1.6091 2.1870 1.0741 1.1804 0.5786 0.6077
7 1.9162 2.6679 1.3704 1.5426 0.8066 0.8639 0.4721 n/a
8 1.7962 3.1146 1.3538 1.8914 0.8801 1.1660 0.4673 0.6088
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7.14.4 Legendre–Papoulis Filters

The Legendre–Papoulis filter is a monotonic all-pole filter; in other words the response is
always downwards. It is optimised for the greatest slope at the passband edge, given this
condition. It gives faster attenuation than the Butterworth characteristic, but the snag is that
the passband is not maximally flat as is the Butterworth; instead it slopes gently until the
rapid roll-off begins. This is the crucial difference. Legendre–Papoulis filters can be useful in
applications that need a steep cutoff at the passband edge but cannot tolerate passband ripples,
or in cases where a Chebyshev I filter produces too much group delay at the passband edge.

Figure 7.38: The step response of third-order Gaussian-12 dB, and Butterworth lowpass filters.
Cutoff frequency is 1 kHz.

Table 7.12: Frequencies and Q’s for Gaussian Filters Up to Eighth Order. Stages Are
Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End

with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 0.9170 0.6013
3 0.9923 0.5653 0.9452 n/a
4 0.9930 0.6362 1.0594 0.5475
5 1.0427 0.6000 1.1192 0.5370 1.0218 n/a
6 1.0580 0.6538 1.0906 0.5783 1.1728 0.5302
7 1.0958 0.6212 1.1358 0.5639 1.2215 0.5254 1.0838 n/a
8 1.1134 0.6644 1.1333 0.5994 1.1782 0.5537 1.2662 0.5219
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It is essentially a compromise between the Butterworth and the Chebyshev filters; it has the
maximum possible roll-off rate for a given filter order while maintaining a monotonic
amplitude response. Legendre–Papoulis filters are often simply called Legendre filters.

A second-order Legendre–Papoulis response is exactly the same as the Butterworth
response. With a second-order filter the only parameter you have to play with is Q, and the
highest Q that can be used without causing peaking (in which case the response would no
longer be monotonic) is the familiar 1/√2 which gives the Butterworth response.

Legendre filters are only different from Butterworth filters for third order and above. The
frequencies and Q’s for Legendre-Papoulis filters up to the 8th order are shown in Table 7.13.

The amplitude responses of third-order Legendre–Papoulis and Butterworth filters are
compared in Figure 7.39. You will note that the differences are not very great. Compared
with the Butterworth, the Legendre–Papoulis sags by 0.5 dB around 500 Hz, which may or
may not be negligible depending on your application. Once the roll-off has begun, the
Legendre–Papoulis is usefully if not dramatically superior; at 2 kHz it gives 3.7 dB more
attenuation, while at 3 kHz it gives 4.3 dB more. After that the difference is effectively
constant at 4.4 dB as the two curves must ultimately run parallel at −18 dB/octave, both
filters being third order. Legendre–Papoulis filters are all-pole filters.

The Legendre–Papoulis filter was proposed by Athanasios Papoulis in 1958 [20]. It is also
sometimes known as an “Optimum L” or just “Optimum” filter. The filter design is based
on Legendre polynomials; their French inventor, Adrien-Marie Legendre (1752–1833) was

Figure 7.39: Amplitude response of third-order Legendre and Butterworth filters. Cutoff
frequencies are 1 kHz.
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yet another mathematician who did not live to see his mathematics applied to electrical
filters.

The fact that the response is monotonic, but not maximally flat, means that Legendre–
Papoulis filters are of little use in many hi-fi applications. For example, a subsonic filter
for a phono input needs to be maximally flat, as a slow early roll-off will cause increased
RIAA errors in the low-frequency part of the audio range. However, it is possible that
Legendre–Papoulis filters may be of use in crossover design.

The step response of the Legendre–Papoulis filter is similar to that of the Butterworth.
Figure 7.40 shows that the response is slightly slower, with about the same amount

Table 7.13: Frequencies and Q’s for Legendre–Papoulis Filters Up to Eighth Order. Stages
Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section

at the End with No Q Shown

Order Freq 1 Q 1 Freq 2 Q 2 Freq 3 Q 3 Freq 4 Q 4

2 1.000 0.707
3 0.9647 1.3974 0.6200 n/a
4 0.9734 2.1008 0.6563 0.5969
5 0.9802 3.1912 0.7050 0.9082 0.4680 n/a
6 0.9846 4.2740 0.7634 1.2355 0.5002 0.570
7 0.9881 5.7310 0.8137 1.7135 0.5531 0.7919 0.3821 n/a
8 0.9903 7.1826 0.8473 2.1807 0.6187 1.0303 0.4093 0.5573

Figure 7.40: Step response of third-order Legendre and Butterworth filters.
Cutoff frequencies are 1 kHz.
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of overshoot, but after that the undershoot is significantly greater. The Legendre–Papoulis is
essentially a frequency-domain filter.

7.14.5 Synchronous Filters

Synchronous filters consist of a number of identical first-order stages in cascade. Since there
are no second-order stages the response is inevitably monotonic. The term “synchronous”
refers to the fact that all the stages have an identical cutoff frequencies, and therefore
identical time-responses; it has nothing to do with system clocks or digital data
transmission. You cannot produce a synchronous filter simply stringing together a chain of
R’s and C’s; each first-order RC stage must be isolated from the next by a buffer stage to
prevent loading and interaction effects. Figure 7.41 shows second-, third-, and fourth-order
synchronous filters made in this way. All are designed to be −3 dB at 1 kHz overall, so the
stage frequencies for the higher-order filters are increased so that the overall response passes
through this point. For example, the fourth-order filter has four stages with cutoff (‒3 dB)
frequencies of 2.303 kHz, each of which give −0.75 dB at 1 kHz; when the four stages are
used together the attenuation is therefore −3 dB at 1 kHz. The cutoff frequencies required
for second-, third-, and fourth-order synchronous filters are given in Table 7.14.
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Figure 7.41: First-, second-, third-, and fourth-order synchronous lowpass filters constructed from
repeated first-order filter sections, all designed to be −3 dB at 1 kHz.
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Figure 7.42 shows the amplitude response, which has an even slower roll-off than the
Bessel filter, because of a complete lack of internal peaking. The response differences at
frequencies below the −3 dB point are very small. It does not at present appear very likely
that synchronous filters will be useful in crossover filters as such of their very slow rate of
roll-off, but is a branch of filter technology to be aware of because they may be appropriate
for specific equalisation of drive unit roll-offs.

Looking at Figure 7.41, you can see that making high-order synchronous filters by stringing
together first-order stages uses a lot of opamps. However, a second-order stage with a Q of
0.5 is equivalent to two cascaded first-order stages, and the circuits shown in Figure 7.43
save one opamp section for a second-order filter, and two opamp sections for both third-
order filter and fourth-order synchronous filters. A second-order stage with a Q of 0.5 is

Table 7.14: Cutoff Frequencies for Synchronous Filters
That Give Cutoff at 1.000 When Stages Cascaded

Order Cutoff Frequency

1 1.0000
2 1.5568
3 1.9649
4 2.3033

Figure 7.42: Amplitude response of second-, third-, and fourth-order synchronous lowpass filters,
all designed to be −3 dB at 1 kHz.
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also equivalent to a second-order Linkwitz–Riley filter, but this does not hold for third-order
and higher filters.

It is not possible to replace three cascaded first-order stages with a second-order stage of any
Q because the ultimate slope is 12 dB/octave instead of 18 dB/octave. It might be possible to
replace them with a third-order filter of suitably low Q but the parts saving would be less.

7.15 Other Filter Characteristics

We have just looked at a number of obscure filter types; this however by no means
exhausts the recognised filter characteristics that exist.

Ultraspherical filters [21] are based on ultraspherical polynomials. How, you may inquire,
can something be more spherical than spherical? To answer that in a suitably short space is
quite beyond my powers, but rest assured that the whole business is solidly rooted in higher
mathematics. Ultraspherical polynomials are sometimes called Gegenbauer polynomials,
after their inventor, and inhabit a fairly elevated area of mathematics. They are
generalisations of Legendre polynomials and Chebyshev polynomials, and are special cases
of Jacobi polynomials. The response of an ultraspherical filter is set by four parameters; the
filter order and the cutoff frequency as usual, plus ε which controls the attenuation at the
cutoff frequency, and α which controls the shape of the amplitude response. Ultraspherical
filters are a class of filters rather than a distinct type, and they include Butterworth,
Legendre, and Chebyshev filters as special cases; for example α =∞ gives a Butterworth
filter, while α =−0.5 gives a Chebyshev.

There are also inverse ultraspherical filters, in the same way that there are inverse
Chebyshev filters [22].

Input
R1

1022.3R
C1

200nF

R2
A1
NE5532P

+
− Out1022.3R

C2
100nF

(a) Second-order synchronous

+
−

Input
R1

810R
C1

100nF

R2
A1
NE5532P

Out810R
C2

100nF

R3

810R

C3
100nF

(b) Third-order synchronous

Input
R1

691R
C1

100nF

R2
A1
NE5532P

Out691R
C2

100nF

R3

691R

C3
100nF

R4
A1
NE5532P

691R

C4
100nF

+
−

+
−

(c) Fourth-order synchronous

Figure 7.43: A more efficient way to make higher-order synchronous lowpass filters using second-
order filters with Q= 0.5. All are −3 dB at 1 kHz.
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Another rare bird is the Halpern filter [23]. This is related to the Legendre–Papoulis filter
in that it rolls off faster than a Butterworth but slower than a Chebyshev. Likewise, the
Halpern filter has a monotonic passband without being maximally flat. The peak group
delay near the cutoff is significantly lower than that of a Chebyshev filter but not as good
as Butterworth or Legendre–Papoulis.

I don’t pretend that the information in this final section is going to be digestible to anyone
without a quite advanced knowledge of mathematics, but do not fret. There is at present
nothing to suggest that these filter types have anything to offer crossover design that is not
already covered by the better-known filter types dealt with in detail above, so there seems
no point in going further into the rather heavy mathematics required.
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CHAPTER 8

Designing Lowpass and Highpass Filters

8.1 Designing Real Filters

In Chapter 7 we saw how just about any filter you can dream up can be implemented by
cascading first- and second-order filter blocks. In this chapter we look at the best ways to
turn those theoretical blocks into reality. There are many ways to do this, but for the
moderate Q values normally required, the two simplest and the best methods are the well-
known Sallen and Key configuration and the multiple-feedback (MFB) configuration.

All the filters in this chapter have been designed with a cutoff frequency of 1 kHz, which allows
quick comparisons and quick scaling of the examples to get the filter frequency you want. The
use of the term “cutoff” might be taken to imply that the filter has a response that drops steeply;
this is in general not the case, and even the most gently sloping filter has a “cutoff” frequency.
For the Butterworth filter the cutoff frequency is the point at which the response has fallen by
3 dB, that is, to 1/√2 of its passband value. Other filters such as the Chebyshev have different
definitions of cutoff. The term “transition frequency” means the same thing.

In the examples shown here, the capacitor values have been chosen to put the resistor values
mostly in the range 700Ω – 1 kΩ, in order to minimise Johnson noise without putting excessive
loading on opamps that will increase distortion. Most examples are of the lowpass version.

8.2 Component Sensitivity

The accuracy of the response of a filter obviously depends on the precision of the
components with which it is made. What is less obvious is that in some cases the response
is affected very greatly by small changes in certain components. This sort of “sensitivity”
has nothing whatever to do with the sensitivity of an equipment input, as in “Sensitivity:
500 mV rms for full output.” It is unfortunate that two different concepts have ended up
with the same name, but no one is going to change it now.

As described in Chapter 7, high-order filters are usually made up from cascaded second-
order sections, plus a first-order section for the odd-order versions. These sections usually
have different Qs, and the higher the Q, the greater the component sensitivity, and the more
the stage amplifies component errors. Precision components are expensive, and so there is a
strong incentive to use the lowest Qs possible for a filter design.

The Design of Active Crossovers
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While cascaded second-order sections are the norm, identical filters can be made up from
higher-order sections, so that a sixth-order filter could be redesigned as two cascaded third-
order sections instead of three second-order sections. This is rarely if ever done, and as you
might imagine there are excellent reasons for this. A third-order section has greater
component sensitivity, and any saving made in the number of opamps is likely to be less
than the extra cost of more precise components to get a filter of the same accuracy as the
original. It is also possible to make a fourth-order filter in a single stage, but the component
sensitivity is predictably even worse.

Component sensitivity may appear to have a somewhat academic flavour about it, but in
fact, keeping it as low as possible is crucial to making an economic design, as the cost of
components, especially capacitors, increases very steeply with increased accuracy. The
alternative is some sort of cut-and-try in production, which is also going to be costly and
time-consuming, and will require accurate measuring equipment.

Component sensitivity is expressed as a ratio. There is a different figure for every
component and how it affects every parameter of the stage. Thus, every component in a
second-order filter has two sensitivities; one for its effect on cutoff frequency and one for its
effect on Q. Thus if a certain resistor R in a filter has a sensitivity with respect to cutoff
frequency of −0.5, that means that a 1% increase in the component will cause a −0.5%
reduction in the cutoff frequency. This is the usual frequency sensitivity in second-order
Sallen and Key filters.

Component sensitivities are dealt with in the relevant section for each type of filter described.

8.3 First-Order Lowpass and Highpass Filters

First-order filters are the simplest possible; they are completely defined by one parameter;
the cutoff frequency.

The usual first-order filter is just a resistor and capacitor. Figure 8.1a shows the normal
(non-inverting) lowpass version in all its beautiful simplicity. To give the calculated
first-order response it must be driven from a very low impedance and see a very high
impedance looking into the next stage. It is frequently driven from an opamp output, which
provides the low driving impedance, but often requires a unity-gain stage to buffer its
output, as shown.

Sometimes it is necessary to invert the phase of the audio to correct an inversion in a
previous stage. This can be handily combined with a shunt-feedback first-order lowpass
filter as shown in Figure 8.1b. This stage inherently provides a low output impedance so
there are no loading effects from circuitry downstream. The signal level can be adjusted
either up or down by giving R1 and R2 the required ratio.
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Here are the design and analysis equations for the first-order filters. The design equations
give the component values required for given cutoff frequency; the analysis equations give
the cutoff frequency when the existing component values are plugged in. Analysis equations
are useful for diagnosing why a filter is not doing what you planned.

For both versions the design equation is:

R = 1
2πf0C

ðchooseCÞ, (8.1)

and the analysis equation is:

f0 =
1

2πRC
(8.2)

For the inverting lowpass version you must use R2 and C1 in the equations. The passband
gain A = R2/R1.

Highpass versions of these filters are shown in Figure 8.1c and 5.1d. The design and
analysis equations are the same, but for the inverting highpass you must use R1 and C1 in
the equations. In the case of Figure 8.1d, it may be advisable to put a small (say, 100 pF)
capacitor across R2 to ensure HF stability.

There are no issues with component sensitivities in a first-order filter; the cutoff frequency
is inversely proportional to the product of R and C so the sensitivity for either component
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Figure 8.1: First-order filters: (a) non-inverting lowpass; (b) inverting lowpass;
(c) non-inverting highpass; (d) inverting highpass. Cutoff frequency (‒3 dB) is

1 kHz in all cases.
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is always 1.0. In other words, a change of 1% in either component will give a 1% change
in the cutoff frequency.

8.4 Second-Order Filters

Second-order filters are much more versatile. They are defined by two parameters; the cutoff
frequency and the Q, and as described in Chapter 7, higher-order filters are usually made by
cascading second-order stages with carefully-chosen cutoff frequencies and the Qs. Odd-
order filters require a first-order stage as well.

There are many ways to make a second-order filter. The simplest and most popular are the
well-known Sallen and Key configuration, and the Multiple FeedBack (MFB) filters. The
latter are better-known in their bandpass form, but can be configured for either lowpass or
highpass operation. MFB filters give a phase-inversion so can only be used in pairs (e.g., in
a Linkwitz-Riley 4th-order configuration) or in conjunction with another stage that re-inverts
the signal to get it back in phase.

These two filter types are not suitable for producing high Q characteristics, as for Q’s above
about 3, such as might be needed in a high-order Chebyshev filter, they begin to show
excessive component sensitivities, and also may start to be affected by the finite gain and
bandwidth of the opamps involved. For higher Qs more complex multi-opamp circuit
configurations are used that do not suffer from these problems. Having said that, high Q
filters are not normally required in crossover design.

8.5 Sallen & Key Second-Order Filters

The Sallen and Key filter configuration was introduced by R.P. Sallen and E. L. Key of
the MIT Lincoln Laboratory in 1955 [1]. It became popular as it is relatively easy to
design and the only active element required is a unity-gain buffer, so in pre-opamp days
it could be effectively implemented with a simple emitter-follower, and before that with a
cathode-follower.

An example of a second-order low-pass Sallen & Key filter is shown in Figure 8.2. Its
operation is very simple; at low frequencies the capacitors are effectively open-circuit so it
acts as a simple voltage-follower. At higher frequencies C2 begins to shunt the signal to
ground, and this reduces the output of the follower, causing the “bootstrapping” of C1 to be
less effective, and so causing it to also shunt signal away. Hence there are two roll-off
mechanisms working at once and we get the familiar 12 dB/octave filter slope.

There are two basic ways to control the Q of a second-order lowpass Sallen and Key
stage. In the first, the two capacitors are made unequal, and the greater the ratio between
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them the higher the Q, and a unity-gain buffer is used. In the second method, the two
capacitors are made equal (which will usually be cheaper as well as more convenient) and
Q is fixed by setting the gain of the amplifier to a value greater than one. The first
method usually gives superior performance, as filter gain is often not wanted in a
crossover, but may be more costly. The Q of a Sallen & Key filter can also be controlled
by using non-equal resistors in the lowpass case, or non-equal capacitors in the highpass
case, but this is unusual.

There are likewise two methods of Q-control for a second-order highpass Sallen and Key
stage, but in this case it is the two resistors that are being set in a ratio, or held equal while
the amplifier gain is altered.

While the basic Sallen & Key configuration is a simple and easy to design, it is actually
extremely versatile, as you will appreciate from the many different versions in this chapter.
It is even possible to design bandpass Sallen & Key filters, though this chapter is confined
to lowpass and highpass versions.

The lowpass version of the Sallen & Key configuration in its many variants is examined
here first, followed by the highpass version.

8.6 Sallen & Key Lowpass Filter Components

A fundamental difficulty with lowpass Sallen & Key filters is that the resistor values are
usually all the same, but in general the capacitors are awkward values. This is the wrong
way round from the designer’s point of view; using two resistors in parallel or series to get
the exact required value— or at any rate close enough to it— is cheap. Capacitors however
are relatively expensive, and paralleling them to get a given value is therefore a relatively
costly process. Putting capacitors in series to get the right value is not sensible because you
will have to use bigger and more expensive capacitors. A 110 nF capacitance could be
obtained by putting two 220 nF parts in series, but the alternative of 100 nF plus 10 nF in
parallel is going to be half the cost or less, and also occupy less PCB area. The relatively
precise capacitors required for accurate crossover filters do not come cheap, especially if the
polypropylene type is chosen to prevent capacitor distortion; they are almost certainly the
most expensive components on the PCB, and in a sophisticated crossover there may be a lot
of them. For this reason I have gone to some trouble to present lowpass filter configurations
that keep as many capacitors as possible the same value; the more of one value you buy,
the cheaper they are.

Highpass filters do not have this problem. The capacitors are usually all the same value, and
it is the resistors that come in awkward values, and paralleling them is cheap and takes up
little PCB space.
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8.7 Sallen & Key Second-Order Lowpass: Unity Gain

Figure 8.2 shows a very familiar circuit—a second-order lowpass Sallen & Key filter with
a cutoff (−3 dB) frequency of 1 kHz and a Q of 0.707, giving a maximally flat Butterworth
response. The pleasingly simple design equations for cutoff (−3 dB) frequency f0 and Q
are given below. Other recognised second-order responses can be designed by taking the
Q values from Table 8.1.

In this chapter the component values are exact, just as they came out of the calculations,
with no consideration given to preferred values or other component availability factors;
these are dealt with later in Chapter 12. However it is worth pointing out now that in
Figure 8.2, C1 would have to be made up of two 100 nF capacitors in parallel.

The main difference in the circuit that you will notice from textbook filters is that the
resistor values are rather low and the capacitor values correspondingly high. This is an
example of low-impedance design, where low resistor values minimise Johnson noise
and reduce the effect of the opamp current noise and common-mode distortion. The
measured noise output is −117.4 dBu. This is after correction by subtracting the test gear
noise floor.

Table 8.1: Second-Order Sallen and Key Unity-Gain Lowpass Qs and
Capacitor Ratios for Various Filter Types

Type FSF Q C1/C2 Ratio

Linkwitz–Riley 1.578 0.500 1.000
Bessel 1.274 0.578 1.336

Linear-Phase 0.05deg 1.210 0.600 1.440
Linear-Phase 0.5deg 1.107 0.640 1.638

Butterworth 1.000 0.707 2.000
0.5 dB-Chebyshev 1.231 0.864 2.986
1.0 dB-Chebyshev 1.050 0.956 3.663
2.0 dB-Chebyshev 0.907 1.129 5.098
3.0 dB-Chebyshev 0.841 1.305 6.812

R1

1125R

R2 A1
+
−1125R Out

NE5532P

Input

C1
200nF

C2
100nF

Figure 8.2: The classic second-order low-pass unity-gain Sallen & Key filter.
Cutoff frequency is 1 kHz and Q= 0.7071 for a Butterworth response.
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Here are the design and analysis equations for the general unity-gain Sallen & Key lowpass
filter; in other words they cover all characteristics, Butterworth, Bessel, etc. The design
equations give the component values required for given cutoff frequency and Q; the analysis
equations give the cutoff frequency and Q when the existing component values are fed in.

Design equations: Begin by choosing a value for C2.

R = 1
2Qð2πf0ÞC2

, (8.3)

C1 = 4Q2C2 (8.4)

Analysis equations:

f0 =
1

2πR
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p , (8.5)

Q = 1
2

ffiffiffiffiffiffi
C1

C2

r
(8.6)

Table 8.1 gives the Qs and capacitor ratios required for the well-known second-order filter
characteristics.

It is important to remember that a Q of 1 does not give the maximally flat Butterworth
response; the value required is 1/√2, that is, 0.7071. The lowest Q you are likely to
encounter are Sallen & Key filters with a Q of 0.5 sometimes used in second-order
Linkwitz–Riley crossovers, but these are not favoured because the 12 dB/octave roll-off of
the highpass filter is not steep enough to reduce the excursion of a driver when a flat
frequency response is obtained, nor to attenuate drive-unit response irregularities [2].

The input impedance of this circuit is of importance because if it loads the previous stage
excessively then the distortion of that stage will suffer. The input impedance is high at low
frequencies where the series impedance of the shunt capacitors is high. It then falls with
increasing frequency, reaching 2.26 kΩ at the 1 kHz cutoff frequency if we use the
component values in Figure 8.2. Above this frequency it falls further, finally levelling out
around 4 kHz at 1.125 kΩ, the value of R1. This is because at high frequencies there is no
significant signal at the opamp non-inverting input, so C1 is effectively connected to ground
at one end; its impedance is now very low so the input impedance of the filter looks as if
R1 was connected directly to ground at its inner terminal.

Another consideration when contemplating opamp loading and distortion is the amount of
current that the filter opamp must deliver into the capacitor C1. This is significant. If the
circuit of Figure 8.2 is driven with 10 Vrms, the current through C1 is very low at LF, and
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then peaks gently at 1.9 mA rms at 650 Hz. The C1 current then reverses direction as
frequency increases and C1 is required to absorb most of the input current, reaching
−8.9 mA at 20 kHz. This sounds alarming, but at these frequencies the filter output is very
low, (about 32 dB down) so the effect on the opamp is not as bad as it sounds.

Sallen & Key lowpass filters have a lurking problem. When they are implemented with opamps,
the response does not carry on falling forever at the filter slope—instead it reaches a minimum
and starts to come back up at 6 dB/octave. This is because the filter action relies on C1 seeing a
low impedance to ground, and the impedance of the opamp output rises with frequency due to
falling open-loop gain and hence falling negative feedback. When the circuit of Figure 8.2 is
built using a TL072, the maximum attenuation is −57 dB at 21 kHz, rising again and flattening
out at −15 dB at 5MHz. More capable opamps such as the 5532 give much better results,
though the effect is still present. While the rising response can be countered by adding a
suitable first-order RC filter, (preferably in front of the filter to reduce possible intermodulation)
Sallen & Key filters should not be used to reject frequencies well above the audio band; a
lowpass version of the multiple-feedback filter is preferred.

8.8 Sallen & Key Second-Order Lowpass Unity-Gain:
Component Sensitivity

The unity-gain Sallen and Key filter is noted for having low component sensitivities, as shown
in Table 8.2. The sensitivities with respect to cutoff frequency are all −0.5, which makes
excellent sense as if we wanted to deliberately reduce the cutoff frequency by 1%, we would,
from the design equation given above, increase either both resistors or both capacitors by 1%.

Note that the resistor values have sensitivities of zero with respect to Q. As the design
equations show, Q depends only on the capacitor ratio.

8.9 Sallen & Key Second-Order Lowpass: Equal-Capacitor

In this version of the Sallen & Key configuration, the two capacitors are made equal and the
Q is controlled by increasing the gain of the amplifier above unity; this avoids difficulties
with awkward capacitor ratios. The gain must not exceed three or the filter becomes unstable

Table 8.2: Second-Order Sallen & Key Unity-Gain Lowpass
Component Sensitivities

Component Cutoff Frequency Q

R1 −0.5 0
R2 −0.5 0
C1 −0.5 0.5
C2 −0.5 −0.5
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and oscillates; this is shown in the analysis equation for Q, (Equation 8.11) where the bottom
of the fraction becomes zero when A = 3, implying infinite Q.

The circuit is shown in Figure 8.3, with Q set to 0.7071 to give a second-order Butterworth
response. The unity-gain buffer is now replaced with a voltage gain stage, and if the gain set
by R3 and R4 is 1.586 times (+4.00 dB) for a Q of 0.707, then this allows C1 and C2 to be
the same value. The gain introduced here is often an embarrassment in crossover designs, but
there is another and more subtle snag to this neat-looking circuit; the component sensitivity is
worse; this issue is dealt with in the next section. An equal-resistor-value highpass filter can
be made in exactly the same way; this is also described later in this chapter.

An advantage of this circuit is that its filter characteristic can be smoothly altered from
Linkwitz–Riley through to 3 dB-Chebyshev, passing through Bessel, Linear-phase,
Butterworth, and all the lower-ripple Chebyshevs on the way, by making R3, R4 a variable
potentiometer. Unfortunately the passband gain varies at the same time, though this could be
solved by taking the output from the junction of R3 and R4; there will however still be a
headroom issue due to the higher signal level at the opamp output.

Here are the design and analysis equations for the equal-C Sallen & Key filter. The design
equations give the component values required for given cutoff frequency and Q; the analysis
equations give the cutoff frequency and Q when the existing component values entered. The
Qs and gains for various filter types are summarised in Table 8.3.

Design equations: Choose a value for C (= C1 = C2)

R1 = R2 =
1

ð2πf0ÞC , (8.7)

Passband gainA = 3− 1
Q

(8.8)

Then choose R3, R4 for required passband gain for the chosen Q
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Figure 8.3: Equal-C second-order low-pass Butterworth filter with a cutoff frequency of 1 KHz.
Gain must be 1.586 times for Butterworth maximally flat response. (Q= 0.7071).
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Analysis equations:

f0 =
1

2πRC
ðR’s and C’s are both equalÞ (8.9)

Passband gain A = R3+R4
R4

, (8.10)

Q = 1
3−A

(8.11)

Note that for the 3.0 dB Chebyshev case the high Q required means we are getting
uncomfortably close to the gain limit of three times.

The Chebyshev filters have a peak in their response which it may be possible to utilise for
equalisation purposes. The height and frequency of the peak is, however, fixed for a given
Q, making it a very inflexible method. This sort of approach can make modifications to deal
with driver changes, etc. problematic, compared with using a dedicated equalisation stage; it
is very helpful if you can say “this modifies this.” It is, however, economical and since less
stages are required, noise and distortion may be somewhat improved.

8.10 Sallen & Key Second-Order Lowpass Equal-C:
Component Sensitivity

The equal-C Sallen and Key configuration has sensitivities for cutoff frequency that are the
same as for the unity-gain version, but it has a more complicated set of sensitivities for Q,
with their actual value depending on the Q value chosen, as shown in Table 8.4.

Table 8.5 shows how the sensitivity for Q varies with the Q value chosen. For Q = 0.7071
(1/√2), which is the most popular value in crossover design, the capacitor sensitivities for Q
are almost twice the 0.5 of the unity-gain version (compare Table 8.2 above). It may be a
tricky decision as to whether the convenience of having equal capacitors makes up for the
fact that they need to be twice as accurate for the same precision of response.

Table 8.3: Second-Order Sallen and Key Equal-C Lowpass:
Qs and Gains for Various Filter Types

Type FSF Q Gain A

Linkwitz–Riley 1.578 0.500 1.000
Bessel 1.274 0.578 1.270

Linear-Phase 0.05deg 1.210 0.600 1.333
Linear-Phase 0.5deg 1.107 0.640 1.437

Butterworth 1.000 0.707 1.586
0.5 dB-Chebyshev 1.231 0.864 1.842
1.0 dB-Chebyshev 1.050 0.956 1.954
2.0 dB-Chebyshev 0.907 1.129 2.114
3.0 dB-Chebyshev 0.841 1.305 2.234
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For Q = 2, the sensitivities become significantly greater. If you could get away with 5%
capacitors for Q = 0.7071, now you will need 1% to get the same precision, and they may
be significantly more expensive. The Linkwitz–Riley filter has the lowest Q and so the
lowest sensitivities.

If you tried to generate a Q of 8, which is the sort of value that can turn up in high-order
elliptical filters, things are dire indeed, with sensitivities of 15 or more. If you had 5%
capacitors for Q = 0.7071, you now will need 0.3% to get the same precision, and they will
be very expensive, if indeed they can be obtained at all.

If you do need this sort of Q, there are multiple opamp configurations which work much
more dependably.

8.11 Sallen & Key Second-Order Butterworth Lowpass:
Defined Gains

We saw in the previous section that we could select convenient capacitor values for the
lowpass filter by using a particular gain in the filter. Looking at it another way, we can
have whatever gain we want, and whatever Q we want, by altering the capacitor values. As
I have said several times, gain in a filter is often unwanted, but there are occasions when a

Table 8.4: Second-Order Sallen & Key Equal-C Lowpass
Component Sensitivities (after Van Valkenburg)

Component
Cutoff Frequency

Sensitivity Q Sensitivity

R1 −0.5 −0.5 + Q
R2 −0.5 0.5−Q
C1 −0.5 −0.5 + Q
C2 −0.5 0.5− 2Q
R3 0 2Q− 1
R4 0 −(2Q− 1)

Table 8.5: Second-Order Sallen & Key Equal-C Lowpass
Component Sensitivities for 3 Specific Q’s (after Van Valkenburg)

Component
Q Sensitivity
(Q= 0.7071)

Q Sensitivity
(Q= 2)

Q Sensitivity
(Q= 8)

R1 0.207 1.5 7.5
R2 −0.207 −1.5 −7.5
C1 0.914 2.5 15.5
C2 −0.914 −2.5 −15.5
R3 −1.00 −5.00 −15.00
R4 1.00 5.00 15.00
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defined amount of gain is wanted, as in the HF path of the crossover design example in
Chapter 19, and building it into a filter will save an amplifier stage and reduce cost, while
possibly also reducing noise and distortion as the signal has gone through one less stage.
On the other hand, distortion may increase somewhat because the filter stage giving the gain
has less negative feedback; the outcome depends on the opamp types used and the exact
circuit conditions.

It would take up an enormous amount of space to tabulate all the combinations of Q and
gain, so I will concentrate on the ever-useful Butterworth filter. The exact resistor values
required for gains from 0 to +8 dB are shown in Figure 8.4, and summarised in Table 8.6,
which also includes the standard cases of unity gain and of equal capacitors. In the latter
case the gain required is extremely close to +4 dB. All the filters have a 1 kHz cutoff
frequency, and resistors set to 1 kΩ; other frequencies can be obtained by scaling the
component values. It is assumed that R4 in the gain network is fixed at 1 kΩ, though in the
higher-gain cases it would be advisable to reduce this to lower the impedance of the gain-
determining network and so minimise noise.

There is no obvious reason why higher gains than this could not be obtained. The gain limit
of 3 times given in the section just above on equal-capacitor lowpass filters does not apply
here because we are adjusting the capacitor values to keep the Q constant at 0.707 instead
of letting it shoot off to infinity. There is however the consideration that reducing the
negative feedback factor of the opamp will worsen the distortion performance.

Similar design data for second-order Butterworth Sallen & Key highpass filters is given in
the section below on highpass filters. Not surprisingly, the ratios between the capacitors are
exactly the same as the ratios of the resistors in the highpass case.

8.12 Sallen & Key Second-Order Lowpass: Non-Equal Resistors

In lowpass Sallen and Key filters the resistors are almost always made equal. There is no
absolute requirement that this be so—perfectly respectable filters can be made with non-
equal resistors, but as you might imagine this somewhat complicates the calculations, and it
seems as if there is little to be gained by doing it.

I did think at one point it might be possible to make useful second-order filters with equal
capacitor values combined with unity-gain by choosing non-equal resistors, but this is
regrettably not true. With equal capacitors and unity gain the maximum Q obtainable is 0.5
when the resistors are equal; this is useful for second-order Linkwitz–Riley filters but for no
other type. As soon as the resistors are made non-equal in either direction the Q falls below 0.5.

Non-equal resistors are, however, useful for third- and higher-order filters constructed as a
single stage because they allow all the capacitors to be the same value. There is more on
this below.
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Figure 8.4: Low-pass Butterworth 1kHz S & K filters with defined passband gains from 0 to +8 dB.
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8.13 Sallen & Key Third-Order Lowpass in a Single Stage

So far we have created first- and second-order responses by using a single stage containing
a single op-amp. It is also possible to create third- and fourth-order responses in a single
stage, though I should warn at once that the component sensitivities are worse.

Figure 8.5 shows third-order Butterworth lowpass Sallen & Key filters implemented as
single stages. As for the second-order stages, this can be done in two different ways; with a
unity-gain buffer or by using voltage amplification. By altering the capacitor ratios one can
obtain any third-order characteristic with any gain. Figure 8.5a shows a unity-gain lowpass
filter; starting with R = 1 kΩ, we find that there are no simple capacitor ratios, and C2 is
inconveniently big at 562 nF, more than twice the size of C1. Figure 8.5b shows an
alternative circuit with a gain of 1.5 times (there is nothing magical about this figure),
which gives the same Butterworth response as Figure 8.5a. As usual, this gain may be an
embarrassment rather than a help in a crossover filter.

There are no simple design equations for this sort of single-stage filter; and the values given
are the result of some fairly serious mathematics which I am not going to inflict on you.
The practical way to use these filters, and also the more complex ones that follow, is to take
one of the examples given in this section and scale the resistor and capacitor values to get
the cutoff frequency you want, bearing in mind that the resistor values must not be too high
(or there will be excess noise) nor too low (because there will be excess distortion due to
unduly heavy opamp loading). There is more guidance on this issue in Chapter 13 on the
use of opamps.

The interesting thing about Figure 8.5b is that by using a gain of 1.5 times, we find that C2 is
now smaller than C1, and a much more manageable 188.4 nF. This led me to ponder that there
must be an intermediate value of gain that would give equal values for C1 and C2; this would

Table 8.6: Component Values for Defined Gains in a Butterworth Second-Order S&K
Lowpass Filter

Gain Gain C1 C2 C1/C2 Ratio R3 R4
dB Times nF nF Times Ohms Ohms

0.00 1.000 225.1 112.4 2.000 n/a n/a
+1.00 1.122 203.1 124.7 1.628 122 1000
+2.00 1.259 185.4 136.6 1.357 259 1000
+3.00 1.412 171.5 147.7 1.161 412 1000
+4.00 1.585 159.5 158.7 1.004 585 1000
+4.01 1.586 159.1 159.1 1.000 586 1000
+5.00 1.778 148.6 170.4 0.871 778 1000
+6.00 2.000 139.1 182.1 0.764 1000 1000
+7.00 2.238 130.8 193.6 0.675 1238 1000
+8.00 2.512 123.2 205.6 0.599 1513 1000
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Figure 8.5: Third-order Sallen & Key lowpass Butterworth filter implemented as a single stage; (a) unity-gain;
(b) with gain= 1.5; (c) equal-C with gain= 1.26; (d) equal-C with preferred values,

gain= 1.26 cutoff frequency 1 kHz for all.
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be very convenient. A good deal more mathematics leads to Figure 8.4c, where a gain of 1.26
times yields values for C1 and C2 that are very close to equality. Figure 8.5d shows the circuit
with R and C values scaled to give C1 = C2 = 220 nF. By happy coincidence R1 = R2 comes
out at the E24 value of 1.1k, and gives a very accurate Butterworth response. To the best of my
knowledge this way of using identical capacitors in a third-order single-stage filter is a new idea.

Since there are no more degrees of freedom to explore, we are in general stuck with an
awkward value for C3; here, by happy coincidence again, it comes out exactly as an E24
value. Capacitor series with E24 values are however not common, so we would use two E6
capacitors in parallel thus: 47 nF + 15 nF = 62 nF; yet another happy coincidence. I’m
starting to think there is something spooky about this circuit.

Note that it is the two largest capacitors we have made equal and preferred values, leaving
the much smaller C3 to be made up of a parallel combination; the smaller capacitors
required to do this will be significantly cheaper.

I warned you that the component sensitivities would be worse, and the living proof is in
Table 8.7 and Table 8.8.

The same process can be used to generate any third-order filter characteristic with equal-C values
by choosing the correct gain. Figure 8.6 shows two examples. Figure 8.6a shows a unity-gain

Table 8.7: Third-Order Butterworth Sallen & Key Single-Stage
(Unity-Gain) Lowpass Component Sensitivities

Component Cutoff Frequency Q

R1 0.9974
R2 0.9994
R3 1.2180
C1 0.9943
C2 1.1098
C3 1.3445

Table 8.8: Third-Order Butterworth Sallen & Key Equal-C Single-Stage
(Gain= 1.26) Lowpass Component Sensitivities

Component Cutoff Frequency Q

R1 0.9979
R2 0.9984
R3 1.3357
C1 0.9946
C2 1.0050
C3 1.7646
R4 0.9200
R5 0.9186
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third-order Bessel filter, and Figure 8.6b a third-order Bessel filter with two equal capacitors.
Figures 8.6c and Figure 8.6d show the same two variations for a 1 dB-Chebyshev filter.

Table 8.9 shows the ratio between the two equal capacitors C1, C2 and the remaining
capacitor C3, and the gain A required for a wider range of filter types.

In every case in Table 8.9 the worst sensitivity for frequency is shown by C3. The values
are tabulated in the last column, where it can be seen that as expected, the response
demanding the highest Q has the worst sensitivity, and that this is noticeably worse than for
the normal method of making a third-order filter by cascading suitable second-order and
first-order filters, as indicated earlier. For the Butterworth response, the worst capacitor
sensitivity for frequency is 1.765 rather than the 0.914 we saw for an equal-C second-order
filter; almost twice as bad. This is the sort of thing you must expect when higher-order
filters are implemented in a single stage.

This means that this approach is not very suitable for precise crossover filters, but it is not
without value. There are some applications, such as subsonic or ultrasonic filtering, where a
very accurate amplitude response is not essential. A third-order filter ensures there is very little
roll-off in the passband, so minor variations in it are of negligible importance. A good example
of the method is its use in the combined subsonic-ultrasonic filter described later in this chapter.

8.14 Sallen & Key Third-Order Lowpass in a Single Stage:
Non-Equal Resistors

Earlier in this chapter we noted that there was little to be gained by using non-equal resistor
values in a second-order Sallen & Key stage. However, it can be useful in a third-order
stage. As we just saw, two of the capacitors in such a stage can be made equal by suitable
choice of the amplifier gain. If we allow non-equal resistors, the extra degrees of freedom
allow us to design third-order stages with three equal capacitors. Figure 8.7 shows

Table 8.9: Capacitor Ratios and Gains Required for Equal-C
Third-Order Single-Stage Filters

Type C1/C3 Ratio Gain A
C3 Sensitivity

for Freq

Linkwitz–Riley 0.326 1.16 1.377
Bessel 0.314 1.13 1.339

Linear-Phase 5%
delay ripple

0.210 1.14 1.544

Butterworth 0.282 126 1.765
0.5 dB-Chebyshev 0.157 1.22 2.453
1.0 dB-Chebyshev 0.126 1.19 2.682
2.0 dB-Chebyshev 0.0949 1.15 3.072
3.0 dB-Chebyshev 0.0633 1.123 3.331
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Butterworth and Bessel versions; note that the required amplifier gain required is relatively
high at 2.2 times (+6.8 dB), which may be inconvenient in crossover design. Chebyshev
filters of this type can also be designed.

Once again there are no manageable design equations, and you should scale the component
values given, which are as always for a 1 kHz cutoff, to get the filter you want.

Figure 8.7 also shows that the capacitor values are in general lower than for the previous
filters—150 and 100 nF instead of 220 nF. This could give a significant saving when buying
close-tolerance capacitors; another cost benefit is that three, and three only, capacitors are
required, as it is never necessary to parallel components to achieve awkward capacitance
values. Note that the resistor values range over a ratio of 4.81.

8.15 Sallen & Key Fourth-Order Lowpass in a Single Stage

Having seen how it is possible—if not always advisable—to make a third-order filter block
using a single opamp, one’s mind naturally turns to pondering if a fourth-order filter block
can be constructed in the same kind of way. The answer is yes. As before, you can make
any filter characteristic with any gain, and it is also still possible to choose a filter

R1
Input

C1
150nF

C2
150nF

C3
150 nF

(a)

Butterworth

R4
1.2K

R5
1K

Out
+
_

R2 R3
A1
NE5532P

2.294K 1.059K 476.5R

Input

Bessel

(b)

C1
100nF

C2
100nF

C3
100nF

R4
1.2K

R5
1 K

Out
+
_

R1 R2 R3
A1
NE5532P

3.050K 902.7R 519.9R

Figure 8.7: Third-order Sallen&Key1 kHz lowpass filters implemented as a single stage,with three equal
capacitors: (a) Butterworthwith gain= 2.2 and exact values; (b) Bessel with gain= 2.2 and exact values.
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characteristic and then choose a gain which makes two of the capacitors equal. But there are
now four capacitors, and the other two will in general be non-convenient values.

Figure 8.8a shows the exact values for R = 1 KΩ. The obvious step is to make C1 and C3
the nearest value E6 of 220 nF, and scale the other components accordingly to keep the
cutoff frequency at 1 kHz. This gives us Figure 8.8b, where the capacitors are kept in the
same ratio and the resistor values adjusted.

The component sensitivities for the filter in Figure 8.8b are shown in Table 8.10, and they
are not as bad as might be feared, because of the relatively low Q’s involved in a fourth-
order Butterworth characteristic. Even so, the worst is 3.05 for C4, which is six times worse
than a second-order Butterworth stage.

The most popular application of fourth-order filters is in Linkwitz–Riley crossovers, so let
us have a quick look at the possibility of implementing a fourth-order Linkwitz–Riley filter
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Figure 8.8: Fourth-order Sallen & Key Butterworth 1 kHz lowpass filters implemented as a single
stage; (a) equal-C with gain= 1.43 and exact values; (b) equal-C with gain= 1.43 and preferred

values for C1 and C3.
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in a single stage. Figure 8.9a shows the precise values that emerge when, as before, the gain
is adjusted to give the desired characteristic while making C1 and C3 very nearly equal.
Figure 8.9b shows the result of scaling the circuit values to make C1 = C3 = 220 nF, while
keeping the same 1 kHz cutoff frequency.

The overall action of the circuit is exactly the same as two cascaded second-order
Butterworth filters with the same cutoff frequency, which is the usual way of making a
fourth-order Linkwitz–Riley filter. We have saved the cost of an opamp, and probably
reduced noise and distortion somewhat due to its absence, but the extra series resistances
(four instead of two) may cause trouble with increased common-mode–distortion.

The component sensitivities for the filter in Figure 8.9b are shown in Table 8.11;
they are slightly better than for the fourth-order Butterworth because of the lower Q’s
involved in a Linkwitz–Riley characteristic. The worst, for C4 again, is 2.15 for C4,
which is now only about four times worse than a second-order Butterworth stage, and
with appropriate capacitor sourcing may make this approach a viable alternative.
However, overall it may not be the optimal strategy; we have saved an opamp but need
more precise capacitors to achieve the same accuracy, and the net cost may well be
greater.

It was earlier mentioned in passing that a disadvantage of the Sallen & Key lowpass
configuration was that the frequency response at very high frequencies would start to
come back up, because one of the shunt capacitors is terminated at the opamp output,
which has a non-zero output impedance that rises with frequency. This effect is more of
a problem with the fourth-order single-stage filter because there are now two capacitors
terminated at the opamp output, and it is possible that significant inaccuracies might
arise in the audio band.

Table 8.10: Fourth-Order Sallen & Key
Equal-C Butterworth Lowpass

Component Sensitivities

Component Cutoff Frequency

R1 1.14
R2 1.25
R3 1.54
R4 2.13
C1 1.04
C2 2.29
C3 2.83
C4 3.05
R5 2.99
R6 2.98
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Table 8.11: Fourth-Order Sallen & Key Equal-C
Linkwitz–Riley Lowpass Component Sensitivities

Component Cutoff Frequency Q

R1 1.02
R2 1.02
R3 1.02
R4 1.60
C1 0.88
C2 1.79
C3 1.64
C4 2.15
R5 1.77
R6 1.77
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Figure 8.9: Fourth-order Sallen & Key Linkwitz–Riley lowpass filters implemented as a single stage;
(a) equal-C with gain= 1.33 and exact values; (b) equal-C with gain= 1.33 and preferred

values for C1 and C3.
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Take the Butterworth filter in Figure 8.8b; if implemented with an elderly TL072 it will be
found that the response has risen above the theoretical characteristic by 1 dB as low as
4.6 kHz. Admittedly this is at a theoretical attenuation of 52 dB, so will probably be of no
consequence, but it is something to keep an eye on. This difficulty is much reduced by
using opamps like the 5532 that can maintain a low output impedance up to considerably
higher frequencies.

8.16 Sallen & Key Fourth-Order Lowpass in a Single Stage:
Non-Equal Resistors

Earlier in this chapter we saw that by using non-equal resistors, it was possible to make a
filter with three equal capacitors. This principle can be extended to fourth-order filters, as
shown in Figure 8.10. The required gain is still 2.2 times, but note that the resistors now
range over a ratio of 13.5 instead of 4.81.
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Figure 8.10: Fourth-order Sallen & Key lowpass filters implemented as a single stage, with four
equal capacitors, gain= 2.2 and exact values; (a) Butterworth; (b) Bessel.
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These circuits also have potentially worse problems with the response coming back up again
in the audio band.

8.17 Sallen & Key Fifth- and Sixth-Order Lowpass
in a Single Stage

Until very recently I had never seen an attempt to make a fifth-order active filter in one
circuit block, and I had a dark suspicion that it might be mathematically impossible.
However, in the stacks of a proper book-type library I discovered a 1972 paper by Aitken &
Kerwin [3] that purports to show how to do it. Unfortunately some of the design parameters
they give appear to be wrong, and it took me a good deal of hard work to come up with the
circuit in Figure 8.11a, which definitely gives a 30 dB/octave roll-off slope, though I do not
vouch for its exact Butterworthiness around the cutoff frequency. The sixth-order filter in
Figure 8.11b was much easier, as the given design parameters were correct in this case, and
it does give an accurate Butterworth response.

Calculating the sensitivities of these circuits is unlikely to be a rewarding experience, and I
have not undertaken it. What you can always do, of course, is to simulate the filter and try
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Figure 8.11: (a) Fifth-order and (b) Sixth-order Sallen & Key Butterworth 1–kHz lowpass filters,
implemented as single stages, with gain= 2 and exact values; these are probably more curiosities

than useful circuits as sensitivities will be poor, especially for the sixth-order version.
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out the effects of altering one component at a time by a small amount, such as 1%. The
effect on the cutoff frequency is then easy to assess, though the effect on other filter
parameters is rather harder to assess; you will have to examine the frequency response and
see which of its features are of most interest to you. To give an example, I applied this
method to the sixth-order circuit in Figure 8.11b, and the results are shown in Table 8.12.
Please bear in mind that these figures are read from a cursor on a graph, and their accuracy
is thereby limited.

Before I began I thought that the sensitivities would be very bad, and I imagined the value
of C6 would be especially critical. In fact, C5 has the worst figure, and it is not as awful as
I expected. Compare the fourth-order Sallen & Key equal-C Butterworth with a worst-case
sensitivity of 3.05.

These high-order single-stage filters are in some ways clever designs, as no less than two
opamp sections have been saved, but in actual fact they can, potentially at least, cause
trouble. Attempts to make high-Q filters with them would be difficult simply because it
would not be feasible to obtain components of the requisite accuracy for positions like
C5. These filters should perhaps be regarded as a curiosities rather than practical
designs.

8.18 Sallen & Key Highpass Filters

Highpass Sallen & Key filters are basically the same as their lowpass brothers, with the R’s
and C’s swapped in their circuit positions. All the considerations described for the lowpass
filters, such as the component sensitivities of particular configurations, are applicable so
long as this is kept in mind. Rather than repeat all this material, the section below on
highpass filters has been kept to a manageable length by providing only the design
examples, with a minimum of commentary.

As mentioned earlier, highpass filters have the advantage that the capacitors are usually all
the same value, and it is the resistors that come in awkward values, and paralleling them is

Table 8.12: Sixth-Order Sallen Key Butterworth Lowpass Component
Sensitivities: See Figure 8.10b

Component Frequency Sensitivity Component Frequency Sensitivity

R1 −0.8 C1 −0.8
R2 −0.2 C2 +0.4
R3 −0.6 C3 −1.2
R4 −2.7 C4 −4.1
R5 +2.7 C5 +5.2
R6 −2.2 C6 −4.5
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cheap and takes up little PCB space. Nonetheless, in an ideal world we would have as many
identical resistors as possible, and some of the highpass filters in this section are configured
to achieve this.

8.19 Sallen & Key Second-Order Highpass: Unity-Gain

Sallen & Key highpass filters are very much the same as the lowpass filters with the Rs and
the Cs swapped over.

Figure 8.12 shows a second-order highpass Sallen & Key unity-gain filter with a cutoff
frequency of 1 kHz and a Q of 0.707 to obtain a Butterworth characteristic. Now the
capacitors are equal, while the resistors have a ratio of two to define the required Q.
The measured noise output of this filter is −115.2 dBu (corrected), with its design
equations.

Design equations: Choose R2:

C =
2Q

ð2πf0ÞR2
(8.12)

R1 =
R2

4Q2
(8.13)

Analysis equations:

f0 =
1

2πC
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p (8.14)

Q = 1
2

ffiffiffiffiffiffi
R2

R1

r
(8.15)

The input impedance of this circuit is relatively high at low frequencies, where it is
dominated by the series impedance of the capacitors. It then falls with increasing frequency,
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Figure 8.12: The classic second-order highpass Sallen and Key filter. Cutoff frequency is 1 kHz.
Q= 0.7071 for a Butterworth response.
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reaching a minimum just above the −3 dB cutoff frequency. Above this it levels out to the
value of R2, as the capacitor impedance is now negligible. R1 does not add to the loading
because it is bootstrapped by the voltage-follower.

The TL072 is a very poor choice for S&K highpass filters. Its common-mode problems are
sharply revealed if it is used in highpass configurations; the output hits the top rail and then
shoots down to hit the bottom rail as the opamp internals go into phase reversal, which is
about the worst sort of clipping you could imagine. In the Bad Old Days when TL072s had
to be used in audio paths for cost reasons, if a highpass filter was required the signal would
be attenuated by 6 dB so the common-mode limits could never be reached, and the lost
level recovered later. The TL072 also produces a lot of CM distortion, and generates
considerable extra distortion when its output is loaded even lightly, and it must be regarded
as obsolete for almost all audio applications.

8.20 Sallen & Key Second-Order Highpass: Equal-Resistors

You can make a lowpass Sallen and Key filter with conveniently equal capacitor values
if you configure the amplifier to give voltage gain instead of acting as a unity-gain
buffer. A highpass filter can be made in exactly the same way with equal-resistor values,
though there is less of an advantage because awkward resistor values are much less of a
problem than awkward capacitor values. Figure 8.13 shows such a second-order equal-R
Butterworth highpass S&K filter; you will note that the component values are exactly
the same as in the lowpass equal-C filter in Figure 8.3, and so is the gain required for a
Q of 0.7071.

Due to the equal-value R and C components, the design and analysis equations are just the
same as for the lowpass equal-C second-order Butterworth described earlier.
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Figure 8.13: Equal-R second-order highpass Butterworth filter with a cutoff frequency of 1 kHz.
Gain must be 1.586 times for maximally flat Butterworth response (Q= 0.7071).
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Design equations: Choose a value for C (= C1 = C2)

R1 = R2 =
1

ð2πf0ÞC , (8.16)

Passband gainA = 3− 1
Q

(8.17)

Then choose R3, R4 to get the required passband gain A for the chosen Q

Analysis equations:

f0 =
1

2πRC
ðR’s and C’s are both equalÞ (8.18)

Passband gain A = R3+R4
R4

(8.19)

Q = 1
3−A

(8.20)

8.21 Sallen & Key Second-Order Butterworth Highpass:
Defined Gains

We saw in the previous section that we could select convenient resistor values for a second-
order Sallen & Key highpass filter by selecting the gain in the filter. We can choose both
the gain and the Q by altering the resistor values. Filter gain is often unwelcome, but
sometimes required, as in the HF path of the crossover design example in Chapter 19, and
building it into a filter will save an amplifier stage and reduce cost, while possibly also
reducing noise and distortion as the signal has gone through one less stage. On the other
hand, distortion may increase somewhat because the filter stage has less negative feedback;
this depends on the opamp types used and the exact circuit conditions.

As for the lowpass case I will focus on the Butterworth filter characteristic. The exact
resistor values required for gains from 0 to +8 dB are shown in Figure 8.14, where the
cutoff frequency in each case is 1 kHz, and the capacitors have been set to 100 nF; other
frequencies can be obtained by scaling the component values. The resistor values
summarised in Table 8.13 also include the standard cases of unity gain and of equal
resistors. In the latter case the gain required is extremely close to +4 dB. It is assumed that
R4 in the gain network is fixed at 1 kΩ; in the higher-gain cases it would be advisable to
reduce its value to lower the impedance of the gain network and thus minimise noise.

Higher gains than this can be obtained. The gain limit of 3 times given in the section just
above on equal-resistor highpass filters does not apply here because we are adjusting the
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Figure 8.14: Highpass 1 kHz Butterworth S & K filters with defined passband gains from 0 to +8 dB.
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resistor values to keep the Q constant at 0.707 instead of letting it go off to infinity, or
indeed beyond. There is however the consideration that further reducing the negative
feedback factor of the opamp will worsen the distortion performance.

Similar design data for second-order Butterworth Sallen & Key lowpass filters is given in
the section above on lowpass filters. Not surprisingly, the ratios between the resistors here
are exactly the same as the ratios of the capacitors in the lowpass case.

8.22 Sallen & Key Second-Order Highpass: Non-Equal Capacitors

We noted that for lowpass Sallen & Key filters, the resistors are almost always made equal.
In the same way, the capacitors in highpass filters are almost always made equal; this is not
an essential property of Sallen & Key filters but does make the calculations simpler. There
seems to be little point in using non-equal capacitors in any second-order Sallen & Key
stage, and even less point in using them in third- and higher-order highpass filters
constructed as a single stage; by analogy with the lowpass equivalent, it would allow all the
resistors to be made the same value, but because of the sparse nature of the available
capacitor values, having equal capacitors is much more useful than having equal resistors;
both the total capacitor cost and the PCB area occupied can be minimised.

8.23 Sallen & Key Third-Order Highpass in a Single Stage

Third-order highpass filters can be made in a single stage, just as for the lowpass
equivalent in Figure 8.5. In Figure 8.15a is shown a third-order Butterworth highpass
using a unity-gain amplifier. As expected, this gives us three different resistor values
for R1, R2, and R3.

Table 8.13: Component Values for Defined Gains in a Butterworth Second-Order
S&K Highpass Filter

Gain (dB)
Gain

(Times) R1 (Ohms) R2 (Ohms)
R2/R1 Ratio

(Times) R3 (Ohms) R4 (Ohms)

0.00 1.000 1125 2250 2.000 n/a n/a
+1.00 1.122 1247 2031 1.628 122 1000
+2.00 1.259 1366 1854 1.357 259 1000
+3.00 1.412 1477 1715 1.161 412 1000
+4.00 1.585 1588 1595 1.004 585 1000
+4.01 1.586 1591 1591 1.000 586 1000
+5.00 1.778 1705 1486 0.871 778 1000
+6.00 2.000 1821 1391 0.764 1000 1000
+7.00 2.238 1935 1309 0.637 1238 1000
+8.00 2.512 2056 1232 0.599 1512 1000
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Figure 8.15b shows the alternative version where the amplifier gain is chosen to be 1.27
times (+2.08 dB) to make R1 and R2 almost identical in value. Note that this method
requires larger capacitors if the lowest resistor value is to be kept in the range 700–1000Ω.
R4 very conveniently comes out as the E12 value of 270Ω.

The alert reader will have spotted that the gain required for the most accurate resistor
equality is 1.27 times, as opposed to the 1.26 times in the equivalent lowpass filter in
Figure 8.5. This is because the calculation method used only allows gain to be specified to
two decimal places, and has no other significance. Either value may be used with very small
response errors.
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Figure 8.15: Third-order Sallen & Key highpass Butterworth filters implemented as a single stage;
(a) unity-gain; (b) equal-R with exact values, gain= 1.27 times;

cutoff frequency 1 kHz.
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8.24 Sallen & Key Fourth-Order Highpass in a Single Stage

As described for lowpass fourth-order filters, you can make any filter characteristic with any
gain, and it is also still possible to choose a filter characteristic and then choose a gain that
makes two of the resistors equal. There are four resistors, and the other two will in general be
non-convenient values, though as explained before this is much less of a problem than awkward
capacitor values. A fourth-order Butterworth highpass filter is shown in Figure 8.16a, with the
exact component values that emerge from the design process.

You will have spotted that R1 and R3 in Figure 8.16a are both extremely close to the E12
value of 1.2 kΩ. Making them so introduces response errors of less than 0.05 dB from 10 Hz
to 2 kHz, and above that the errors are negligible; the resulting circuit is shown in
Figure 8.16b. R2 and R4 are much further from preferred values and would be best
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Figure 8.16: Fourth-order Sallen & Key Butterworth highpass filter in a single stage;
(a) equal-C with gain= 1.43 and exact values; (b) equal-C with gain= 1.43

and preferred values for R1 and R3.
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implemented as parallel combinations. Note that R5 could be very handily made up of two
220Ω resistors in series.

The gain required for the most accurate resistor equality is 1.44 times, as opposed to the
1.43 times in the equivalent lowpass filter in Figure 8.8 above. Once again, this is because
the gain is only specified to two decimal places. Either value may be used with very small
response errors.

A fourth-order Linkwitz–Riley filter implemented in a single stage is shown in Figure 8.17,
to complement the lowpass version in Figure 8.9 above. The gain for best equality of R1
and R3 is now 1.32 times (+2.48 dB) rather than 1.33, for the same reason as before. This
time we have been very lucky with the values, as R1 and R3 in Figure 8.17a are both very
close to the E12 value of 1.1 kΩ, R2 is close to 910R, and R4 is very close to 5.6 kΩ; R5
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Figure 8.17: Fourth-order Sallen & Key Linkwitz–Riley highpass filters implemented as a single
stages. (a) Equal-R with gain= 1.32 and exact values; (b) Equal-R with gain= 1.33 and E24

preferred values for R1, R3 and R5, R6.
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has been set to 330Ω, giving a gain of 1.33 times. A version using these values is shown in
Figure 8.17b; the errors are +0.3 dB from 10 Hz to 900 Hz, but there is an error peak of
−0.7 dB around 1.4 kHz, falling off to −0.1 dB at 10 kHz.

This example of the use of E24 preferred values shows that it is tricky with fourth-order
single-stage filters because of the increased component sensitivity over low-order filters.
The greatest error here is introduced by taking R5 to be 330Ω rather than 320Ω, so if you
do decide to use this kind of filter (and I honestly don’t think it will very often be a good
option) you might consider making R5 and R6 as parallel combinations.

8.25 Implementing Linkwitz–Riley with Sallen & Key Filters:
Loading Effects

The most common implementation of the popular fourth-order Linkwitz–Riley filter is made by
cascading two second-order Butterworth Sallen & Key filters. This is why the Linkwitz–Riley is
sometimes called a “Butterworth-squared” filter. A typical implementation of a 3 kHz Linkwitz–
Riley lowpass filter is shown in Figure 8.18, where the resistor values have been reduced as
much as appears to be prudent in the quest for low noise. (The resistor values just happen to
come out as 797Ω; this is not some sort of subtle post-modernist reference to the AD797
opamp.) It is therefore necessary to consider carefully the way that the loading from the second
filter will affect the first filter that drives it. As we saw earlier in the chapter, the input impedance
of a second-order Sallen & Key lowpass filter is high at low frequencies, where the capacitor
impedance is high, but with increasing frequency, falls to the value of R1, ie 797Ω. A previous
5532 stage should be able to drive this to full level without significant deterioration in the
distortion performance but this depends on how much it is loaded in performing its own function.

The second Sallen & Key lowpass filter is identical so naturally acts in the same way. The
current it draws from opamp A1 is, however, less because the amplitude of the signal from
A1 is falling as frequency increases. If the input to R1 is 10 Vrms, the maximum current
drawn from the previous stage at high frequencies is 12.5 mA rms. The current drawn
by the second stage from A1 only reaches a maximum of 7.6 mA, peaking gently around
2.5 kHz. This is illustrated in Figure 8.19.
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Figure 8.18: Fourth-order Linkwitz–Riley filter made by cascading two second-order
Butterworth Sallen and Key filters. Cutoff is −6 dB at 3 kHz.
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The overall distortion of the two stages is therefore somewhat less than might be expected
from a casual glance. Similar considerations apply to the equivalent Linkwitz–Riley
highpass filter.

8.26 Lowpass Filters with Attenuation

It may occur that you need to attenuate a signal before applying it to a lowpass Sallen &
Key filter. Since all the filter designs in this chapter require to be driven from a very low
source impedance to get the desired response, you might think that the only solution is to
use a potential divider with reasonably high values, so as not unduly load upstream
circuitry, and then put a unity-gain buffer between that and the filter. In fact, with the
Sallen & Key configuration it is usually unnecessary to indulge in an extra opamp.

If R1 and R3 in Figure 8.20b are chosen so that their ratio gives the required attenuation,
but the output impedance of the divider (their value as a parallel combination) is equal to
the R1 in Figure 8.20a, no buffer is required, with a saving in power consumption and parts
cost, and hopefully some reduction in noise and distortion.

The equivalent circuit for the Sallen & Key highpass filter, which has a capacitor at
its input, would be a capacitor potential divider with an output reactance equivalent to
the original capacitor. This however is likely to lead to high-frequency overload

Figure 8.19: The current drawn at the inputs of the first and second stages of the Linkwitz–Riley
filter in Figure 8.18. Input voltage was 10 Vrms.
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problems in the previous stage as the impedance to ground of the divider will fall with
frequency.

8.27 Bandwidth Definition Filters

This seems a good point to look at some real filter applications that show how our
requirements drive the choice of filter type and its detailed design. An important feature of
crossovers for sound reinforcement is that they implement bandwidth definition (or you
might wish to call it bandwidth limitation, but that somehow sounds a bit less appealing) to
keep subsonic and ultrasonic signals out of the amplifier/speaker system. Subsonic signals
of sufficient level will cause mechanical and possibly thermal damage to LF drivers, but
even smaller amplitudes will erode precious headroom. Ultrasonic signals can burn out
tweeters and damage power amplifiers.

The design of lowpass filters to stop subsonic signals and highpass filters to stop ultrasonic
signals is always something of a compromise because you must steer a course between the
most effective filtering and intrusion on the audio bandwidth that you want to keep. A
complicating factor is the variation of opinion on the importance of phase-shifts introduced
near the edges of the audio band; a hi-fi application would be more likely to set the filter
cutoff frequencies further away from the audio band edges, whereas a sound reinforcement
crossover would be more likely to have the filters working closer in to maximise the
protection and minimise the chance of damage to expensive banks of loudspeakers.
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Figure 8.20: Building attenuation into a filter: (a) the original lowpass filter; (b) with a 6 dB
input divider R1, R3 scaled to give the same driving impedance as R1 in the first filter.

Cutoff frequency is 1 kHz.
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8.27.1 Bandwidth Definition: Butterworth versus Bessel Ultrasonic Filters

The lowpass filters used to define the upper limit of the audio bandwidth are usually
second-order with roll-off rates of 12 dB/octave; third-order 18 dB/octave filters are rather
rarer, probably because there seems to be a general feeling that phase changes might be
more audible at the top end of the audio spectrum than the bottom. Either the Butterworth
(maximally flat frequency response) or Bessel type (maximally flat group delay) can be
used, and this gives us an excellent opportunity to make a real-life comparison of the two
types. It is unlikely that there is any real audible difference between the two types of filter
in this application, as just about everything happens above 20 kHz, but using the Bessel
alignment does enforce a compromise in filtering effectiveness because of its slow roll-off.
I will demonstrate.

The second-order Butterworth lowpass filter in Figure 8.21a has its −3 dB point set to
50 kHz, and this gives a loss of only 0.08 dB at 20 kHz, so there is minimal intrusion into
the audio band; see Figure 8.22. The response is usefully down by −11.6 dB at 100 kHz
and by an authoritative −24.9 dB at 200 kHz. C1 is composed of two 2n2 capacitors in
parallel.

But let us suppose we are deeply concerned about linear phase at high frequencies and we
decide to use a Bessel filter with the same cutoff frequency instead. The only circuit change
is that C1 is now 1.335 times as big as C2 instead of 2 times, but the amplitude response is
very different. If we design for −3 dB at 50 kHz once more, we find that the response is
–0.47 dB at 20 kHz; a good deal worse than 0.08 dB, and not exactly a stunning figure for
your spec sheet. If we decide we can live with −0.2 dB at 20 kHz from the Bessel filter
then it has to be designed for −3 dB at 72 kHz. Due to its inherently slower roll-off the
response is now only down −5.6 dB at 100 Hz, and −14.9 dB at 200 kHz, as seen in
Figure 8.22; the latter figure is 10 dB worse than for the Butterworth. The measured noise
output for both versions is −114.7 dBu (corrected).

If we want to keep the 20 kHz loss to 0.1 dB, the Bessel filter has to be designed for −3 dB
at 100 kHz, and the response is now only −10.4 dB down at 200 kHz, more than 14 dB less
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Figure 8.21: Second-order Sallen and Key lowpass circuits for ultrasonic filtering; (a) Butterworth;
(b) Bessel. Both have a loss of less than 0.2 dB at 20 kHz.
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effective than the Butterworth; this is the design shown in Figure 8.21b. These results are
summarised in Table 8.14.

Discussions on filters always remark that the Bessel alignment has a slower roll-off, but
often fail to emphasise that it is a much slower roll-off. You should think hard before you
decide to go for the Bessel option in this sort of application.

It is always worth checking how the input impedance of a filter loads the previous stage, to
make sure it is not loaded to the point where its distortion is significantly increased. The
input impedance will vary with frequency. In this case, the input impedance is high in the
passband, but above the roll-off point it falls until it reaches the value of R1, which here is
1 kΩ. This is because at high frequencies C1 is not bootstrapped, and the input goes
through R1 and C1 to the low-impedance opamp output, which is effectively at ground.
Fortunately, this low impedance only occurs at high frequencies, where one hopes the level
of the signals to be filtered out will be low.
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Figure 8.22: Frequency response of second-order 50 kHz Butterworth and 72 kHz Bessel filters.

Table 8.14: The Frequency Response of Various Ultrasonic Filter Options

Frequency Butterworth 50 kHz Bessel 50 kHz Bessel 72 kHz Bessel 100 kHz

20 kHz −0.08 dB −0.47 dB −0.2 dB −0.1 dB
100 kHz −11.6 dB −10.0 dB −5.6 dB −3.0 dB
200 kHz −24.9 dB −20.9 dB −14.9 dB −10.4 dB
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Another important consideration with low-pass filters is the balance between the R and C
values in terms of noise performance. R1 and R2 are in series with the input and their
Johnson noise will be added directly to the signal. Here the two 1 kΩ resistors generate
−119.2 dBu of noise (22 kHz bandwidth, 25°C). The obvious conclusion is that R1 and R2
should be made as low in value as possible without causing excess loading (1 kΩ is a good
compromise), with C1, C2 scaled to maintain the desired roll-off frequency. It is then the
opamp voltage noise that dominates.

8.27.2 Bandwidth Definition: Subsonic Filters

Highpass filters used for subsonic protection are usually second-order or third-order
Butterworth types with roll-offs at 12 dB/octave and 18 dB/octave. Fourth-order filters with
24 dB/octave slopes are less used, no doubt because of fears about the possible audibility of
the faster phase changes generated by the steeper filter. If fourth-order filters are used the
cutoff frequency is made lower to space any possible effects further away from the bottom
of the audio band. I am not aware of any use of fifth- or sixth-order subsonic filters.

There is something of a consensus that a third-order Butterworth filter with a cutoff
frequency of 25 Hz or a fourth-order filter with a cutoff at 15 Hz gives adequate protection.
The usual Sallen & Key filters are normally used; one problem is that the low cutoff
frequencies mean that large capacitor values are required if the circuit impedances are kept
low to minimise noise. A third-order filter will require three, and a fourth-order filter four,
of these components. While it is desirable to use polypropylene types to prevent capacitor
distortion, this gets expensive, and polyester types are often used in subsonic filters, in the
not unreasonable hope that the levels of subsonic disturbances will normally be low, and
that very-low frequency distortion is not very audible.

Figure 8.23 shows a third-order Butterworth subsonic filter designed as a single stage. This
must be fed from the usual low-impedance source to give an accurate response, but has the
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Figure 8.23: A third-order Butterworth single-stage subsonic filter with a
cutoff frequency of 25 Hz.
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advantage over the second-order plus first-order configuration that the output impedance is
low without the need for buffering by an extra opamp stage. The exact resistor values
required are given.

Figure 8.24 gives the frequency response of the filter; it is 24 dB down at 10 Hz, and gives
good protection against subsonic disturbances.

8.27.3 Bandwidth Definition: Combined Ultrasonic and Subsonic Filters

In some cases it is possible to economically combine highpass and lowpass filters into one
Sallen & Key stage using only one opamp. I must say at once that this cunning plan is only
workable when the highpass and lowpass turnover frequencies are widely different, and its
usefulness for crossover filters as such is limited. However, it can be very handy when you
wish to explicitly define the bandwidth of an audio signal path by using both subsonic and
ultrasonic filters; a sophisticated active crossover will include such bandwidth definition.
Combined filters have the advantage that the signal now passes through one opamp rather
than two, which may reduce noise and distortion, and it also saves money. This approach
can be extremely useful if you only have half of a dual opamp left.

Figure 8.25 shows a 20 Hz third-order Butterworth subsonic filter, much the same as that
just described apart from a slightly lower cutoff frequency; note that this time E12 preferred
values have deliberately been used for the resistors, to demonstrate that even so the cutoff

Figure 8.24: Frequency response of the third-order Butterworth single-stage
subsonic filter, ‒3 dB at 25 Hz.
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frequency comes out as 21 Hz, very close to the desired value, and such an error is not
likely to be of much significance in a subsonic filter. This filter is combined with a second-
order 50 kHz Butterworth lowpass ultrasonic filter, and the response of the combination is
exactly the same as expected for each separately. The lowpass filter is cautiously designed
to prevent significant loss in the audio band, and has a −3 dB point at 50 kHz, giving very
close to 0.0 dB at 20 kHz; the response is −11.6 dB down at 100 kHz and −24.9 dB at
200 kHz. C1 is made up of two 2n2 capacitors in parallel.

The only compromise is that the midband gain of the combined filter is −0.15 dB rather
than exactly unity; this tiny loss is not exactly a cause for alarm. It occurs because the
series combination of C1, C2, and C3, forms a capacitive potential divider with C5,
attenuating by 0.15 dB, and this is why the turnover frequencies need to be widely
separated for filter combining to work well. If they were closer together then C1, C2,
C3 would be smaller, C5 would be bigger, and the capacitive divider loss would be
greater.

8.28 Distortion in Sallen & Key Filters: Highpass

When they have a signal voltage across them, many capacitor types generate distortion. This
unwelcome phenomenon is described in Chapter 12. It afflicts not only all electrolytic
capacitors, but also some types of non-electrolytic. If the electrolytics are being used as
coupling capacitors, then the cure is simply to make them so large that they have a
negligible signal voltage across them at the lowest frequency of interest; less than 80 mV
rms is a reasonable criterion. This means they may have to be ten times the value required
for a satisfactory frequency response.

However, when non-electrolytics are used to set time constants in filters they obviously
must have substantial signal voltages across them and this simple fix is not usable. The
problem is not a marginal one—the amounts of distortion produced can be surprisingly
high. Figure 8.26 shows the frequency response of a conventional second-order
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Figure 8.25: A third-order Butterworth subsonic filter combined with a second-order
ultrasonic filter.
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Butterworth Sallen & Key highpass filter with a −3 dB frequency of 510 Hz, as shown in
Figure 8.27a. C1, C2 were 220 nF 100 V polyester capacitors, with R1 = 1 kΩ and R2 =
2 kΩ. The opamp was a Texas 5532. The distortion performance is shown by the upper
trace in Figure 8.28; above 1 kHz the distortion comes from the opamp alone and is very
low. However, you can see it rising rapidly below 1 kHz as the filter begins to act, and it
has reached 0.015% by 100 Hz, completely overshadowing the opamp distortion; it is
basically third order. The output from the filter has dropped to −28 dB by 100 Hz, and so
the amplitude of the harmonics generated is correspondingly lower, but it still not a very
happy outcome.

10
−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

20 50 100 200 500

Hz

1k 2k 5k 10k 20k 50k

d
B
r  

A

Figure 8.26: The frequency response of the second-order 520 Hz highpass S&K
filter in Figure 8.26a.
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Figure 8.27: (a, b) Second-order highpass and lowpass Butterworth Sallen and Key filters for
distortion and noise tests. Cutoff frequency is 510 Hz for both.
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The test level used is high at 10 Vrms. It is chosen to be about as much voltage swing as
you are likely to encounter in an opamp system, so it will give worst-case distortion results,
but will be clear of any clipping effects. Most of the distortion tests in this book are run at
9 or 10 Vrms for this reason. The actual operating levels will naturally be significantly
lower, to give some headroom, and the distortion levels produced will therefore be much
lower. This is especially true in the case of capacitor distortion, which is essentially all third
harmonic, and so the THD increases as the square of the signal voltage. (Second-harmonic
THD increases more slowly, proportionally to the signal voltage.)

Thus, if the test circuit here was run at a nominal voltage of 3 Vrms, which is probably as
high as is advisable (see the discussion in Chapter 14 on elevated operating levels), then the
distortion levels would be lower by a factor of (10/3)2 = 11.1 times. This is a big reduction,
and explains why polyester capacitors are in practice acceptable in many applications where
the highest possible quality is not being sought.

As explained in Chapter 12, polypropylene capacitors exhibit negligible distortion compared
with polyester, and the lower trace in Figure 8.28 shows the improvement on substituting
220 nF 250 V polypropylene capacitors. The THD residual below 500 Hz is now pure
noise, and the trace is only rising at 12 dB/octave because circuit noise is constant but the
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Figure 8.28: THD plot from the second-order 520 Hz high-pass S&K filter; input level 10 Vrms.
The upper trace shows distortion from polyester capacitors; the lower trace, with

polypropylene capacitors, shows noise only.
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filter output is falling. The important factor is the dielectric, not the voltage rating; 63 V
polypropylene capacitors are also free from distortion. The only downside is that
polypropylene capacitors are larger for a given CV product and more expensive.

The non-linearity of polyester capacitors, even those of the same type and voltage rating,
appears to be rather variable, and if you repeat this experiment the results for the upper trace
may be different, but will always be much inferior to the polypropylene case. A further
complication is that the non-linearity is time-dependent; if you set up a polyester capacitor in a
simple RC circuit, with the frequency arranged so that there is a substantial voltage across the
capacitor, the THD reading will slowly drift down over time, continuing to drop over 24 hours
and longer. It will, however, never become as distortion-free as a polypropylene capacitor.

8.29 Distortion in Sallen & Key Filters: Lowpass

The capacitor-induced distortion behaviour of the lowpass Sallen & Key filter is rather
different. The frequency response of the Butterworth 510 Hz lowpass filter in Figure 8.27b
is shown in Figure 8.29, while the distortion performance is shown in Figure 8.30. With
220 nF 100 V polyester capacitors there is now a pronounced peak in distortion around

Figure 8.29: The frequency response of the second order 510 Hz lowpass S&K
filter in Figure 8.27b.
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200 Hz, more than an octave below the cutoff frequency. The distortion in this region is
fairly pure third harmonic, and clearly comes from the capacitors and not the opamp.
Replacing them with 220 nF 160 V polypropylene capacitors completely eliminates this
distortion, as shown in Figure 8.30. Note that as before the test level is almost as high as
possible at 10 Vrms, and practical internal levels such as 3 Vrms will give much lower
levels of distortion.

As expected, the Noise + THD reading climbs rapidly as the cutoff frequency is exceeded and
the output amplitude starts to fall at 12 dB/octave; in fact the Noise + THD reading climbs
more rapidly than 12 dB/octave, which is a clear warning sign that the residual is not entirely
composed of noise. At 1 kHz the reading is only 0.00037% but crossover-ish distortion from
the opamp is clearly visible on the THD residual, well above the noise level. This condition
persists as frequency rises, with opamp distortion still clear above the noise even at 10 kHz
when the output has fallen below 24mVrms. (This is quite different behaviour from that of
the highpass filter where below the cutoff frequency the Noise + THD reading goes up at the
12 dB/octave rate, which would be expected if it was composed only of noise.) Removing the
capacitors to get a flat frequency response greatly reduces the distortion seen at the higher

Figure 8.30: THD plot from the second-order 510 Hz S&K lowpass filter; input level 10 Vrms. The
upper trace shows distortion from polyester capacitors; the lower trace, with polypropylene

capacitors, shows noise and opamp distortion above 1 kHz.
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frequencies, even though the output level is much higher, so the effect appears to be
something to do with the filtering action. These are deep waters, Watson.

The signal voltage across the capacitors in these filters varies strongly with frequency, and it
is instructive to see how this relates to their capacitor-distortion behaviour. In a lowpass
Sallen & Key filter the voltage across C1 peaks at one half of the output voltage at the
turnover frequency, rolling off on either side at 6 dB/octave. The voltage across C2 is the
input voltage up to the turnover frequency; it then rolls off at 12 dB/octave, as illustrated in
Figure 8.31. Perhaps surprisingly, the capacitor voltages for the equivalent highpass filter
are exactly the same, but with C1 and C2 swapped over.

What Figure 8.31 does not tell us is why the polyester capacitor distortion peaks more than
an octave below the cutoff frequency; that is not where the signal voltage across the
capacitors is a maximum. It is both one of the joys and one of the anguishes of electronics
that a circuit made up of only five components can be so enigmatic in its behaviour.

8.30 Mixed Capacitors in Low-Distortion Sallen & Key Filters

But you have seen nothing yet. If you take the lowpass test filter, and change the capacitor
dielectric type one at a time, (see Figure 8.27) you find that only C2 has to be polypropylene
for low distortion. If the filter has polyester in both the C1 and C2 positions, then you get the

Figure 8.31: The voltages across the two capacitors in a Sallen and Key Butterworth
lowpass filter with a 3 kHz turnover frequency. The voltage across C1 never reaches

more than half the filter input voltage.
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same peaked distortion trace seen in Figure 8.30; but if you replace just C2 with
polypropylene, then the distortion performance is identical to the bottom trace obtained by
making both capacitors polypropylene. This is, to the best of my knowledge, a novel
observation, and it has the potential to much reduce capacitor costs in an active crossover; you
will note it is the smaller of the two capacitors (C3 in Figure 8.32) which has to be the more
expensive polypropylene type, which is just the way we would like it for economy.

This is clearly a most interesting effect, and I attempted to find out why the lowpass Sallen &
Key circuit is so much more sensitive to the non-linearity of C2 than that of C1. Firing up the
SPICE simulator, and putting an AC voltage source in series with C1 shows a maximum gain
of unity from the inserted source to the output at its peak (at the turnover frequency), falling
off at 6 dB/octave on either side. The same test on C2 shows there is actually a gain of 2 dB
to the output just above the turnover frequency. This appears to give some good indication as
to why C2 is the more critical component. It has a greater voltage across it, and the resulting
distortion components appear amplified at the output. This does not, however, really answer
the question, because repeated practical experiments show that using polyester capacitors for
C1 does not produce a reduced amount of distortion—it produces none at all. More
convincing results might be obtained by altering the capacitor models so their value was
voltage-dependent, but there is regrettably no space to go any further into this issue here.

But what, you may ask, about the highpass filter? The components in the equivalent circuit
positions to the capacitors are now resistors, which almost always have perfect linearity for
our purposes, so there is little point in playing around with them. However, if you start
swapping out polyester capacitors for polypropylene ones, it soon emerges that in this case
C1 is the critical component for linearity. C2 has a very minor influence, but unless it is
really bad, polypropylene for C1 only gives results very close to those obtained when both
capacitors are polypropylene; the configuration is shown in Figure 8.33. Just think of the
money it saves!
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R1 R2

1 K 1 K

C1
220 nF

Polyester
100 V

C2
220 nF

Polyester
100 V

C3
220 nF
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160 V

A1
NE5532P

+

−

Butterworth 510 Hz lowpass

Figure 8.32: Mixed-capacitor Sallen and Key lowpass filter has same distortion
performance as if all capacitors were polypropylene.
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8.31 Noise in Sallen & Key Filters: Lowpass

It is difficult to give a comprehensive summary of the noise performance of even one type
of filter in a reasonable space. There are a large number of variables, even if we restrict
ourselves to the Sallen & Key configuration. There is the cutoff frequency, the Q, the
impedance level at which it operates, whether it is highpass or lowpass, and whether it is
second-order or higher.

If we start with the 510 Hz lowpass filter in Figure 8.27b above, it can be built as shown
with 1 kΩ resistors and 220 nF capacitors (using two of them for C1), in which case the
noise output (corrected by subtracting the internal noise of the measuring system, as are all
noise data in this section) is −117.8 dBu, which is pretty low. The measurement bandwidth
was 22 – 22 kHz as usual. If we rebuild our lowpass filter with 10 kΩ resistors and 22 nF
capacitors, so the cutoff frequency remains 500Hz but the impedances are all ten times as
great, we rather disconcertingly get the same figure, to within the limits of measurement,
which are here about ±0.1 dB. This is because the cutoff frequency is towards the lower end
of the audio bandwidth, and so the Johnson noise from the resistors never makes it to the
filter output. What we are seeing is the basic voltage noise of the opamp, which is not altered
by changing circuit impedances. The only way to reduce it is to choose a quieter opamp or
to use multiple opamps for noise reduction, as explained in Chapter 16. This at first seems to
make nonsense of the recommendations throughout this book that resistance levels should be
kept as low as practicable to minimise noise.

If, however, we are dealing with the same lowpass filter but with a ten times higher cutoff
frequency of 5.1 kHz, things are very different. Our low-impedance version has 1 kΩ
resistors and 22 nF capacitors; it produces −115.8 dBu of noise at its output; noticeably
higher because of the higher cutoff frequency. If we once more increase the impedance level
by ten times, by using 10 kΩ resistors and 2n2 capacitors, then the output noise increases to
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1K

R2
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160V

220nF
Polyester

100V
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NE5532P

+
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Figure 8.33: Mixed-capacitor Sallen and Key highpass filter has very nearly the same distortion
performance as if both capacitors were polypropylene.
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−110.9 dBu, a sizable increase of 4.9 dBu. Clearly the higher the cutoff frequency of a
lowpass filter, the greater the noise advantage to be gained by using low impedances.
Raising the impedance ten times also makes the circuit noticeably more susceptible to
electrostatically induced hum.

8.32 Noise in Sallen & Key Filters: Highpass

Turning our attention back to the highpass Butterworth filter, the noise output for a low-
impedance version with R1 = 1 kΩ, R2 = 2 kΩ, and 220 nF capacitors is a very low
−119.3 dBu. Raising the impedance level by ten times, using R1 = 10 kΩ, R2 = 20 kΩ,
and 22 nF capacitors raises the noise output to −116.6 dBu, an increase of 2.7 dB. The
low impedance approach is therefore well worthwhile, though the capacitors will cost
a bit more.

8.33 Multiple-Feedback Filters

These are most familiar as bandpass filters working at modest Q’s, but the basic
configuration can also be used to make lowpass and highpass filters; the variations are
shown in Figure 8.34.

Multiple-FeedBack (MFB) filters have the advantage that since they use shunt-feedback,
with a virtual-earth at the inverting input, there is no common-mode voltage to cause
distortion in the opamp. This is in contrast with the Sallen & Key filter where the opamp is
working as a voltage follower, and so the full signal voltage appears at the opamp inputs; it
is in fact the worst case for common-mode distortion. This potential problem is dealt with at
length in Chapter 13, but it is worth pointing out here that if you use bipolar opamps such
as the 5532 and relatively low source impedances, common mode distortion is not a
serious difficulty.

While it is possible to make third-order highpass and lowpass filters in a single MFB stage,
component sensitivity is much increased and it is probably not a good idea. I have never
seen such filters used in a practical design.

In In In

Lowpass Bandpass Highpass

Out Out
A1 A1

+
− +

− Out
A1

+
−

Figure 8.34: Multiple-feedback (MFB) filters: lowpass, bandpass, and highpass.
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8.34 Multiple-Feedback Lowpass Filters

A practical version of an MFB lowpass filter is shown in Figure 8.35, designed for a
Butterworth characteristic, (Q = 0.7071) and a cutoff frequency of 1 kHz; the passband gain is
unity. Note that if C1 is a preferred value, C2 will in general not be; the value of 104 nF
shown here would in practice be approximated by 100 nF in parallel with 4n7. As usual the
resistor values do not work out conveniently, but very close approximations to these values can
be cheaply made up using pairs of preferred values. MFB bandpass, highpass, and lowpass
filters all inherently give a phase-inversion. This is no problem if they are used in pairs in a
fourth-order Linkwitz–Riley crossover, but otherwise could be inconvenient, in the worst case
requiring another stage that does nothing but invert the signal to get it in-phase again.

It is worth pointing out that the MFB lowpass filter does not depend on a low opamp
output impedance to maintain stop-band attenuation at high frequencies, and so avoids the
oh-no-it’s-coming-back-up-again behaviour of Sallen & Key lowpass filters. It is doubtful,
however, if this is of much relevance to crossover applications.

8.35 Multiple-Feedback Highpass Filters

The multiple-feedback highpass filter is the multiple-feedback lowpass filter with the
resistors an capacitors interchanged. A practical version of an MFB highpass filter is shown
in Figure 8.36, once more designed for a Butterworth characteristic (Q = 0.7071), a cutoff
frequency of 1 kHz, and unity passband gain.
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2π C2
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Q =
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Figure 8.35: A second-order lowpass Butterworth multiple-feedback (MFB) filter with the analysis
equations. Cutoff frequency is 1 kHz, Q= 0.707, and passband gain is unity.
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This time we have three identical capacitors which can be conveniently chosen from the E6
series, dealing with the awkward resistor values in the usual way; as it happens, in this case
R1 comes out as the E24 value of 750Ω.

8.36 Distortion in Multiple-Feedback Filters: Highpass

Figure 8.37 shows lowpass and highpass Butterworth MFB filters, each with a cutoff
frequency of 510 Hz, and designed to work at a low impedance level. These filters
were designed to allow direct comparison between them and the Sallen and Key
510 Hz filters of Figure 8.27 that were examined for distortion and noise earlier in this
chapter.

Figure 8.38 demonstrates that replacing polyester capacitors with polypropylene once again
gives a dramatic reduction in distortion. However, there were some unexpected issues with
the distortion performance above 3 kHz which were not resolved at the time of going to
press, and at the moment the verdict has to be that the highpass MFB filter is not to be
designed into a system without careful scrutiny. In contrast, the lowpass MFB filter works
very well and gives less opamp distortion than the Sallen and Key equivalent, as revealed in
the next section.

You will recall that we discovered that it was in fact only necessary to make one capacitor
polypropylene in the Sallen and Key lowpass and highpass filters, and capacitor distortion

Input

R1
750R

100nF 100nF

C1
C2

100nF R2

3375R

A1
NE5532P

Out

C3

+

−

C1 = C2 = C3 = C

f−3dB=
2π R2
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Figure 8.36: A second-order highpass Butterworth multiple-feedback (MFB) filter with the
analysis equations. Cutoff frequency= 1 kHz, Q= 0.707, and passband gain is unity.
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was still eliminated. Obviously, we need to see if the same applies to the MFB filter. I was
not optimistic, because of the different ways in which the two kinds of filters work, but it
does more or less work. In the highpass case only C1 and C3 need to be polypropylene, both
capacitors contributing distortion. C2, however, can be a cheaper and smaller polyester type.
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Out

C1 C2

220 nF 220 nF

Butterworth highpass 510 Hz
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R2
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+
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C2

220 nF 1400 R

R3

Figure 8.37: Second-order Butterworth highpass and lowpass MFB filters for
distortion and noise tests. Cutoff frequency is 510 Hz for both.

Figure 8.38: THD plot from the second order 510 Hz MFB highpass filter; input level 10 Vrms. The
upper trace shows distortion from polyester capacitors; the lower trace, with polypropylene

capacitors shows only noise.
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8.37 Distortion in Multiple-Feedback Filters: Lowpass

Figure 8.39 shows the distortion performance of the second-order 510 Hz MFB lowpass
filter with an input level of 10 Vrms. As for the Sallen & Key lowpass filter, the use of
polyester capacitors causes a broad peak of extra distortion, though here it is centred on
240 Hz rather than 200 Hz. As before, the use of polypropylene capacitors eliminates the
extra distortion.

Above 1 kHz, the Noise + THD reading climbs rapidly as the cutoff frequency is
exceeded and the output amplitude starts to fall at 12 dB/octave; but this time it rises at
12 dB/octave because it is composed of noise only; some opamp distortion is visible
around 100–500 Hz when polypropylene capacitors are used. Comparing Figure 8.39
with the graph for the Sallen & Key version (Figure 8.29), here we have a Noise + THD
reading of only 0.0008% compared with 0.0015% for S&K. The MFB lowpass filter has
the better linearity.

Figure 8.39: THD plot from the second-order 510 Hz MFB lowpass filter; input level 10 Vrms.
The upper trace shows distortion from polyester capacitors; the lower trace, with
polypropylene capacitors, shows only noise above 1 kHz. Unlike the S&K filter,

there is no visible opamp distortion.
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You will recall that we discovered that the full benefits of capacitor distortion elimination
could be obtained in the Sallen & Key second-order lowpass filter by replacing only the
second of the two capacitors with a polypropylene type. In the MFB lowpass filter only
C2 needs to be polypropylene to get the full elimination of capacitor distortion.
Extraordinary!

8.38 Noise in Multiple-Feedback Filters: Highpass

With the values shown in Figure 8.37a, the noise output was −112.8 dBu, which is
substantially worse than that of the Sallen and Key highpass filter, which was −119.3 dBu.
This is not promising, and reinforces the judgement that the highpass MFB filter is not to
be recommended.

8.39 Noise in Multiple-Feedback Filters: Lowpass

The low-impedance MFB lowpass filter in Figure 8.37b has a noise output of −117.8 dBu,
which is quite satisfyingly low. As we did for the Sallen and Key filters, we will raise the circuit
impedance level by ten times and see what effect that has on the noise performance. Plugging in
R1 = R2 =R3 = 14 kΩ, and C1 = 47 nF, C2 = 10.4 nF, the noise output rises to −114.0 dBu, an
increase of 3.8 dBu. (As before, the measurement bandwidth was 22 – 22 kHz and the readings
were corrected by subtracting the internal noise of the measuring system.) This is quite different
behaviour from the Sallen and Key lowpass filter, which showed no measurable change in noise
output with a 510 Hz cutoff frequency. Once again, raising the impedance ten times makes the
circuit noticeably more susceptible to electrostatically induced hum.

The low-impedance version of the MFB lowpass filter has a noise output of −117.8 dBu,
which, interestingly, is exactly the same noise output as the Sallen and Key lowpass filter
examined earlier. From the noise point of view, there is nothing to choose between the two
filter configurations.

8.40 State-Variable Filters

State-variable filters (SVFs) give highpass, bandpass, and lowpass outputs simultaneously.
In crossover applications the bandpass output is not normally used, but might be employed
in a filler-driver scheme. These filters show low component value sensitivity and are simple
to design. They are called “state-variable” filters because in the most common second-order
version they are made up of two integrators and an amplifier; signals from all three stages
are used for feedback (the output of each integrator and the output of the amplifier) and
completely define the state of the circuit. There are several variations on the basic
configuration, but the version shown in Figure 8.40 is probably the most straightforward. As
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shown, it has unity gain in the passbands of the highpass and lowpass outputs, and a gain
of −3 dB at the passband centre of the bandpass output. The highpass output is phase-
inverted in the passband, the bandpass output is in-phase in the centre of the passband, and
the lowpass output is phase-inverted in the passband. The presence of two integrators shows
that it is a second-order filter. Higher-order state variable filters are perfectly possible; for
example, a fourth-order state variable filter has four integrators. Higher order SVFs are dealt
with later in this chapter.

The amplitude responses of the three outputs can be seen in Figure 8.41, where the –3 dB
points of the highpass and lowpass filters coincide with the band centre of the bandpass
output at 1 kHz. The Q is set at 0.7071 to give a Butterworth filter characteristic at the
lowpass and highpass outputs, such as might be used in a second-order crossover
application. This low Q gives a very broad bandpass characteristic with no peaking at the
centre. The lowpass and highpass outputs both have an ultimate slope of 12 dB/octave, as
we would expect from a second-order filter, while the bandpass output has slopes of 6 dB/
octave on each side of its peak. Since the cutoff frequencies of the highpass and lowpass
filters are inherently the same, this is obviously a very convenient way to make a second-
order crossover in one handy stage. This does, however, mean that it is not possible to
employ frequency offset between the highpass and lowpass filters.

The state-variable filter may look more complex than the Sallen & Key or the MFB filter,
but it is in fact delightfully simple to design. Choose a resistor value R = R1 = R2 = R3 = R4,
and choose a capacitor value C = C1 = C2.

The required centre frequency f is then used to calculate R6 and R7:

R6 = R7 = 1
2πfC

(8.21)
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Figure 8.40: Second-order state-variable Butterworth filter. Set R1= R2= R3= R4, R6= R7,
and C1= C2. Centre frequency is 1 kHz.
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and Q is set by selecting an appropriate value for R5. For Butterworth it is 1.125 times the
value of R.

To obtain other filter characteristics, it is necessary to set a different value of Q and use a
frequency scaling factor to get the desired cutoff frequency, as we did with other forms of
filter. So, to get a Bessel characteristic with a cutoff frequency R5 is set to 0.575 times R,
and Equation 8.21 uses 1.273 times f as its input. The necessary values for the Q and
scaling factor are given in Table 8.15.

You will note that the lower the value of R5, the lower the Q; this is because the feedback
path from the first integrator controls the damping of the circuit; the more feedback, the
more damping.

Figure 8.41: Amplitude response of the three outputs from the state-variable Butterworth filter,
centre frequency 1 kHz.

Table 8.15: R5 Scaling Factor and Frequency Scaling
Factor for Filter Characteristics

Filter Type R5 Scaling Factor
Frequency Scaling

Factor

Bessel 0.575 1.273
Butterworth 1.125 1.000

3 dB-Chebyshev 3.47 0.841
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A notch output from a state-variable filter, with its centre at the same frequency as the
bandpass output, can be obtained by the “1-bandpass” principle. The bandpass output is
subtracted from the input signal by a fourth opamp. This is a relatively complicated way of
making a notch filter, and is not usually justified unless the ease of changing the centre
frequency which comes with a state-variable filter is important.

8.41 Variable-Frequency Filters: Sallen and Key

Active crossovers for sound-reinforcement applications commonly have variable crossover
frequencies so they can be used with a wide range of loudspeaker systems. This presents
problems when the usual Sallen & Key filters are used. A typical variable Sallen & Key
lowpass filter is shown in Figure 8.42, where ganged variable resistors alter the cutoff
frequency over a 10:1 range from 100 Hz to 1 kHz, such as might be used for the LF-MID
crossover point. R1 and R2 are end-stop resistors to limit the frequency range at the
upper end.

The variable resistors are normally of the reverse-log law so that the frequency
calibration is approximately linear in octaves. One problem with this circuit is that it
relies on the matching of the resistance values of the variable resistor tracks, and also
matching of the value obtained at a given degree of rotation, which is worsened by
the need for a log law. This gives rise to errors in the cutoff frequency; the effect on
the filter Q is much less. Be aware that in Figure 8.42 no precautions have been taken
to deal with the opamp input bias current flowing through the variable resistors. This
could lead to noises as the controls are altered unless suitable DC-blocking capacitors
are added.

A more serious difficulty is the very high degree of control-ganging that is required in a
practical crossover. If we assume the filter in Figure 8.42 is being used in a fourth-order
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Figure 8.42: Variable-frequency second-order Sallen and Key filter, cutoff variable
from 100 Hz to 1 kHz.
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Linkwitz–Riley crossover, which will very often be the case, then to vary the frequency of
the two cascaded Butterworth second-order filters in one crossover path we need a four-
gang part, which is obtainable but costly compared with a two-gang. Since we need to vary
the frequency of the another path simultaneously (to change the LF-MID crossover point we
must alter the frequencies in both the LF and MID paths), then we must procure an eight-
gang control, which is not only going to be relatively hard to get and expensive, but will
also probably have a poor control feel due to the increased friction. Fortunately, this is the
sort of control that is rarely altered so that is not the issue that it might be on a hi-fi
preamplifier volume control.

We now pause and think nervously of the need to control a stereo crossover. That implies a
sixteen-gang control, which is not really a practical component to specify in a design.
Matters are even worse if we try to use Multiple FeedBack (MFB) filters. The highpass
version still requires two resistors to be altered, while the lowpass demands three.

Lowpass filters similar to that in Figure 8.42 are most commonly used in mono subwoofer
crossovers where only a single second-order filter is required, and so an easily-obtained dual
control is all that is necessary.

8.42 Variable-Frequency Filters: State-Variable Second Order

The number of gangs in a crossover frequency control can be halved by abandoning the
Sallen & Key configuration, and instead using state-variable filters that produce outputs for
two paths simultaneously; this technology is widely if not universally used in variable-
frequency crossovers. We saw earlier that two variable resistors control the cutoff
frequencies of both the lowpass and highpass outputs simultaneously.

Figure 8.43 shows a variable-frequency, second-order, state-variable filter based on the
design of Figure 8.40 above. The frequency-control method is slightly more sophisticated
than that of the Sallen & Key filter; it aims to reduce the effect of control mismatches. The
variable resistors are now being use as potentiometers, so to a first approximation the effect
of differing total track resistances will cancel out. To make this effective the loading on the
potentiometer needs to be light relative to the track resistance, and you will observe that R6,
R7 have been increased in value by ten times, while C1 and C2 have been reduced in value
by ten times, to raise the impedances without altering the centre frequency. This will of
course have some consequences in terms of increased noise. Log controls can be used to get
a suitable frequency calibration law.

Altering the potentiometer setting alters the effective value of R6 and R7, and so the filter
centre frequency. R8 and R9 are end-stop resistors to limit the frequency range at the lower
end. Note that the bandpass output of A2 is not used.
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8.43 Variable-Frequency Filters: State-Variable Fourth Order

While the second-order variable-frequency filter works very nicely, second-order crossovers
are not exactly the most popular choice, because of their relatively shallow slopes and
considerable band overlap. What is much more desirable is a variable-frequency fourth-order
Linkwitz–Riley state-variable crossover; precisely this was provided by Dennis Bohn in
1983 [4], and this very clever implementation has seen extensive use in the crossover
business. Figure 8.44 shows a fourth-order variable filter with a crossover frequency range
from 210 Hz to 2.10 kHz. Note that there are now four integrators plus the summing/
differencing stage, to which feedback from all four integrators is returned. As usual, the
capacitors have been made preferred values, letting the resistor values fall where they may.

Figure 8.45 shows the lowpass and highpass outputs from the fourth-order filter. The two
outputs are both 6 dB down at the crossover frequency, as expected for a Linkwitz–Riley
crossover, and the ultimate slopes are at 24 dB/octave. The design of the filter for various
frequencies is not hard. It follows the same process as the second-order SVF described above.
Ignoring the variable resistors, and treating R8, R9, R10, and R11 as the total resistance feeding
each integrator from the previous stage, the centre frequency f is then set by choosing R6 (= R7):

R8 = R9 = R10 = R11 = 1
2πfC

(8.22)

Note that the resistors around A1 have to be in the ratio shown for correct operation and to
get the correct Q for a Linkwitz–Riley alignment. The required ratios are shown in brackets
in Figure 8.44.

Figure 8.46 attempts to give some insight into how the filter works. The output from A1,
the summing/differencing stage, is the highpass output, with an ultimate roll-off slope of
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Figure 8.43: Variable-frequency, second-order, state-variable filter, with crossover frequency
variable from 85 Hz to 1 kHz.
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Figure 8.44: Fourth-order variable-frequency state-variable filter, with crossover frequency variable
from 210 Hz to 2.10 kHz.
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Figure 8.45: Lowpass and highpass outputs from the fourth-order variable-frequency
state-variable filter, crossing over at −6 dB for a Linkwitz–Riley alignment. Crossover

frequency is set to 1 kHz.

Figure 8.46: The outputs from all five stages of the fourth-order variable-frequency
state-variable filter, with crossover frequency set to 1 kHz.
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24 dB/octave below crossover as frequency decreases. The output of the first integrator A2
is the same but with a 6 dB/octave slope decreasing with frequency applied across the whole
range, so the part of the response that was flat now slopes downward at 6 dB/octave slope
with frequency, while the 24 dB/octave section has its slope reduced by 6 dB/octave to give
18 dB/octave. The second integrator A3 performs the same process again, so its output is a
fourth-order bandpass response with skirt slopes of 12 dB/octave. The third integrator A4
does the same thing, its output having a 6 dB/octave slope in its low-frequency section, and
a 18 dB/octave slope in its high-frequency section. The fourth integrator completes the
process, and its output is the lowpass signal, with a flat low-frequency section and a 24 dB/
octave roll-off above the crossover frequency. Note that all the plots in Figure 8.46 pass
through the −6 dB point at the crossover frequency.

This configuration could of course be adapted for fixed-frequency operation by removing
the variable elements.

8.44 Variable-Frequency Filters: Other Orders

You may at this point be wondering what happened to third-order state variable filters;
there appears to be no reason why these should not be constructed in exactly the same
way, using three integrators plus a summing/differencing stage. In view of the lesser
desirability of third-order crossovers compared with fourth-order, I have chosen not to
investigate these at this time. It is certainly possible to make eighth-order variable-
frequency state-variable filter crossovers by using the same approach, as demonstrated by
Dennis Bohn in 1988 [5], and so there is every reason to assume that fifth-, sixth-, and
seventh-order versions could be implemented without great difficulty. Eighth-order
crossovers are sometimes used in sound reinforcement applications, but seem unlikely to
become popular in domestic hi-fi.
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CHAPTER 9

Bandpass & Notch Filters

This chapter deals with bandpass and notch filters. Bandpass filters as such are rarely used
in performing the basic band-splitting functions of a crossover (the filler-driver concept
being the notable exception), but they can be useful for equalisation purposes, and are
essential for putting together high-order allpass filters for time correction. Notch filters can
also be useful for equalisation, but their most important use is in the construction of notch
crossovers, whether based on elliptical filters or other sorts of filtering.

9.1 Multiple-Feedback Bandpass Filters

When a bandpass filter of modest Q is required, the Multiple FeedBack (MFB) or Rauch
type shown in Figure 9.1 has many advantages. The capacitors are equal and so can be
made any preferred value. The opamp is working with shunt feedback and so has no
common-mode voltage on the inputs, which avoids one source of distortion. It does,
however, phase-invert, which can be inconvenient. Phase inversions are no problem in
passive crossovers—you simply swap over the wires to the speaker unit—but in an active
crossover an extra inverting stage may be needed to undo the first inversion.

Figure 9.1 shows the normal configuration of an MFB or Rauch filter. The minimum Q
that can be normally achieved is 0.707 (1/√2), which requires R2 to be set to infinity, that
is, not fitted at all. If you want a lower Q than that, you still omit R2, but the vital point is
that a different set of design equations are used, which give different values for the other
components and allow lower Q’s to be realised. These lower Q’s are required for time-delay
compensation allpass filters, and for filler-driver crossovers. The design process for allpass
filters is fully described in Chapter 10 on time-domain filtering, where low Q’s are
especially necessary. This variation is on the standard MFB filter is sometimes called a
Deliyannis filter.

Note that the Deliyannis filter is not suitable for high Q’s, because as the Q is increased, the
passband gain increases with it; it cannot be controlled independently as it can in the
standard MFB filter. This will lead to either headroom problems, or alternatively noise
problems if the signal is attenuated before it reaches the filter.

The filter response is defined by three parameters—the centre frequency f0, the Q, and the
passband gain (i.e., the gain at the response peak) A. The filter in Figure 9.1 was designed
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for f0 = 250 Hz, Q = 2, and A = 1 using the equations given, and the usual awkward resistor
values emerged. The resistors shown are the nearest E96 values, and the simulated results
come out as f0 = 251 Hz, Q = 1.99, and A = 1.0024, which, as they say, is good enough for
rock’n’roll.

The Q of the filter can be quickly checked from the response curve as Q is equal to the
centre frequency divided by the −3 dB bandwidth, that is, the frequency difference between
the two −3 dB points on either side of the peak. This configuration in either Rauch or
Deliyannis form, is not suitable for Q’s greater than about 10, as the filter characteristics
become unduly sensitive to component tolerances. If independent control of f0 and Q are
required the state-variable filter should be used instead.

Similar configurations can be used for lowpass and highpass filters; see Chapter 8. The
lowpass version does not depend on a low opamp output impedance to maintain stop-band
attenuation at high frequencies, and so avoids the oh-no-it’s-coming-back-up-again behaviour
of Sallen & Key lowpass filters.

9.2 High-Q Bandpass Filters

As we have just seen, the simple MFB/Rauch filter is not suitable for high Q’s. When these
are required (which is not likely to be very often in crossover design) there are many, many
kinds of active filter that can be used. We will just take a quick look at one of the most
useful, the Double-Amplifier BandPass or DABP filter; this is a good example of the way that
active filter performance can sometimes be transformed by adding one more inexpensive
opamp section. Figure 9.2 shows the circuit with values for a centre frequency of 1 kHz and
an impressively high Q of 70, with A2 is being used to provide one of the feedback paths.
Note the high value of R1 with respect to the rest of the circuit; this derives from the high Q.

Input
R1

C1
100nF

C2

100 nF
R2
1.82K

R3

25.5K

Out

A1
+

−
12.7K

A = passband gain

C = C1= C2

R1 =
Q

A.2π f0C
R3 =

2Q

2π f0C
R2 =

1

2Q − A  2π f0C
Q

Figure 9.1: An MFB or Rauch bandpass multiple-feedback filter with f0= 250 Hz, Q= 2, and a
gain of 1.
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The design equations are straightforward; just calculate the value of R and then derive the
actual resistor values from it. R4 and R5 are non-critical so long as they are of equal value;
as usual they should be made as low as possible without overloading A1 output, in order to
keep down both their Johnson noise and the effect of the current noise flowing from the A2
non-inverting input.

The gain at resonance is always +6 dB, which is very often not wanted. The most
convenient way to introduce a compensating 6 dB of attenuation is to split R1 into two
resistors which have in parallel the same value as R1, and connect one of them to ground.
This technique is described in Chapter 8 on lowpass and highpass filters.

Figure 9.3 shows the satisfyingly sharp resonance obtained with the circuit of
Figure 9.2. Away from the peak, the filter slopes slowly merge into straight lines at
6 dB/octave, as is normal for second-order bandpass responses. Fourth-order bandpass
filters with 12 dB/octave skirt slopes can be made by cascading two second-order
bandpass filters.

9.3 Notch Filters

There are a very large number of notch filters, each with their own advantages and
disadvantages. The width of a notch is described by its Q. As for a resonance peak, the Q is
equal to the centre frequency divided by the −3 dB bandwidth, that is, the frequency difference
between the −3 dB points on either side of the notch. Figure 9.4 demonstrates this procedure for
a notch with a centre frequency of 1.00 kHz and a Q of 1.5; the bandwidth between the
two −3 dB points is 0.667 kHz, so Q = 1.00/0.667 = 1.5. Be aware that the Q of a notch has

R1 = Q R

R2 = R3 = R

R4 = R5

Out

R4

R5
2.2K

R2
1591R

R1
111.4K

In

C1
100nF

100nF

2.2K

R3

A1

NE5532P

NE5532P

+
−

+
−

1591R

A2
R =

1

2π f0C

C2

Figure 9.2: Dual-Amplifier BandPass (DABP) filter with a centre frequency of 1 kHz and
a Q of 70. The gain at resonance is always +6 dB.
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Figure 9.3: Dual-Amplifier BandPass (DABP) filter with a centre frequency of kHz and with a centre frequency of 1.00 kHz and a
Q of 70. The gain at resonance is +6 dB.
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no special relation to the depth, but if the notch is really shallow—more of a dip than a
notch—then the response at the ‒3 dB points may be affected.

It is important to understand that while the symmetrical notch shown in Figure 9.4 is the
best-known sort, there are also highpass notches and lowpass notches. There is more
information on the use of lowpass and highpass notches to create elliptical filters in Chapter 5
on notch crossovers, and in Chapter 8 on highpass and lowpass filters.

9.4 The Twin-T Notch Filter

The best-known notch filter is the Twin-T notch network shown in Figure 9.5a, invented in
1934 by Herbert Augustadt [1]. The notch depth is infinite with exactly matched components,
but with ordinary ones it is unlikely to be deeper than 40 dB. It requires ratios of two in
component values, such as 100Ω – 200Ω, and there are only six such pairs in the E24 resistor
series; see Chapter 12. Capacitors have sparser value series and two will need to be paralleled
to get the 1:2 ratio required.

The Twin-T notch when used alone has a Q of only ¼, which is too wide to be useful. It is
therefore normally used with positive feedback via an opamp buffer A2, as shown. The
proportion of feedback K and hence the Q-enhancement is set by R4 and R5, which here
give a Q of 1. A great drawback is that the notch frequency can only be altered by
changing three components simultaneously.

Figure 9.4: Determining the Q of a notch filter, which is equal to the centre frequency
divided by the bandwidth between the two –3 dB points.
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9.4.1 The 1-Bandpass Notch Filter

Another way of making notch filters is the “one-minus-bandpass” principle, usually called
‘1-BP’. The input goes through a bandpass filter, typically the Multiple FeedBack type
described earlier, and is then subtracted from the original signal. The accuracy of the
cancellation and hence the notch depth is critically dependent on the mid-band gain of the
bandpass filter. Figure 9.5b shows an example that gives a notch at 50 Hz with a Q of 2.85.
The subtraction is performed by A2, as the output of the MFB filter is phase-inverted. The
MFB filter is designed for unity passband gain, but the use of E24 values as shown means
that the actual gain is 0.97, limiting the notch depth to −32 dB. The value of R6 can be
tweaked to deepen the notch; the nearest E96 value is 10.2 kΩ which gives a depth of
−45 dB. The final output is inconveniently phase-inverted in the passband.

9.4.2 The Bainter Notch Filter

A most useful notch filter is the Bainter configuration [2, 3] shown in Figure 9.5c, where
the values shown give a notch at 700 Hz with a Q of 1.29. The design equations can be
found in [3], but I suggest you scale the values given here. This filter is non-inverting in
the passband, and has the advantage that two out of the three opamps are working at
virtual earth and will give no trouble with common-mode distortion. It has the important
feature that the notch depth does not depend on the matching of components, but only on
the open-loop gain of the opamps, being roughly proportional to it. With TL072-type
opamps the depth is from −40 to −50 dB. Having said that, deep notches are not normally
required for crossover design; even notches that look worryingly shallow usually have a
negligible effect on the summed response. The only real downside to the Bainter is that it is
one of those enigmatic configurations that on inspection give very little clue as to how
they work.

A property of the Bainter filter that does not seem to appear in the textbooks is that if R1
and R4 are altered together, that is, having the same values, then the notch frequency is
tuneable with a good depth maintained, but the Q does change proportionally to frequency.
To get a standard notch with equal gain either side of the crevasse R3 must equal R4. R4
greater than R3 gives a lowpass notch, while R3 greater than R4 gives a highpass notch;
these responses are useful for making elliptical filter, and for other applications in crossover
design; see Chapter 8 for more details.

The Bainter filter is usually shown with equal values for C1 and C2. This leads to values
for R5 and R6 that are a good deal higher than other circuit resistances and this will impair
the noise performance. I suggest that in Figure 9.5c, C2 is made ten times C1, that is, 100
nF, and R5 and R6 are reduced by ten times to 5.1 kΩ and 6.8 kΩ; the response is unaltered
and the Johnson noise much reduced.
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Figure 9.5: Notch filters: (a) Twin-T with positive feedback, notch at 795 Hz and a Q of 1; (b) “1-bandpass” filter with
notch at 50 Hz, Q of 2.85; (c) Bainter filter with notch at 700 Hz, Q of 1.29; (d) Bridged-differentiator

notch filter tuneable 80 to 180 Hz.
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As an example of this process, a low-noise Bainter filter with a symmetrical notch at 1.0 kHz
and a Q of 2.3 is shown in Figure 9.6. Starting from the circuit of Figure 9.5c, both capacitors
were scaled by the same ratio to change the notch centre frequency to 1 kHz. The value of R6
was then changed to give the desired Q of 2.3. The first stage of impedance reduction was to
then alter R3, R4 and C2 so that the resistance values were decreased by the same ratio as C2
was increased; this leaves the frequency-dependent behaviour of this network unchanged. The
second stage of impedance reduction reduces R6 while increasing C1 by the same ratio, once
again keeping the frequency-dependent behaviour the same.

The limits of this procedure are set by the value of R3, which directly loads the output of A1,
the value of R4 that loads A3, and the combined value of R5, R6 in series, which loads A2.
The last condition is less critical; as you can see from Figure 9.6, the values of R5 and R6 are
such as to present only a light load on A2 output, despite the fact that C1 is considerably bigger
than C2. A further reduction in R5, R6 would be possible, but C1 then starts to get expensive,
and the loading on whatever stage is driving this filter must also be considered.

9.4.3 The Bridged-Differentiator Notch Filter

A notch filter that can be tuned with one control can be useful in development work. Figure 9.5d
shows a bridged-differentiator notch filter tuneable from 80 to 180 Hz by RV1. R3 must
theoretically be six times the total resistance between A and B, which here is 138 kΩ, but 139 kΩ
gives a deeper notch, about −27 dB across the tuning range. The downside is that Q varies with
frequency from 3.9 at 80 Hz to 1.4 at 180Hz.

9.4.4 Boctor Notch Filters

Another interesting notch filter is the Boctor circuit, which uses only one opamp [4, 5].
Versions exist that can give either a highpass or lowpass notch. The design equations are
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2937R

Figure 9.6: Bainter filter with notch at 1 kHz and a Q of 2.3.
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complicated but can be found in the two references given. Figure 9.7 shows the highpass
and lowpass versions.

Figure 9.8 shows the highpass notch produced by the circuit of Figure 9.7b above; the
passband gain is +12 dB, with a gain of +6 dB on the low-frequency side of the notch.
The capacitor values may be scaled to change the notch frequency but they must be the same.

Figure 9.8: Response of Boctor filter in Figure 9.7b, giving a highpass notch at 150 Hz with
a Q of 1. Boctor highpass or lowpass notch filters are frequently used as part of elliptical

filters; see Chapter 7.

(a)

Out

R6

R3

R2

A1
NE5532P

+
−

+
−

C2

C1In

R1 R4 R5

(b)

Out

R6

20K
R1

R4
4K

R3
6.67K

5K

R5

20KR2 10K

A1
NE5532P

C1

C2

150 nF

150 nF

In

Figure 9.7: Lowpass-notch (a) and highpass notch (b) Boctor filters. The design at (b) has a
notch at 150 Hz with a Q of 1.
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A lowpass notch is the mirror image of this sort of response, with the low-gain section on
the high-frequency side.

9.4.5 Other Notch Filters

The field of active filters is rich in possibilities. Other notch filters that there is no space to
examine here, but which can be found in the filter textbooks, are the Fliege filter [6], the
Berka-Herpy filter, the Akerberg-Mossberg filter and the Natarajan filter. Filters that can
generate highpass or lowpass notches are Friend’s SAB circuit [7] and the Scultety filter.
Both the biquad and state-variable filters can be configured to give notch outputs.

9.4.6 Simulating Notch Filters

When simulating notch filters, assessing the notch depth can be tricky. You need a lot of
frequency steps to ensure you really have hit bottom with one of them. For example, in one
run, 50 steps/decade showed a −20 dB notch, but upping it to 500 steps/decade revealed it
was really −31 dB deep. In most cases having a stupendously deep notch is pointless. If you
are trying to remove an unwanted signal then it only has to alter in frequency by a tiny
amount and you are on the side of the notch rather than the bottom and the attenuation is
much reduced. The exception to this is the THD analyser, where a very deep notch (120 dB or
more) is needed to reject the fundamental so very low levels of harmonics can be measured.
This is achieved by continuously servo-tuning the notch so it is kept exactly on the incoming
frequency.
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CHAPTER 10

Time Domain Filters

10.1 The Requirement for Delay Compensation

A lot of discussion on loudspeaker behaviour is based on mathematically simple point sources,
but real loudspeaker drive units have a physical size and must be mounted with some space
between them. If they are mounted on a flat baffle as in Figure 10.1, their acoustic centres (the
position from which the sound effectively radiates) have different horizontal distances from the
baffle position. If we take our listening position as in-line with the tweeter axis, as is usually
done, then there is a greater distance from the ear to the MID unit and an even greater one to
the bass unit. To minimise the differences, the drive units are normally mounted as close
together as physically possible. We therefore have two effects giving rise to different distances
from drive unit to ear and hence differing delays in the arrival of sound:

1. The vertical spacing of the drive units
2. The different distances between the drive-unit acoustic centres and the front baffle

I am assuming here that the drive units are mounted in a vertical line. This is almost always
the case as it gives the best horizontal directivity.

These delays lead to frequency-dependent variations in the response, due to cancellation and
reinforcement at a given point in space. The dimensions shown in Figure 10.1 are intended
to be reasonably typical, but I will tell you now that they have also been carefully chosen to
require a compensation delay of exactly 80 usec for the tweeter and 400 usec for the MID unit;
these figures are used extensively as examples throughout this chapter. It must not be thought
that a spacing of a few millimetres is insignificant. The 22 mm difference between the MID
drive unit and the tweeter should be compared with the wavelength of sound at 4 kHz, which
is 86 mm. At this frequency, 22 mm therefore gives a 90° phase-shift, turning a +6 dB fully
in-phase reinforcement into a +3 dB partial reinforcement. This sort of thing is obviously
going to cause frequency response irregularities.

This is why delay compensation is highly desirable for multi-way loudspeakers. The
technique is sometimes called time equalisation or time alignment. Siegfried Linkwitz says
that crossovers that are not time-compensated are only marginally usable [1], and, for what
it’s worth, I agree with him. Figure 10.1 shows a simplified diagram of the situation; please
be aware that the drawing is very much not to scale. First, we have to decide how far away
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to put our reference listening point P, marked by that disembodied ear floating in space.
This distance is usually set at 1 or 2 metres; I have here chosen 2 metres as the more
realistic listening distance but of course this will vary in practice, upsetting our careful
calculations somewhat. We can but press on and do our best.

The vertical distance between the drive-unit centre-lines is easy to determine, but the position of
the acoustic centres is less easy, not least because it usually varies somewhat with frequency.
Some people use the voice-coil cap, but others claim that the centre of the voice-coil itself
should be regarded as the acoustic point of origin, as the speed of sound in the average coil
assembly is roughly the same as in air; this seems more than a bit dubious as the speed of
sound is in fact quite different in solids, and there are actually two different speeds of sound,
transmitted in one case by volumetric deformations and in the other by shear deformations.

Add to this the composite construction of the voice-coil, with copper windings bonded to
the coil former, and the whole situation gets very complicated. The position of the acoustic
centre is not normally part of a drive-unit specification.

An important consideration is that we only need to consider the delay that must applied to
the tweeter with respect to the MID unit, and the delay to be applied to the MID unit with
respect to the LF unit. It is not necessary to delay the tweeter to match the LF unit, because

Tweeter

Baffle

15
0

m
m

45
0

m
m

117mm

Bass unit

Not to scale

MID unit

2 m P

22mm

Figure 10.1: The need for delay compensation; the differences in path lengths to the ear when three
drive units are mounted in a common vertical plane.
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the LF unit output should be negligible when the tweeter is operating, and vice versa. This
greatly reduces the amount of delay that needs to be used on the HF unit.

10.2 Calculating the Required Delays

The initial step is to calculate what the path-length differences are. We need to find the path
lengths MP and BP in Figure 10.2. MP is the hypotenuse of the right-angled triangle MYP,
and the two shorter sides are YM and (YT + TP). Using Pythagoras:

MP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YM2 + ðYT+TPÞ2

q
(10.1)

Likewise, BP is the hypotenuse of right-angled triangle BXP, and the two shorter sides are
XB and (XT + TP). Flexing our Pythagoras again:

BP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XB2 + ðXT+TPÞ2

q
(10.2)

For the dimensions in Figure 10.2 and a listening distance TP of 2 metres, we find the path
lengths are MP = 2.027 metres and BP = 2.165 metres. It is the difference between these path
lengths and the listening distance that causes the delay we need to compensate for; the extra
MID path length is thus 2− 2.027 = 0.027 metres = 27 mm, and the extra LF path length is
the difference between the MID path and the LF path, in other words 2.027− 2.165 =
0.137 metres = 137 mm.
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Figure 10.2: The delay situation of Figure 10.1 reduced to its elements. We need to calculate
MP and BP.
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Having calculated the path length differences, the delays themselves are simply calculated by
using the speed of sound. This is 343.2 metre/sec (equal to 767.7 mph or 1.13 feet per msec) at
20°C. It varies slightly with air temperature, being proportional to the square root of absolute
temperature; this is measured from absolute zero at −273°C, which is why the speed variation is
relatively small at the kind of temperatures we are used to. Table 10.1 shows this, together with
the percentage variation. The speed of sound varies by ±2 % between 10 and 30°C, so for this
reason alone there really is no point in being overly precise with delay calculations. Sound
velocity varies very slightly with barometric pressure, and humidity also has a small but
measurable effect (it can cause an increase of 0.1% – 0.6%), because some of the nitrogen and
oxygen molecules in the air are replaced by lighter water molecules.

Dividing the path length differences by the speed of sound, we find that the tweeter must be
delayed by exactly 80 usec with respect to the MID unit, and the MID unit must be delayed
by exactly 400 usec with respect to the LF unit. As I mentioned earlier, these nice round
figures are no accident.

At the start of these calculations we had to choose a listening distance, and we picked
2 metres. In reality, the listening distance will vary, and we’d better find out how much
difference this makes to the delays required for exact delay compensation. A bit of automated
Pythagoras on a spreadsheet gives us the rather worrying Table 10.2, which gives the delays
required for listening distances between 1 and 10 metres, and for infinity (but not beyond).

Table 10.2 also gives the percentage variation of each delay with respect to the 2-metre
listening distance. You can see at once that picking 2 metres as the reference rather than
1metre has made big differences to the delays needed; 19% less for the tweeter delay and a
thumping great 25% less for the MID delay. One metre is not a very practical distance for
listening to a big hi-fi system of the sort that is likely to use active crossovers, and I would
have thought that 1.5 to 5metres is a likely range for normal use. This assumption gives us a
tweeter delay that varies from +6.6% to −12.1%, while the MID delay varies from +9.0% to
−17.7%. This makes it clear that if fixed amounts of delay are used there is, once more, no
call for extreme precision. I am not aware that any manufacturer has ever produced an active
crossover with a “Listening distance” dial that would alter the two delays appropriately to

Table 10.1: How the Speed of Sound Varies with Temperature

Temp deg C Speed m/sec % Ref 20°C

35 351.9 2.5
30 349.0 1.7
25 346.1 0.8
20 343.2 0.0
15 340.3 −0.9
10 337.3 −1.7
5 334.3 −2.6
0 331.3 −3.5
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match the listening position; it’s an interesting idea. It would only work with one model of
loudspeaker as the variations required would depend on the horizontal and vertical offsets.

The required delays alter more slowly as the listening distance increases and the vertical
offsets become relatively less significant. The need to compensate for the horizontal offsets
is, however, unchanged, and the delays required asymptote to these values at an infinite
listening distance. The situation is illustrated in Figure 10.3, which plots how tweeter and
MID delays change with the listening distance.

To put this into perspective, let’s look at the effect of uncertainty in the position of the acoustic
centre of a drive unit. We currently have to apply a delay of 400 usec to the MID unit to
match the LF unit output. But if we hold the LF unit in our hands and solemnly contemplate
it, we might conclude that the true acoustic centre could be 30mm either side of the position
we have assumed. If it is 30mm forward, then the MID delay required falls to 313 usec; if is
30mm to the rear, we need 484 usec. This shows that errors in finding the true acoustic centre
can have just as much effect as altering the listening distance, and it is a bit worrying.

We have so far glibly assumed that the position of the acoustic centre is constant with
frequency. I currently have no information on this, but if it does prove to vary with frequency
then it should be possible to design a delay filter system that compensates for this.

Sound reinforcement applications are rather different in the distances involved, but the delay
calculations work the same way. The listening distances are much greater, but then the
physical separation between banks of HF units and banks of MID units, for example, will
also be greater.

Table 10.2: The Variation of the Delays Required with Listening-Point Distance

Listening Distance Tweeter Delay Tweeter % MID Delay MID %
Metres usec Ref 2 Metres usec Ref 2 Metres

1.0 95.7 19.6% 500.6 25.2%
1.1 92.9 16.1% 483.8 21.0%
1.2 90.5 13.2% 469.2 17.3%
1.5 85.3 6.6% 435.9 9.0%
2.0 80.0 0.0% 400.0 0.0%
2.5 76.8 −4.0% 377.3 −5.7%
3.0 74.6 −6.8% 361.7 −9.6%
3.5 73.1 −8.6% 350.3 −12.4%
4.0 72.0 −10.0% 341.7 −14.6%
4.5 71.1 −11.1% 334.9 −16.3%
5.0 70.3 −12.1% 329.4 −17.7%
6.0 69.2 −13.5% 321.1 −19.7%
7.0 68.5 −14.4% 315.1 −21.2%
8.0 67.9 −15.1% 310.6 −22.4%
9.0 67.4 −15.8% 307.1 −23.2%

10.0 67.1 −16.1% 304.3 −23.9%
Infinity 63.8 −20.3% 278.4 −30.4%
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Delay compensation is only really practicable with active crossovers. The electrical
losses involved in LC delay lines in passive crossovers, and the cost of the
components to implement, makes it an unattractive proposition. So far we have only
dealt with 3-way loudspeakers. The same principles are of course applicable to 4 ways
or more.

10.3 Signal Summation

I shall shortly be showing you how the difficulty of designing a delay filter, and the cost of
its components, depends very much on how much delay is required and over what range of
frequency it must remain constant. At the crossover frequency, the delay must be constant at
the required value, but at some frequency above this the amount of delay will begin to fall,
and we need to know how much the acoustical summation of the two signals, which
combine in the air in front of the speaker, is going to be affected by a fall in the time delay
above the crossover frequency. Figure 10.3 gives the rules for adding sine waves of
arbitrary magnitude and phase.

There is, as far as I am aware, no published work on the delay-flatness required for
loudspeaker delay compensation. I have here assumed that a reduction of not more than
10% in the group delay is acceptable so long as it is well away from the crossover
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Figure 10.3: The variation of the required tweeter delay (bottom) and the required MID delay (top)
with listening distance, for the dimensions given in Figure 10.1.
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frequency, at which point the contribution of the drive unit being compensated is
negligible.

Let us assume that the delay falls by −10% at a frequency two octaves above the
relevant crossover frequency. If we are using a Linkwitz–Riley 4th order crossover
then the ultimate filter slopes will be 24 dB/octave. The higher frequency unit of
the drive-unit pair, the one with the compensation delay added, will therefore be
something like 48 dB down, though this figure is likely to be affected by drive-unit
response irregularities. From the equations in Figure 10.4, we can quickly determine
that even using the worst-case phase-shift for the smaller signal (0°, 180°, 360°, etc.),
the output will only be altered in amplitude by ±0.035 dB, which is completely
negligible compared with other possible errors. I therefore suggest that the 10% fall-
off in time delay two octaves away from the crossover frequency will have no audible
consequences.

Table 10.3 show how the amplitude of the combined signal is increased for varying
attenuations of the delayed signal, assuming a worst case of signals exactly in phase. It is
clear that delayed signals below −40 dB will have an absolutely negligible effect, no matter
what phase-shift is imposed on them by a fall-off of delay time.

Table 10.3: The Result of Combining Two In-Phase Sinewaves,
with One at a Lower Amplitude

Amplitude dB Combined dB Amplitude dB Combined dB

0 6.021 −25 0.475
−1 5.535 −30 0.270
−5 3.876 −35 0.153

−10 2.387 −40 0.086
−15 1.422 −45 0.049
−20 0.828 −50 0.027

With amplitudes a, b, and phase shift a

We get asin x+bsin(x+a)=c sin(x+b ) ,

and phase b = arctan

Where, magnitude c= √a2+b2+2ab cos a

b sin a 0 if a+b cos a≥0

πa+b cos a 
+

if a+b cos a<0

Figure 10.4: The summation of two sinusoidal signals of arbitrary amplitude and
phase to give a single sinusoidal output (Equation 10.3).
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10.4 Physical Methods of Delay Compensation

Before we leap into the fascinating world of time domain filters, we will take a quick look
at some of the physical methods used for delay compensation. These are shown in two-way
loudspeaker form in Figure 10.5. Clearly it is best to mount the drive units as close together
vertically as physically possible to minimise the path difference, but loudspeaker
manufacturers do not appear to always do this, possibly because of the aesthetic drawbacks
of two drive units that look “crammed together.” Possibilities are:

1. Tilting the front baffle. This compensates the delay for a listener on the horizontal
axis. The problem is that the drive units will have been designed for optimal
performance on the drive-unit axis, and now you are listening to off-axis output. This
method is relatively cheap to manufacture, but people are used to having the front of
a loudspeaker facing them directly, and as a result there is a general feeling that it
looks wrong. It may compensate for the horizontal offsets (though for it to work with
a three-way system you will have to have the three acoustic centres in a straight line,
which may not be easy to arrange), but only reduces the effective vertical offsets
slightly.

(a) (b) (c)

Figure 10.5: Physical methods of compensating for drive-unit delay: (a) Tilting the front baffle;
(b) stepping the front baffle; (c) separate box for the tweeter.
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2. Putting a step or steps in the front baffle. This enables you to listen on the intended
axis, but costs more to implement. There may be diffraction problems with the step or
steps, which will need to be carefully shaped, or possibly compensated for by
equalisation in the crossover. It also makes the enclosure more complex and
significantly more expensive to build. It can correct the horizontal offsets exactly but
does nothing at all to reduce the vertical offsets—in fact they will have to be bigger to
make room for the steps between the drive units.

3. A separate box for the tweeter. More expensive again, and there may be more
diffraction problems with the second box. A three-way system will require three boxes,
and once more the horizontal offsets may be corrected exactly, but the vertical offsets
are likely to be increased.

While these methods can compensate for the differing distances of the drive-unit acoustic
centres from the front baffle—the horizontal offsets, none of them can help much with the
other half of the problem—the vertical offsets. This appears to be a serious inherent
problem in the vast majority of loudspeaker designs. The only way to eliminate the vertical
offsets is to mount two loudspeakers in effectively the same physical position by using a
dual-concentric design, where typically a tweeter is mounted in front of an LF unit voice-
coil or behind it. Current versions of this are the British KEF Uni-Q driver, and the French
Cabasse co-axial drive unit, which has an annular diaphragm surrounding a small horn-
loaded dome tweeter. The famous Tannoy Monitor Red Loudspeaker had a rear-mounted
tweeter that used the LF cone itself as a horn.

The dual-concentric approach has the great benefit that there are no vertical offsets that
require delay compensation that varies with listening distance. The horizontal offsets
may or may not remain, depending on the details of construction, but can be easily
compensated for by constant delays. It would at first appear that a major limitation of
dual-concentric technology is that it is restricted to two-way loudspeakers, as it is hard to
mechanically fit LF, MID, and tweeter units all on the same axis. However, Cabasse has
recently announced not only the TC23 three-way coaxial driver, which combines a tweeter
and separate annular high-MID and low-MID diaphragms, but also the QC55 four-way
unit that combines the TC23 with a 22-inch LF unit. This is built into a spherical
enclosure, which is the ideal shape for minimising diffraction effects. This technology
clearly wants watching.

10.5 Delay Filter Technology

In the analogue domain, delay equalisation is performed by using allpass filters, which have
a flat amplitude-frequency response but a phase-shift that varies with frequency. Allpass
filters, like their more familiar lowpass and highpass relatives, come in first-order, second-
order, third-order, and higher-order variants. The higher orders have increasing complexity

Time Domain Filters 269



but give a faster phase-change at the turnover frequency, allowing the group delay to remain
flatter for further up the frequency range. This is analogous to the frequency response of a
filter for amplitude; the higher order the filter the flatter the response will be until the
turnover frequency is reached.

Allpass filters are sometimes used to flatten the delay curve of a high-order filter. This often
means matching the combined delay of two or three allpass stages with a delay curve that
looks like a dog’s back leg, and typically this requires computer optimisation. Here,
mercifully, the situation is much simpler. We just want a constant delay with frequency.

You can also obtain delays with lowpass filters such as the Bessel sort, which is optimised
for flat group delay, but the bandwidth is much lower, as you might expect. There is more
on the topic of obtaining delay with lowpass filters at the end of this chapter.

10.6 Sample Crossover and Delay Filter Specification

This is the basic specification for a loudspeaker crossover that we will use as an example
for this chapter.

No of bands Three
Type Linkwitz–Riley 4th order
MID/HF crossover frequency 2.5 kHz
LF/MID crossover frequency 400 Hz
HF delay 80 usec, tolerance +/−5%
MID delay 400 usec, tolerance +/−5%

Most of the delay filter examples in this chapter will be designed for the 80 usec delay.

10.7 Allpass Filters in General

When I first encountered the phrase “allpass filter,” my immediate reaction—and here I
suspect I am not alone—was “What’s the point of that, then?” The point is, of course, that
while the frequency response is flat, the phase-shift varies with frequency. A less enigmatic
name would be “variable-phase-shift-only filter” but I’m quite sure that won’t catch on.

The general form of an allpass filter is shown in Figure 10.6. There are two signal paths,
one of which goes through the box labeled T(s), which just means that it has a frequency
response that varies with frequency. It will be either a simple RC first-order filter or a
second-order bandpass filter; its output is amplified by two and subtracted from the original
signal.

It is important to be aware that allpass filters do not inherently have an absolutely flat
frequency response. Due to the finite gain-bandwidth-product of the opamps, and
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components that do not have mathematically exact values, the magnitude response is likely
to show small deviations from perfect flatness. These deviations are, however, usually very
small and of no consequence compared with speaker unit tolerances.

10.7.1 First-Order Allpass Filters

Figure 10.7 shows the two versions of the basic first-order allpass filter. This deceptively
simple circuit is analogous to a first-order RC filter and so gives a slow phase change as
frequency changes.

The first version in Figure 10.7a is non-inverting at low frequencies, in other words the
phase shift is 0°. As the frequency rises the phase shift increases until it approaches 180°
(inverting) at high frequencies, as shown in Figure 10.10 below. This changing phase-shift
is equivalent to a delay. The sharp-eyed reader will note that in Figure 10.10 the phase has
actually reached 180°, and is clearly headed for more. This plot was produced by simulating
the circuit with a model of a real opamp, rather than just evaluating a mathematical
equation, and the extra phase-shift has accumulated because of the finite open-loop
bandwidth of that opamp. This is what will happen when you build real crossovers, but with
any modern opamp the effects are negligible. Looking at Figure 10.10 and Figure 10.11 we
can see that the phase is still changing quite quickly in the 10 kHz – 20 kHz range (from
−135° to −158°, i.e., 21°) when the delay has fallen to a quarter of its maximum value.
This is not going to give us a minimum-phase crossover.

When the positions of the resistor and capacitor are exchanged, the same phase change is
obtained but phase inverted, so the second version in Figure 10.7b inverts at low
frequencies but has an in-phase output at high frequencies. An allpass filter gives twice the
maximum phase-shift of an ordinary filter of the same order. The non-inverting version of
Figure 10.7a could also be called the RC version, as the resistor comes before the capacitor,
forming a lowpass filter. This means the common-mode voltage will fall with frequency.
The inverting version of Figure 10.7b is correspondingly the CR version, and the capacitor-
resistor arm now acts as a highpass filter.

In
+1

−2

Sum

T(s)

Out

Figure 10.6: The general form of an allpass filter. The path bypassing T(s) must be
inverted and have half the gain.
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A first-order allpass filter has only one parameter to set; the RC time-constant. The
delightfully simple calculation for the low-frequency delay is shown in Equation 10.3. There
is no such thing as the Q of a first-order allpass. The output of an allpass filter does not
have a “turnover” as such. According to some authors its operation is defined by the
frequency at which the group delay has fallen to 1/√2 of its low frequency value; while
this corresponds in a way to “−3 dB” for a amplitude-frequency filter, it has no real
significance in itself. A more useful description is the frequency at which the phase-shift
reaches 90°, half-way between the extremes of 0° and 180°, because it is derived very
easily from the circuit values, as in Equation 10.4. Note that these are not the same
frequencies.

Delay = 2RC (10.4)

f90 =
1

2πRC
(10.5)

You will recall that in our example loudspeaker, the tweeter signal had to be delayed by
80 usec. The resulting RC allpass circuit is shown in Figure 10.8.

If you trustingly feed a step waveform into Figure 10.8, what emerges is an immediate
negative spike followed by a long slow approach to the steady input voltage as shown in
Figure 10.9. “Doesn’t look much like a delay to me!” I hear you cry, which was pretty
much what I cried when I first tried this experiment.

The reason for this unhelpful-looking output is that allpass filters do not give a constant
time delay with frequency, and this one is no exception. Figure 10.11 shows how as the
frequency goes up the group delay is indeed 80 usec initially, but begins to decrease early
as the frequency increases. Figure 10.10 gives the phase response for comparison. The delay
is down by 10% at 2.5 kHz, and down to 50% at 9.3 kHz, slowly approaching zero above
100 kHz. This is clearly not much use for equalising the delay in the HF path. Since there is
only one variable—the time-constant R3, C1—the only way to keep the delay constant to

(b)(a)

Input

Out
A1

C1
22nF

1K

R3

1K

R2

R1
+
− Input

Out
A1

1K

R3

1K

R2

C1

R1

+
−

Figure 10.7: Two versions of the first-order allpass filter: (a) Non-inverting or RC type
(b) Inverting or CR type.
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higher frequencies would be to reduce its value, which would make the filter useless for
implementing the required delay compensation.

The fall-off in delay with frequency explains Figure 10.9; the high frequencies that make up
the edge of the input step-function are hardly delayed at all, and since they are subject to a
180 degree phase-shift, give the immediate inverted spike. The lower frequencies are
delayed but get through eventually, causing the slow rise. The mistake we have made is
applying a stimulus waveform with a full frequency range.

Figure 10.12 shows the rather more convincing result obtained if the 1 V step input is band-
limited before it is applied to our allpass filter. The step input (Trace 1) has been put

Input

Out

A1

C1
22nF

1K

R3

1K

R2

1820R

R1
+
−

Figure 10.8: A non-inverting RC first-order allpass filter designed for a group delay of 80 usec.

Figure 10.9: The disconcerting response of the 80 usec first-order allpass filter to a 1 V step input.
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Figure 10.11: The group delay response of the first-order 80 usec allpass filter. The delay is down
by 10% at 2.5 kHz, and 50% at 9.3 kHz.

Figure 10.10: The phase response of the 80 usec first-order RC-type allpass filter. The phase shift is
still changing at the top of the audio spectrum.

274 Chapter 10



through a fourth-order Bessel lowpass filter with a −3 dB frequency of 1.2 kHz, the Bessel
characteristic being chosen to prevent overshoot in the filtered waveform; a Butterworth
filter would have given a bit of overshoot and confused matters. The Bessel filter output
is the leisurely rising waveform of Trace 2. When this goes through the allpass filter it
emerges as Trace 3 with almost exactly the same shape but delayed by 80 usec. That looks
a bit more like a delay, eh?

If you look closely at Figure 10.12 you will see that the output of the allpass filter does
show a very small amount of undershoot before it rises. This could have been further
suppressed by reducing the cut-off frequency of the lowpass filter. You will also note that
the output of the fourth-order Bessel lowpass filter, Trace 2, has already been delayed a
good deal compared with the step input Trace 1; in fact far more than by the simple first-
order allpass filter. The use of Bessel lowpass filters to delay signals is examined at the end
of this chapter.

The circuit in Figure 10.7a must be non-inverting at low frequencies, because when C1 is
effectively an open-circuit, we get a non-inverting stage because of the direct connection to
the non-inverting input. Likewise, in Figure 10.7b, when C1 is effectively open-circuit the
configuration is clearly a unity-gain inverter.

The input impedance of the RC version in Figure 10.8 is 2.7 kΩ at 10 Hz, falling to 646Ω
at 1 kHz, whereafter it remains flat (it happens to be 666Ω at 100 Hz but I don’t think you

Figure 10.12: The 1 V step input is Trace 1, putting it through a fourth-order Bessel-Thomson filter
gives Trace 2, and the 80 usec first-order allpass filter delays it to give Trace 3.
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should try to read too much into that). The equivalent CR version (with all component
values the same) has an input impedance that is flat at 1 kΩ from 10 Hz to 1 kHz. Above
that the impedance rises slowly until it levels off at 1.8 kΩ around 30 kHz. It is pretty clear
that the CR version will be an easier load for the preceding stage, especially at high audio
frequencies, and this will have its effect on the distortion performance of that stage. There is
more on that in the section below on the performance of third-order allpass filters.

The group delay plot in Figure 10.11 shows an elegantly sinuous curve, quite unlike the
tidy straight-line approximation roll-offs we are used to when we look at filter amplitude
responses. These latter of course are plotted logarithmically with dB on the vertical axis,
whereas here we have group delay time as a linear vertical axis. This is how it is normally
done; dB are useful for measuring amplitude, not least because they follow the logarithmic
nature of how we perceive loudness, but there is no perceptual analogue for how we
experience small time delays. Still, I thought it might be interesting to plot group delay
with log-of-delay as the vertical axis, and the result is seen in Figure 10.13. I don’t recall
seeing this done before.

You can see that it looks very much like the amplitude plot of a 6 dB per octave roll-off,
with a linear roll-off to the right. Is this a more useful way of plotting group delay?
Probably not, because it tends to de-emphasise variations in the region of maximum group
delay, which is where we are most concerned. Interesting picture, though.

Figure 10.13: The group delay response of the first-order 80 usec allpass filter plotted with a
log-delay vertical axis. The delay is down by 10% at 2.5 kHz.

276 Chapter 10



Distortion and Noise in First-Order Allpass Filters

While the two versions of the first-order allpass may appear to be functionally identical,
apart from the phase inversion, they do in fact have different distortion behaviour at high
frequencies. The non-inverting version or RC version (Figure 10.7a), has the resistor before
the capacitor, forming a lowpass filter, so the common-mode (CM) voltage will fall with the
frequency. The inverting or CR version (Figure 10.7b) has a capacitor-resistor arm that acts
as a highpass filter, so the CM voltage will rise with the frequency. This makes a very
significant difference to the HF distortion, as shown in Figure 10.14; at 20 kHz the CR
version gives 0.0026% as opposed to 0.00070% for the RC version. The allpass filter
measured was the 80 usec design, the non-inverting version of which is shown in Figure 10.8.
Polypropylene capacitors were used to eliminate any capacitor distortion. Note that the 9 Vrms
test level is close to the maximum possible, and practical internal levels such as 3 Vrms will
give significantly lower levels of distortion.

When the input level is 9 Vrms, the RC version has a CM voltage of 1.67 Vrms at 20 kHz.
The CR version has a CM voltage of 8.84 Vrms at 20 kHz, more than five times as much,

Figure 10.14: Distortion plots for RC and CR first-order 80 usec allpass filters using 5532s. The CR
version has more HF distortion because the common-mode voltage is high at high frequencies, and

vice versa for the RC version. Polypropylene capacitors, input 9 Vrms.
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leading to much-increased HF distortion. First-order allpass filters with longer delays
have larger capacitors and so the difference extends over a wider frequency range. The
measurements in Figure 10.14 were taken using 63 V polypropylene capacitors; however,
replacing these with 100 V polyester microbox capacitors in both RC and CR versions made
no measurable difference to the THD plots. This was somewhat unexpected.

It is therefore well worthwhile using the non-inverting (RC) version wherever possible. If there
is a need for a phase-inversion, then it may be worth looking for some other part of the signal
path in which to place it, where it will not cause degradation of the distortion performance.

The noise output for the non-inverting 80 usec version is −110.3 dBu (22–22 kHz). The
noise output for the inverting 80 usec version is −110.7 dBu (22–22 kHz). The difference is
small but real.

Cascaded First-Order Allpass Filters

The delay required in a typical crossover is too long to be effectively provided by a single
first-order allpass filter, because the longer the delay used, the lower the frequency at which
that delay starts to roll off. See Chapter 19 for a real example. The Siegfried–Linkwitz
crossover design in [2] addresses this problem by using three first-order filters in series, as
shown in Figure 10.15. This spreads the delay over three sections, allowing each one to be
set to a lower delay which can be sustained up to higher frequencies. The RC version of the
filter is used here because it is non-inverting and has a markedly superior distortion
performance.

As Figure 10.16 shows, this approach greatly improves the delay flatness, which is now 10%
down at 7.2 kHz, and down 50% at 28 kHz, outside the audio band. However, 7.2 kHz is only
1.5 octaves clear of the 2.5 kHz MID-HF crossover frequency. The signal to the MID drive unit
will, allowing for the initially shallower filter slope, be 35 dB down at that point. Its acoustic
contribution will probably be less than that as it is hardly likely to have a flat response
1.5 octaves above the crossover frequency, and may be significantly down; on the other hand,
it might have an ugly peak. In view of this uncertainty, it is hard to judge if we have sufficient
delay flatness to avoid audible effects, but we can see from Table 10.3 that a −35 dB signal is
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Figure 10.15: Three first-order allpass filters in series, designed for an overall
group delay of 80 usec.
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only going to increase the total amplitude by 0.15 dB; I am inclined to think we are fairly safe.
It would of course be easy to divide the required group delay over more stages, to further
extend the flat delay response, but since every stage adds a certain amount of noise, distortion,
and cost, and requires power, this is not an attractive route.

While the amplitude perturbations resulting from this solution may be tiny, a further
potential worry is the varying phase-shift of the filter above the frequencies at which we are
trying to keep the group delay constant.

Figures 10.10 and 10.11 above, for a single first-order section, showed that the phase is still
changing quite quickly in the 10 kHz – 20 kHz range. Our triple-allpass scheme has
flattened the delay/frequency curve, but has it helped with the phase? No. This now changes
considerably more from 10 kHz to 20 kHz, going from −240° to −357°, a change of 157°.
This very large increase is not just because we now have three filters all phase-shifting, but
also because the part of the phase curve with the most rapid changes is now moved up over
the 10 kHz – 20 kHz range. The audibility of this sort of thing is still a matter of debate, but
anyway it’s not clear there’s very much we can do about it. The only solution would be
make the group delay effectively constant up to a very high frequency, well out of the audio
band. Let’s assume we grit our teeth and accept a phase-shift that goes up to 10° at 20 kHz.
That implies raising the group delay −10% frequency by no less than 57 times, to 410 kHz.
This is hardly practical—here we need three stages just to achieve 7.2 kHz—and so it looks
like we are going to have to live with frequency dependent phase-shifts if we use this sort
of delay technology.

Figure 10.16: The group delay response of the three first-order allpass filters in series. The 80 usec
delay is now down 10% at 7.2 kHz, a higher frequency by a factor of three.
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The iterated nature of the multiple-first-order circuit means we are using three times as
many components. A more efficient approach is to use a higher-order allpass filter to create
the desired delay.

10.7.2 Second-Order Allpass Filters

Second-order allpass filters have the advantage that you can get a flatter delay response
using less components than the cascaded-first-order approach. The disadvantage is that they
are conceptually more complex.

The usual method of making a second-order allpass filter is the 1–2 BP configuration, where
the signal is fed to a conventional second-order bandpass filter with a passband gain (i.e,
gain at the response peak) of two times, and then subtracted from the original signal, as in
Figure 10.17. It is not exactly intuitively obvious, but this process gives a flat amplitude
response and a second-order allpass phase response. This method should not be confused with
the 1-BP configuration, where the bandpass filter has unity gain; this gives a notch amplitude
response. To obtain a maximally flat delay response the Q of the bandpass filter must be 0.5.
(Note that this differs from the amplitude response of highpass and lowpass filters, where a Q
of 1/√2, i.e, 0.707, is required to get a maximally flat Butterworth response.)

A second-order allpass filter has two parameters to set instead of one—we now have both
frequency and Q to set for the bandpass filter. A convenient configuration is the Multiple-
FeedBack (MFB) type as shown in two forms in Figure 10.18, which has the useful
property of inverting the signal, so the required subtraction from the original signal can be
implemented simply by summing original and filter output together. A vital point to be
aware of is that if you use the more common form of MFB filter in Figure 10.18a, with its
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−99.6 dBu
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4KR4

A1 1K
A2
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15nF

15nF1.324K +
−
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Figure 10.17: A second-order allpass filter using the 1–2 BP principle, designed for a group delay of
80 usec. The MFB filter has a gain of −6 dB so R3= R4/4.

280 Chapter 10



associated design equations, it is not possible to get a Q of less than 0.707, and we need
here a Q of 0.5. If you put a Q value of 0.707 into these equations, then R2 comes out as
infinite. This is not a problem—you just leave it out altogether—but it also means that
putting in values of Q less than 0.707 yield negative values for R2, which is a little harder
to implement (though I hasten to add I have tried it, and it does work).

A simpler approach is to use the Deliyannis version of the MFB filter shown in
Figure 10.18b; the circuit is the same as Figure 10.18a with infinite R2, but the vital point
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+
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Figure 10.18: Two Multiple-FeedBack (MFB) bandpass filters with centre frequencies of 1 kHz;
(a) The more usual version, with design equations. Passband gain= 1 and Q= 1; (b) The
low-Q Deliyannis version with design equations. Passband gain= 0.5 and Q= 0.5. Note the

similarity in component values.
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is that different design equations are used. It is now not possible to set passband gain
independently of Q. The values shown give a Q of 0.5, which also sets the passband gain at
0.5 (−6 dB). This is only true in this case and in general the passband gain is not equal to Q.

To design the filter, first choose a value for C (C1 and C2 are equal) and put that and the
required centre frequency into Equation 10.6 to get R3, then use Equation 10.7 to calculate R1.

R2 =
2Q
2πfC

(10.6)

R1 = R2
4Q2 (10.7)

A practical implementation of this method is shown in Figure 10.17, which gives an 80 usec
delay at low frequencies. To achieve this the MFB filter, consisting of R1, R2, C1, C2 and
A1, is designed for a centre frequency of 7.91 kHz and a Q of 0.5. Its inverted output allows
the required subtraction from the original signal to be done simply by summing original and
filter output together by the shunt-feedback stage A2. Note that R3 is one quarter the value of
R4; this implements the 2 in the 1–2 BP. Because of the low Q required in the MFB for a
maximally flat delay, its passband gain is −6 dB. This means that to achieve 1–2 BP, the
resistor R3 must be a quarter of the value of R4 and R5. In this case R4, R5 can conveniently
be made up of two 2.0 kΩ resistors in series. The group delay is shown in Figure 10.19; it is
down 10% at 4.79 kHz, which is predictably better than the first-order filter (10% down at
2.5 kHz), but worse than the triple first-order filter (10% down at 7.2 kHz).

Figure 10.19: The group delay response of the second-order 80 usec allpass filter. The delay is now
down 10% at 4.79 kHz.
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Second-order allpass filters of this type give a phase inversion at low frequencies, and also
at high frequencies; as mentioned before, an allpass filter gives twice the phase-shift of
a conventional filter of the same order. The only time when the phase is non-inverting
(0° phase-shift) is as the phase plot goes through 0° as it moves smoothly from 180°
to −180°.

It is possible to make a second-order allpass filter that only requires one opamp, but there
are compromises on noise, gain, and component sensitivity that make this unattractive for
our purposes. For reference, two kinds of one-opamp second-order allpass filter are shown
in Figure 10.20.

The first version in Figure 10.20a, is also generally known as the Delyiannis circuit [3], and
is essentially an MFB bandpass filter (R1, R2, C1, C2) with an additional subtraction path
via the attenuator R3, R4; the basic aim is to implement the circuit of Figure 10.17 in
one stage. The values shown give an 80 usec delay that is 10% down at 4.8 kHz with a
maximally flat delay response. While this circuit is undoubtedly minimalist, it has the great
drawback that the lower the Q, the lower the gain. Setting the Q to the required value of
0.5 results in a stage gain of 1/5, or −14 dB, and the considerable amount of amplification
required to get the output back to the input level will introduce a lot of additional noise;
the extra amplifier stage required to do it also completely undoes the cost advantage of a
one-amplifier allpass filter.

Figure 10.20b shows another second-order allpass filter, known as the Lloyd circuit [4]. R1,
C1, R2, C2 form a second-order bandpass response; this configuration is only capable of a
low Q but that is all we need. Once more there is a subtraction path via R3, R4. The values
shown give an 80 usec delay that is 10% down at 4.8 kHz. It is notable that the circuit
values are the same as for the Delyiannis circuit, despite the different configuration. This
circuit has a delay response equivalent to two cascaded first-order stages, but uses only
opamp. However, once again the stage shows a considerable loss of −14 dB which must be
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Figure 10.20: Two second-order allpass filters using only one opamp: (a) The Delyiannis circuit;
(b) The Lloyd circuit.
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made up somewhere, and my conclusion is that pursuing economy in this way is not a very
hopeful quest.

Two other second-order allpass configuration were thoroughly investigated by Robert Orban
in 1991 [5]; these were the Bruton circuit [6] using two opamps, and the Steffen circuit,
using one [7]. Neither seem to have any great advantages over the 1–2 BP method, but the
Bruton beats the Steffen if a very flat amplitude response is required.

Distortion and Noise in Second-Order Allpass Filters

The second-order filter in Figure 10.17 was built using 5532 opamps and polypropylene
capacitors to eliminate any capacitor distortion; the measured THD results are shown in
Figure 10.21. The THD falls rapidly from 0.0022% at 20 kHz as frequency decreases, but
then peaks in the range 2 to 10 kHz, as this is the region where the MFB filter output, with its
own distortion content, makes a significant contribution. Distortion from the MFB filter is low
because of its shunt configuration, which eliminates CM voltages, and because the output
voltage is low due to its −6 dB passband gain; the MFB THD does not exceed 0.0004%.

Figure 10.21: Distortion plot for the second-order 80 usec allpass filter in Figure 10.16, using
5532s. The THD drops rapidly from 0.0022% at 20 kHz as frequency falls, but peaks around 2 to
10 kHz where the MFB makes a significant contribution. High-frequency distortion above 10 kHz is

solely from the second opamp. Polypropylene capacitors, input 9 Vrms.
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The high-frequency distortion above 10 kHz comes solely from the second opamp, as the
MFB filter output is 10 dB down at 20 kHz.

The circuit was then remeasured using 63 V polyester microbox capacitors, to find out how
much extra distortion they introduced. The answer is, not much. The THD in Figure 10.20
now peaked at 0.0009% at 5 kHz instead of 0.0007% for the polypropylene capacitors. The
modest increase is due to the low signal level in the MFB filter.

The noise output is −99.6 dBu (22–22 kHz), which is more than 10 dB noisier than the first-
order stage measured above. The greatest proportion of this extra noise comes from the
second stage A2, which because of the low value of R3, is working at a noise gain of
15.6 dB. When R3 is disconnected, the noise output drops precipitately to −109.5 dBu;
when, however, R3 is connected to ground instead of the MFB filter output, noise only
increases to −102.1 dBu, showing that about half of the extra noise is produced by the filter.

The high noise gain in the second stage is inherent in the 1–2 BP mode of operation,
because of the subtraction involved, and it is not easy to see a way around that.

10.7.3 Third-Order Allpass Filters

A third-order allpass filter is made up of a second-order allpass cascaded with a first-order
allpass, in the same way that third-order frequency/amplitude domain filters are constructed.
The second-order allpass is arranged to peak in its delay, but the first-order allpass is then
designed to cancel out the peaking, giving a maximally flat delay overall. The arrangement
is shown in Figure 10.22; note that the first-order stage is now of the inverting or CR type,
which undoes the inversion performed by the second-order stage. (As we noted earlier in
the chapter, this version has an inferior distortion performance to its non-inverting (RC)
equivalent; however the overall outcome for distortion is not obvious, as related in the next
section on the performance of this filter.)
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Figure 10.22: A third-order 80 usec allpass filter, made up of a second-order allpass followed by a
first-order allpass. Noise at each stage output is shown for 5532s.
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The output of the second-order allpass is the middle trace in Figure 10.23, peaking just
above 10 kHz. When this is combined with the slow roll-off of the following first-order
stage, (the lower trace) the final result is a flat response that then rolls-off quickly. This is
the top trace in Figure 10.23, where the group delay remains flat and then rolls off rapidly,
being 10% down at 12.7 kHz, and 50% down at 31.9 kHz. This gives almost twice the
frequency range of the three cascaded first-order networks in Figure 10.15, but actually uses
one less resistor. This third-order filter is clearly the better solution.

The delay −10% point is now 2.3 octaves above the 2.5 kHz crossover frequency, so
assuming a 24 dB/octave slope, the MID speaker output will be about 55 dB down and so
I suggest that the fall-off in time delay will have no audible consequences.

Looking at the low-frequency area to the left, you will see that the second order stage gives
a delay of 45 usec; to this is added the 35 usec of the first-order stage, giving a total delay
of 80 usec.

The third-order allpass filter has input and output in phase at the low-frequency end. At the
high-frequency end the phase shift reaches a total of 540° lagging (180° × 3).

Distortion and Noise in Third-Order Allpass Filters

The third-order filter in Figure 10.22, with its CR final stage, was built using 5532 opamps
and polypropylene capacitors. Figure 10.24 shows the distortion at the second-order stage
output and the final output. An interesting point is that between 200 Hz and 6 kHz, the final

Figure 10.23: The group delay response of the third-order 80 usec allpass filter. The delay is now
down 10% at 12.7 kHz.
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output shows a lower THD reading than the intermediate point in the circuit. This is
because there is some cancellation of the second-harmonic from the second-order filter in
the final stage. Both points show 0.002% at 20 KHz.

Figure 10.25 shows the result of swapping the CR first-order stage for its RC equivalent,
which as we saw earlier has in itself lower distortion. We might hope that that would give
us a better overall distortion performance, but actually it is markedly worse; we now suffer
0.003% THD at 20 kHz, and perhaps more worryingly, we have THD around 0.0014% in
the audible region from 6 kHz to 10 kHz, whereas before we were well below 0.001% in
this region.

The alert reader (and I trust you all are) will have noticed that the THD plots for the
intermediate second-order output in Figures 10.24 and 10.25 are not the same, and you may
very well wonder why this is the case when the second-order stage has not been altered.
The answer is that the CR and RC first-order stages differ considerably in how much
loading they are putting on the previous stage. The RC version has a three times lower
input impedance at high frequencies, and in this circuit that outweighs the fact that it has

Figure 10.24: Distortion plots for third-order 80 usec allpass filter in Figure 10.22, showing the
second-order stage output and the final output. Polypropylene capacitors, 5532s, input 9 Vrms.
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lower distortion of its own. The input impedances of first-order allpass filters were described
earlier in this chapter.

I hope you don’t think that I am belabouring a trivial point here. There is in fact a
fundamental message—that you must never neglect the loading that one stage imposes on
its predecessor if you are aiming for the lowest practicable distortion. To ram the point
home I will show one more THD plot. Figure 10.26 shows the THD at the second-order
stage output for the RC and CR cases, and also for the unloaded condition (NL) with the
first-order stage disconnected to remove its loading altogether.

You can see that the traces for the RC and CR cases are the same as those in Figures 10.24
and 10.25, but the unloaded (NL for No Load) trace is a good deal lower than either of
them, except around 5 to 10 kHz where the CR plot gains from some cancellation effect.
Only the CR case shows elevated LF distortion from 10 Hz to 5 kHz; this is characteristic of
loading on a 5532 output, and it is caused by the relatively low input impedance of the CR
version at low frequencies. At higher frequencies the input impedance rises, which is why
the CR trace takes a nose-dive at 5 kHz, before coming back up again.

Figure 10.25: Distortion plot for the third-order 80 usec allpass filter in Figure 10.22, but with an
RC type first-order filter as the final stage. The final distortion output is unexpectedly worse.

Polypropylene capacitors, 5532s, input 9 Vrms.
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The 20 kHz THD at the second-order stage output (A2) in Figure 10.26 is really not very
good in either the CR or RC case. There are two reasons for this:

1. Opamp A2 in Figure 10.22 is heavily loaded by the input impedance of the first-order
stage, as described above.

2. A2 is working at a relatively high noise gain and so has less negative feedback than
usual available for linearisation.

Chapter 13 describes how the distortion performance of a heavily loaded 5532 can be
improved by biasing the output. This looks like a good place to apply that technique.
Adding 3K3 to V+ on the second-order output reduces the LF distortion from around
0.0006% to around 0.0005%; not exactly a giant improvement, but then it is almost free.
See Figure 10.27, where there is a general reduction in LF distortion, but we have lost the
dip around 8 kHz.

In Figure 10.22 the noise at the output of the second-order stage is −103.4 dBu (22–22 kHz),
and the noise at the final output is −102.8 dBu.

RC

NL
CR

Figure 10.26: Distortion plot for the second-order stage output (A2) of the third-order 80 usec
allpass filter in Figure 10.22, when it is loaded by the RC or CR final stage, and also with No Load

(NL). Polypropylene capacitors, 5532s, input 9 Vrms.
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Why is this circuit 3.2 dB quieter than the −99.6 dBu we get from the second-order allpass
filter, when we have more opamps in the signal path? It’s a subtle chain of reasoning.
Firstly, since the second-order stage is now peaking in delay, the MFB filter has a higher Q,
and therefore a higher passband gain, here 0 dB. Thus R3 is half the value of R4, R5
instead of a quarter. Therefore the noise gain in the subtractor stage A2 is 3.6 dB lower
at 12.0 dB.

This is another reason why a third-order allpass is better than a second-order allpass
delay filter; it is not only flatter, it is quieter. Is this an original observation?
I suspect so.

10.7.4 Higher-Order Filters

If third-order filters do not provide a sufficiently extended flat-delay characteristic, then
higher order filters might be considered. We have just seen that a third-order allpass filter
provides the most extended flat-delay response for a given component count, and also has

Figure 10.27: Distortion plot for the second-order-stage output of the third-order 80 usec allpass
filter in Figure 10.22 is loaded by the CR final stage, only. Adding the 3K3 output biasing resistor

reduces distortion below 6 kHz. Polypropylene capacitors, 5532s, input 9 Vrms.
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usefully lower noise. If greater delays, or flatter delay characteristics than this configuration
can provide are required, higher-order filters may be the answer.

The basic principle, as we saw for the third-order filter, is to take one or more second-order
stages with a high Q, giving a peak in the delay response, and then cancel out the peak
by cascading it with one or more stages, either first- or second-order, with a low Q.
Figure 10.28 shows how higher-order filters are built up. For each stage the Q is that of the
overall allpass function, and not the Q of the MFB filter, which is a different quantity. For
example, in a second-order allpass filter the Q for maximal flatness is 0.58, but the Q of the
MFB filter is 0.50. Here the first-order sections have been put at the end of the chain; this
makes no difference as all the stages have unity gain.

Designing high-order filters is not something to try by hand, and the usual design procedure
is to consult a table of allpass filter coefficients, as in Table 10.4. This assumes you are
using the 1–2 BP approach to making allpass filters.

To design your filter, pick an order, and the cut-off frequency f required. For each stage of
the complete filter first select the value of C = C1 = C2 in the MFB filter here I am using
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Sixth-order allpass Out

Out

Out
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Figure 10.28: Constructing allpass filters from third to sixth order by cascading first-
and second-order stages. The relative cut-off frequency and the

Q is shown for each stage.
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the component designations in the first stage of Figure 10.20; if this results in resistor
values that are undesirably low or high then you will have to go back and rethink the value
of C. R1 and R2 are then calculated using the coefficients ai and bi thus:

R1=
ai

4πfC
(10.8)

R2=
bi

aiπfC
(10.9)

This sets the frequency and Q of the stage. We now need to work out the parameter α:

α =
ðaiÞ2
bi

(10.10)

which lets us set R3 at R/α, where R is the value of R4 and R5, to get the correct
subtraction to create an allpass filter; parameter α includes the 2 in the 1–2 BP. Job done,
but your very next move should be to run the complete filter on a simulator to make sure
you get what you want—it’s all too easy to make an arithmetical error.

Figure 10.29 shows the delay response of first- to sixth-order allpass filters all set to the
same cutoff frequency. This is the sort of diagram you often see in filter textbooks; but here
it is simulated rather than derived mathematically.

More relevant to our needs is to set the group delay to the same value (80 usec again) for each
order of filter and you can see how much more extended the flat portion of the delay curve is
with the higher-order filters, as in Figure 10.30. It is also painfully obvious that the extra flat-
delay bandwidth you gain with each increase of filter order decreases; this is true on a log-
frequency plot because with each higher order you actually gain a constant extra bandwidth of

Table 10.4: Filter Coefficients for Allpass Filters (After Kugelstadt)

Filter Order Filter Section
Coefficient

Section Q R3 Factor α Stage Gainai bi

1st 1 0.6436 n/a 1.000
2nd 1 1.6278 0.8832 0.58 3.000 0.667
3rd 1 1.1415 n/a 1.000

2 1.5092 1.0877 0.69 2.094 0.955
4th 1 2.3370 1.4878 0.52 3.671 0.545

2 1.3506 1.1837 0.81 1.541 1.298
5th 1 1.2974 n/a 1.000

2 2.2224 1.5685 0.56 3.149 0.635
3 1.2116 1.2330 0.92 1.191 1.680

6th 1 2.6117 1.7763 0.51 3.840 0.521
2 2.0706 1.6015 0.61 2.677 0.747
3 1.0967 1.2596 1.02 0.955 2.095

292 Chapter 10



Figure 10.29: Delay response of first- to sixth-order allpass filters, all set to same
cut-off frequency. The delay increases with filter order.

Figure 10.30: Delay response of first- to sixth-order allpass filters, all set to 80 usec delay.
The 72 usec line shows where each response is 10% down.
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about 5 kHz. There is clearly a limit to how high an order it is sensible to use. A powerful
consideration here is that component sensitivity (i.e., how much the filter behaviour changes
with component value tolerances) gets worse for higher-order filters. There are also issues
with dynamic range, as higher-order allpass filters use at least one section with high Q—this
means its MFB filter has gain well above unity and this is a potential clipping point. The
sixth-order allpass filter described below illustrates this problem.

I will now give some practical designs for fourth-, fifth-, and sixth-order allpass filters, all
set for a 80 usec LF delay; these were the circuits used to generate the curves labeled 4, 5,
and 6 in Figure 10.30. The capacitor values have been chosen to keep the resistor values in
the MFB filters above 1 kΩ to minimise loading problems. The resistor values given are
exact, and not part of any series of preferred values.

Figure 10.31 shows a fourth-order allpass filter made by cascading two second-order allpass
stages. The delay is now 10% down at 17.2 kHz, rather than the 12.7 kHz we got with the
third-order filter examined earlier in this chapter, a useful increase in flat-delay bandwidth.

The lower the Q of the stage, the lower the gain of the MFB filter, and so the lower the
value of the resistor feeding into the summing stage must be to get the correct gain. It must
be remembered that this resistor constitutes a load to ground on the output of the MFB
opamp, and its value must not be allowed to fall below 500Ω if 5532 or similar opamp
types are being used. In the first stage here this means that R4 and R5 have to be 2 kΩ to
get R4 up to 544.8Ω. In the second stage the Q is higher and the MFB has more gain so
R9, R10 can be reduced to 1 kΩ, for better noise performance, while R8 is a respectably
high 648.9Ω.

The values of C1, C2 and C3, C4 can be selected independently for each second-order
stage, and C3, C4 have therefore been set lower in value at 4n7 to keep R6, R7 above
1 kΩ in value.

Figure 10.32 shows a fifth-order allpass filter made by cascading two second-order allpass
stages and one first-order stage. Because of the higher cut-off frequency, both C1, C2 and
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Figure 10.31: Fourth-order allpass filter built by cascading two second-order stages. Delay= 80 usec.
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C3, C4 have been set to 4n7 to keep the associated resistors above 1 kΩ. C5 can also be set
independently and has been made 10 nF to give a suitable value for R11; as low as possible
for noise purposes, but not so low that it puts an excessive load on A4.

Figure 10.33 shows a sixth-order allpass filter made by cascading three second-order allpass
stages. In the third high-Q stage it has been necessary to reduce C5, C6 to 3n3 to keep the
associated resistors above 1 kΩ.

The final second-order section has a Q of 1.02, which means a passband gain of 2.095
times in the MFB filter. This could cause headroom problems. It is another reason not to
embrace higher-order allpass filters without careful consideration.
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Figure 10.32: Fifth-order allpass filter built by cascading two second-order stages and one
first-order stage. Delay= 80 usec.
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Figure 10.33: Sixth-order allpass filter built by cascading three second-order stages. Delay= 80 usec.
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Since higher-order allpass filters are made up of combinations of first- and second-order
stages, the distortion and noise characteristics that apply have been dealt with earlier in this
chapter. Noise will clearly increase as more stages are cascaded, and life being what it is, it
is highly likely that distortion will also increase additively, though you may benefit from
some degree of cancellation.

10.8 Delay Lines for Subtractive Crossovers

There is another use for delay filtering in crossover design; it can be a fundamental part of
the crossover operation rather just compensating for mechanical displacements. Lipshitz and
Vanderkooy [8] published in 1983 a crossover topology in which a time delay in one signal
path allowed the construction of linear-phase crossovers with high slopes; a constructional
project based on this was put forward by Harry Baggen in Elektor in 1987 [9]. Both are
described in Chapter 6 on subtractive crossovers. Lipshitz and Vanderkooy put forward a
specimen crossover design, in which a delay of 289.2 usec was required, and they suggested
the following possibilities:

1. Three cascaded 9th-order Bessel allpass filters, each giving a delay of 96.4 usec, accurate
to 1% up to 20 kHz. Total delay 289.2 usec.

2. Four cascaded 6th-order Bessel allpass filters, each giving a delay of 72.3 usec, accurate
to 1% up to 15 kHz, and to 10% up to 20 kHz. This will have less component
sensitivity because of the lower-order filters. Total delay 289.2 usec.

3. Three cascaded 6th-order Bessel allpass filters, each giving a delay of 96.4 usec, accurate
to 1% up to 10 kHz, and to 20% up to 20 kHz. Total delay 289.2 usec.

4. Four cascaded 4th-order Bessel allpass filters, each giving a delay of 72.3 usec, accurate
to 1% up to 8 kHz, and to 50% up to 20 kHz. Total delay 289.2 usec.

The trade-off here is between how far up the audio band you want linear-phase behaviour to
extend, and how complex and costly a delay-line you are prepared to pay for. (When you
have many cascaded stages it is more usual to talk of a “delay-line” rather than a “delay
filter.”) It is clearly impractical to implement any of these options in a passive crossover—
the cost, the resistive losses, and the non-linearity of the many inductors required would be
crippling. Such a delay-based crossover can only be realised by active circuitry, and even
then it presents some serious challenges in the analogue domain. In a digital crossover, of
course, manipulating time delays is very simple indeed.

I decided to have a go at constructing such a delay line, adopting the simplest option, that
numbered 4 above. I used maximally flat allpass filters rather than Bessel types, in order to
explore how much more of a cost-effective solution it was in terms of greater bandwidth for the
same number and order of filters. The resulting schematic is shown in Figure 10.34; it consists
of four cascaded identical fourth-order filters similar to that in Figure 10.31, but with the
resistor and capacitor values in the MFBs altered to theoretically give a delay of 72.3 usec each.
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The actual delay came out at 291 usec rather than 289.2, showing that I should have used a
bit more precision in my calculations; there is also a very small amount of delay peaking
around 10 kHz for the same reason. The delay response is shown in Figure 10.35, and it is
down by 1% at 12.5 kHz rather than 8 kHz, and down 11% at 20 kHz rather than 50%. The
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Figure 10.34: Four cascaded maximally flat fourth-order allpass filters for Lipshitz and Vanderkooy
time-delay crossover.

Figure 10.35: Four cascaded fourth-order allpass filters for Lipshitz and Vanderkooy time-delay
crossover. Delay= 291 usec, 1% down at 12.5 kHz, 11% down at 20 kHz.
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50% point is not reached until 47.8 kHz. These results would appear to be notably superior
to the figures put forward by Lipshitz and Vanderkooy for the Bessel approach.

This delay-line design may hopefully be of use to those wishing to explore delay-based
crossovers. The component cost is not excessive; you need 16 capacitors (all of the same
size in this case), 40 resistors, and 8 opamps. If a greater delay is needed then more stages
could be added on.

It is a good question as to whether the delay-line could be implemented more efficiently by using
third-order allpass filters. As we saw earlier in the chapter, a third-order allpass is some 3 dB
quieter if everything else is equal. A possible design solution would be to use five cascaded
third-order filters (using 15 amplifiers) instead of four cascaded fourth-order filters (using 16
amplifiers). We should therefore get a noise improvement as well as a slight saving on parts.

Please note that there are serious questions about the practicality of subtractive crossovers,
because they do seem to require very precise delays to maintain the desired slope steepness.
This issue is looked into in Chapter 6.

10.9 Variable Allpass Time Delays

Variable time delays are often required for subwoofer applications (see Chapter 15) because
the distance between the main loudspeakers and the subwoofer is not fixed, and so the delay
needs to be variable to get the best integration of responses.

It can also be useful to have a time delay configuration which allows tweaking during the
design stage—it would be particularly useful in cases where the effective acoustic centre of
a drive unit is not easy to determine.

Unfortunately, making variable the most efficient delay filters, such as the third-order
1–2 BP configuration, requires multiple components to be changed in various ways and is
not easy to implement. A more promising approach is to use cascaded first-order allpass
filters, as described earlier, in which a two- or four-gang pot with equal-value sections
(anything else will be hard to come by), can be used to alter the frequency-setting resistor in
each stage. This method has been used in commercial crossovers such as those by Rane.

Figure 10.36 shows two cascaded first-order allpass filters with a two-gang control pot. The
delay is variable from 40 usec (down 10% at 10 kHz) to 440 usec (down 10% at 900 Hz).

10.10 Lowpass Filters for Time Delays

Lowpass Bessel filters are often used to preserve the waveform of a signal, typically
being used to remove out-of-band noise before A-to-D conversion. Because in the
analogue world any real-life filter must be causal (in other words, you can get an output
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after the input, but never before the input); the output is inevitably a delayed version of
the input. It seems reasonable to take a look at how effective Bessel lowpass filters are
at implementing delays. There is at least the possibility that this sort of filter could
implement delay compensation at the same time as giving a crossover roll-off for a MID
drive unit.

Figure 10.37 shows a typical fourth-order Bessel lowpass filter with a −3 dB point at
4.2 kHz, which corresponds with an 80 usec delay, as used before. A similar lowpass filter
(with the capacitors scaled up to give –3 dB at 1.2 kHz) was use to demonstrate first-order
allpass delay action earlier in this chapter. Like almost all fourth-order filters, it is composed
of two second-order stages, with the later stage having the higher Q. The design of Bessel
filters was described in Chapters 7 and 8.

Figure 10.38 shows that the delay is 10% down at 8.5 kHz, compared with 10% down at
17.2 kHz for a fourth-order allpass filter. This is less than half the bandwidth, and indicates
that Bessel filters are not an efficient way of obtaining a flat delay.

The frequency response is shown in Figure 10.39. As with all Bessel filters, the roll-off is
relatively slow. The amplitude response is perceptibly drooping at 2 kHz, but the −3 dB
point does not occur until 4.2 kHz, more than an octave away.
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Figure 10.38: Group-delay of fourth-order Bessel filter of Figure 10.28.
The −10% point is at 8.5 kHz.

Figure 10.39: Frequency response of fourth-order Bessel filter of Figure 10.28.
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CHAPTER 11

Equalisation

11.1 The Need for Equalisation

Equalisation to attain a desired flat frequency response may be applied to correct problems
in the loudspeaker itself, or, moving along the audio chain, to modify the interaction of the
loudspeaker with the room it is operating in. Moving along the audio chain still further,
equalisation can also be used to modify the response of the room itself, by cancelling
resonances with dips or notches in the overall amplitude response. However, it is not
normally considered a good idea to try to combine an active crossover with a room
equaliser, not least because they are doing quite different jobs. Moving the loudspeakers
from one listening space to another will not require adjustment of the crossover, except
insofar as the loudspeaker placement with regard to walls and corners has changed, but
would almost certainly require a room equaliser to be re-adjusted unless the room
dimensions, which determine its resonances, happen to be the same.

At low audio frequencies, normal rooms (i.e., not anechoic chambers with enormous sound
absorption) have resonances at a series of frequencies where one dimension of the space
corresponds to a multiple number of half wavelengths of the sound being radiated. The half-
wavelength is the basic unit because there must be a node, that is a point of zero amplitude, at
each end. Sound travels at about 345metres/second, so a room with a maximum dimension of
5 metres will have resonances from 34.5 Hz upwards. This is simply calculated from velocity/
frequency = wavelength, bearing in mind that it is the half-wavelength that we are interested in.
We might therefore expect a resonance at 34.5 Hz, and another at about 69 Hz; this is twice the
frequency because we now need to fit in two half-wavelengths between the two reflecting
surfaces. This continues for three and four times the lowest frequency, and so on. These
“resonant modes” cause large peaks and dips in response, the height of which depends on the
amount of absorbing material. A room with big soft sofas, thick carpeting, and heavy curtains
will be acoustically fairly “dead,” and the peaks and dips of the frequency response will typically
vary by something like 5–10 dB. A bare room with hard walls and an uncarpeted floor will be
much more acoustically “live,” and the peaks and dips are more likely to be in the range of 10 to
20 dB, though larger excursions are possible. Resonant modes at low frequencies cause the
greatest problems, because they cannot be effectively damped by convenient absorption material
such as curtains or wall hangings. Room equalisation that attempts to deal with this situation is a
very different subject from active crossover design and is not dealt with further here.

The Design of Active Crossovers
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This chapter deals only with the equalisation of the frequency response, but there is another
very important form of equalisation; this is commonly called time equalisation, time-delay
compensation, or phase equalisation, and while its results can be seen in the form of an
improved frequency response, the circuitry involved essentially works in the time domain,
and in itself has a flat frequency response. This branch of active crossover design is dealt
with in detail in Chapter 10, and is not referred to further here.

11.2 What Equalisation Can and Can’t Do

When the word “equalisation” is used without qualification, it almost always refers to
correcting the amplitude/frequency response, without attempting to simultaneously correct
the phase/frequency response. Correcting both is much more difficult, but it can be done. It
is important to realise that if you use the right sort of equaliser, you can put a peak into the
frequency response, and then cancel it out completely by using another equaliser with the
reciprocal characteristic. The high-Q peak/dip equaliser described later in this chapter can
perform this, as it is reciprocal—in other words, its boost and cut curves are exact mirror-
images of each other about the 0 dB line. Figure 11.18 below shows the symmetrical 6 dB
peak and dip at 1 kHz that this circuit creates. If one equaliser is set to maximum boost, and
it is then followed by an otherwise identical equaliser set to maximum cut, the final
frequency response is exactly flat, as one might hope. What is much less obvious, but
equally true, is that the phase shifts introduced by the first equaliser are also cancelled out
by the second equaliser, so a square-wave input will emerge as a square-wave output. This
process is demonstrated in Figure 11.1, where the square-wave with added ringing is the
output from the first (peaking) equaliser.

The visually perfect square-wave is not the input waveform; it is the output from the second
(dip) equaliser. The rise and fall times of the input square-wave were deliberately slowed
down to 10 usec to avoid distracting effects due to the finite bandwidth of the opamps used.
You will note that the height of the ringing takes a little while to settle down after the start
at 0 msec. When applying square-waves and the like to filters and other circuits with
energy-storage elements, you need to allow enough cycles for the circuit to reach
equilibrium, otherwise you may draw some wildly false conclusions.

Having reassured ourselves on this point, things are generally very much otherwise in
crossover equalisation. If a drive unit has, say, a 2 dB peak or hump in its amplitude/
frequency response, this will probably be due to some under-damped mechanical
resonance or other electro-acoustic phenomenon, and while it is, in principle at least,
straightforward to cancel this out, it is very unlikely that the associated phase-shifts will
also cancel, because the physics behind the drive unit peak and the equaliser dip are
completely different.
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11.3 Loudspeaker Equalisation

Active crossovers may consist simply of frequency-dividing filters, but very often also
include equaliser circuits with a carefully tailored frequency response which are used to
counteract irregularities in the overall response of the system. Since the active crossover
and its power supply, etc. is already present, relatively little extra circuitry is needed
and the cost is low. A large number of different equaliser circuits are described later
in this chapter.

There are several reasons why equalisation might be necessary:

1. Correcting irregularities in the frequency response of the drive units themselves.
2. Correcting frequency response features inherent in the driver/enclosure system, for

example 6 dB/octave equalisation of dipole LF loudspeaker units.
3. Using equalisation to evade the physical limits of driver/enclosure system; most

commonly extending the bass response of any kind of loudspeaker.
4. Compensation for other unwanted interactions between the loudspeaker and its

enclosure. The most common application is compensation for enclosure front panel
diffraction effects.

5. Compensation to deal with interactions between the loudspeaker and the listening space,
such as when a loudspeaker is mounted against a wall.

Figure 11.1: Demonstrating that two reciprocal equalisers cancel their phase-shifts as well as
amplitude/frequency response changes.
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11.3.1 Drive Unit Equalisation

Drive unit equalisation usually involves the correction of minor humps and dips in the
frequency response. For example, a consistent 2 dB dip in drive unit response might be
cancelled out by a 2 dB peak introduced by an equalisation circuit. Exact cancellation will
not be possible, either because the shape of the dip is too complex to be mimicked by
practical amounts of circuitry, or because of variation in the shape of the dip due to driver
tolerances or aging. This kind of correction is commonly performed by peak/dip equalisers.

A classic example of drive unit equalisation is Constant Directivity orn Equalisation.
Following the work of Don Keele at ElectroVoice [1], constant directivity (CD) high-
frequency horn loudspeakers appeared in the late 1970s. Basically, an initial exponential
section was combined with a final conical flare, causing the shorter high-frequency
wavelengths to be dispersed more effectively off axis; purely conical horns, as seen on old
gramophones and phonographs, are not satisfactory because of their poor low-frequency
response. Because CD horns direct more high-frequency energy off axis, the amount of
high-frequency energy available directly on axis is reduced. Therefore, the CD horn no
longer measures flat directly on axis unless it is given equalisation that is the inverse of the
horn high-frequency roll off response. This is called Constant Directivity Horn Equalisation
or CDEQ.

Constant Directivity horns roll off the higher frequencies at about ‒6 dB per octave
from around 2 to 4 kHz, continuing to 20 kHz and beyond, so the equalisation therefore
takes the form of a +6 dB per octave boost starting at the appropriate frequency. The
equalisation curve is arranged to shelve to prevent excessive boost at frequencies above
20 kHz, which could lead to inappropriate amplification of ultrasonic signals and imperil
the sound system stability. The frequency at which the equalisation begins may be
derived from measurements or from the ‒3 dB point of the CD horn frequency response
as provided by the manufacturer. The equalisation is typically performed by a HF-boost
equaliser as described later in this chapter.

11.3.2 6 dB/oct Dipole Equalisation

The operation of dipole loudspeakers is described in Chapter 15 on sub-woofers. To
summarise it quickly, a dipole loudspeaker has a drive unit mounted on a flat panel, usually
called a baffle, which prevents sound from simply sliding straight round from the front to
the back of the drive unit and cancelling out. The larger the baffle, the lower the frequency
down to which this is effective. The panel may be folded in various ways to save space, so
it remains large acoustically but is physically smaller. The name “dipole” is derived from
the way that the polar response consists of two lobes, which have equal radiation forwards
and backwards (in opposite polarities), and none at right angles to the front-back axis of the
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drive unit. Because the baffle is of finite size, there is a frequency at which the response
begins to fall off as sound goes round the edge of the baffle. (Loudspeakers in sealed boxes
are sometimes referred to as being mounted in an “infinite baffle,” but that does not of
course mean that their response goes down to infinitely low frequencies.)

Dipole speakers are therefore commonly regarded as needing equalisation in the form of a
6 dB/oct boost as frequency falls, starting from an appropriate frequency. This has to be
done with great caution as even apparently modest amounts of equalisation greatly increase
both cone excursion and the amplifier power required; a dipole loudspeaker is particularly
vulnerable to this because unlike a drive unit with a sealed box, there is no loading on the
cone at low frequencies. It is essential that the bass boost ceases at a safe frequency, and it
is wise to arrange for an effective subsonic roll-off if drive unit damage is to be avoided.
There is often also a need to equalise away a peak in the loudspeaker response where the
LF roll-off begins. The biquad equaliser, described later, can do the task effectively and
economically, but may need to be supplemented with further subsonic filtering to make sure
that no accidents occur.

11.3.3 Bass Response Extension

As described in Chapter 2, the bass response of a loudspeaker is essentially that of a
highpass filter whose characteristics are determined by the type of enclosure and the
parameters of the LF drive unit. A sealed-box loudspeaker consists of a mass-compliance-
damping system that gives a classical second-order highpass response and can for some
purposes be simulated by a highpass active filter of the Sallen and Key or other
configuration.

Much thought has been given to extending the low-frequency response of such systems by
adding bass boost in a controlled fashion. The presence of an active crossover makes adding
this facility straightforward, though its design is not so simple. The basic principle is to
counteract the downward slope of the loudspeaker response with the upward slope of
equaliser boost, but there are two major complicating factors. Firstly, when the LF response
of a loudspeaker is rolling off, the cone excursion is at its greatest. Adding equalisation
increases the excursion further, and it is all too easy to exceed the safe limits of the drive
unit. Secondly, a much increased amplifier power capability is required.

It has been claimed that not only is the LF response extended, but the time response may
also be improved, because the ringing and overshoot caused by an underdamped LF
response can be cancelled by a matching dip in the response of the equalisation circuit,
since we are dealing with a simple minimum-phase system. The final LF rolloff is
determined by that of the equaliser. It is questionable if this can really be counted as
“equalisation” as such, because the intent is not so much to correct an error as to extend the
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performance beyond what would otherwise be physically possible. The biquad equaliser is a
good choice for this form of equalisation, giving great freedom of parameter variation.

Because of the low frequencies at which this kind of equaliser operates, large capacitor
values are required if impedance levels are to be kept suitably low, and this puts up the
cost.

11.3.4 Diffraction Compensation Equalisation

We saw back in Chapter 2 that the diffraction of sound from the corners of a loudspeaker
enclosure can have profound effects on the frequency response. The somewhat impractical
spherical loudspeaker is free from most response irregularities, but still has a gentle 6 dB
rise with frequency, because at low frequencies the long sound wavelengths diffract around
the sides and rear of the enclosure, so radiation occurs into “full-space,” while at high
frequencies the drive unit cone radiates mostly forwards, into what is called “half-space.”
This rise in response is sometimes called the “6 dB baffle step,” though it is actually a very
smooth transition between the two modes. Since the frequencies that define it are constant,
being derived from the enclosure dimensions, it can easily be cancelled out by first-order
shelving equalisers, such as those described later in this chapter.

Spherical loudspeakers are, however, very rare and for practical reasons the vast majority of
loudspeaker enclosures are rectangular boxes, as seen in Figure 11.2, which is derived from
the all-time classic paper by Olson in 1969 [2]. The lengths of the edges of the rectangular
box were 2 ft and 3 ft, the drive unit being mounted midway between the two side edges
and 1 ft from the top short edge. Olson comments that the dips at 1 kHz and 2 kHz are
induced by diffraction from the top and side edges, the frequencies being relatively high
because the distances from the drive unit to these edges are small; the broader response
minimum just below 600 Hz is due to the longer distance to the bottom edge. It is obvious
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Figure 11.2: Response disturbances, due to the sharp corners of a rectangular box, are
superimposed on the inherent 6 dB response rise (after Olson, 1969).
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that equalising away these three minima, as well as compensating for the inherent 6 dB rise
is a fairly ambitious undertaking, requiring at least four equaliser stages. There are also
minor dips of about 1 dB at 1.5 kHz and 2.5 kHz, which are at multiples of the frequency of
the minimum due to the distance to the bottom edge, and are due to the path containing
whole wavelengths.

Olson suggested a more sophisticated enclosure as in Figure 11.3, that would give blunter
edges and much reduce the response irregularities, while still fitting into a living room
better than a sphere would. The graph shows response deviations reduced to about 2 dB.
This is a great improvement and this sort of box has had some popularity, though it is of
course more difficult to make and not everybody likes the shape. The response could be
made almost flat by correcting the inherent 6 dB rise and then applying a little cut at 1 kHz
and 2 kHz.

It should be pointed out that these famous graphs show a rather smoothed version of the
actual frequency response. There must have been many other minor irregularities that were
not reproduced as they were irrelevant to the central argument about the importance of
diffraction effects. You cannot assume that the equalisation options suggested above would
result in a ruler-flat frequency response. Loudspeakers just don’t work that way. In addition,
diffraction effects vary according to the listening or measuring position, because the ‘virtual’
sources are displaced from the position of the actual driver. Correcting the on-axis response
may make the off-axis coloration worse.

11.3.5 Room Interaction Correction

In Chapter 2, we saw how the placement of a loudspeaker with respect to walls and corners
could have a significant effect on the frequency response. A loudspeaker in free air (perhaps
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Figure 11.3: Much reduced response disturbances due to the blunter corners at the front of the
box, added to the inherent 6 dB rise (after Olson, 1969).
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on a high pole in the middle of a large field, which can be useful for measurements but is
less so for actual listening) is said to be working into “whole-space.” As we saw in the
previous section, the low-frequency output will tend to diffract around the loudspeaker
enclosure and travel backwards away from the listener, while the high-frequency output will
mostly be radiated forwards.

If we now mount the loudspeaker in the middle of a large vertical wall, with the front baffle
flush with the wall, it is working in “half-space” and the low-frequency output can no
longer travel backwards—it has to go forwards, and so more low-frequency energy reaches
the listener. The high-frequency output is unchanged because it was all going forwards
anyway, so the relative rise in LF level is about 6 dB. If we put the loudspeaker at the
junction between a vertical wall and the floor, the effect is enhanced and this is called
“quarter-space” operation. Finally, we can put our loudspeaker in a corner, where the floor
and two walls at right-angles meet, and this is known as “eighth-space” operation. If this
progression was taken further by adding more enclosing surfaces, we would end up with
something like a horn loudspeaker.

From the point of view of crossover design, the important thing is that the low-frequency
acoustic output is boosted relative to the high-frequency output each time we move from
whole-space to half-space to quarter-space and then to eighth-space. A loudspeaker/
crossover system designed to give a flat “free-space” response, typically for an outdoor
sound-reinforcement application, will sound very bass-heavy indoors. Some studio monitor
speakers have “half-space,” and “quarter-space” settings that switch in a low-frequency
rolloff, the frequency at which it starts depending on the enclosure size. A suitable equaliser
might be the LF-cut circuit described later in this chapter.

While studio monitor speakers are mounted very carefully, often flush with a surface to
give true “half-space” operation, more compromise is usually required in the domestic
environment, and it is quite possible to encounter a situation where one loudspeaker is
against a wall (quarter-space) while the other has to be in a corner (eighth-space). This is
obviously undesirable, but sometimes in life one must make the best of a non-optimal
situation, and providing separate open/wall/corner equalisation switches for the left and
right channels of a crossover might be worth considering.

Things get more complicated when we contemplate a loudspeaker standing on the floor and
not flush (or nearly so) with a wall but some distance from it. If the loudspeaker is one
quarter of a wavelength away from a reflective wall at a given frequency, the low-frequency
energy that diffracts backwards is reflected, so that its total path length is one half-wavelength
and it will reach the loudspeaker again in anti-phase so that cancellation occurs. If the front of
a loudspeaker is 1 metre from a wall the first cancellation notch will be at about 86 Hz, as this
frequency has a quarter-wavelength of 1 metre. How complete the cancellation is depends on
how accurately the speaker-wall distance is one quarter-wavelength and on the reflection
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coefficient of the wall. A lower frequency means a greater distance for a quarter-wavelength,
and the amplitude of the reflected signal reaching the speaker will be lower, because there is
more opportunity for diffusion, and so the cancellation will be less effective.

If the loudspeaker is half a wavelength away from a the reflective wall, the total path length
is a whole wavelength and it will in arrive in-phase and reinforce the direct sound,
theoretically giving a +6 dB increase in level. The effect on the sound reaching the listener
will vary from complete cancellation to +6 dB reinforcement depending on the relationship
between the sound wavelength and the total path length via reflection, and on the wall
reflection coefficient. This effect is not confined to one frequency, because there can be any
number of whole wavelengths in the go-and-return path; Figure 11.4 shows how this gives a
“comb-filter” response with the reinforcement peaks and the cancellation notches reducing
in amplitude with increasing frequency because more sound energy is being radiated
forward and less is diffracting to the rear. The peaks and notches get closer together because
the graph is drawn in the usual way with a logarithmic frequency axis, but the
reinforcement/cancellation process is dependent on a linear function of frequency.

Calculating the actual path length is complicated by the fact that the low-frequency radiation
has to go round a 180-degree corner, so to speak, as it diffracts around the front of the
enclosure, and it is a question as to how sharp a turn it makes in a given situation.

This loudspeaker-room interaction has been examined here because it is a very good
example of a mechanism that it is not possible to correct completely by equalisation, for
both theoretical and practical reasons. Practically, boosting the gain at all the notch
frequencies would be very hard to do, because of the need to line multiple boost equalisers

Reinforcement peaks

Cancellation notchs

86 Hz 258 Hz 430 Hz

+6 dB

0 dB

Figure 11.4: Comb-filter effect produced by reflection from wall behind loudspeaker. The
amplitude of the peaks and the notches reduces with increasing frequency because more sound is

radiating forward and less is diffracting to the rear.
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up with multiple narrow notches; an alignment that would become grotesquely incorrect as
soon as the loudspeaker was moved by a few inches. You will, however, note that the gain
variations become less as the frequency increases, so what can be done is to make some
compensation for the really big response variations at the LF end.

The other important point that stands out here is that the loudspeaker-spaced-from-a-wall
situation is extremely common, giving rise to the sort of frequency response shown in
Figure 11.4, and yet we still listen quite happily to the result. It is not necessary to have a
ruler-flat frequency response to enjoy music.

Another important property of a listening space is the amount of high-frequency absorption
it contains. A room with hard walls and floors will reflect high-frequency energy, and a
proportion of this will reach the listener as reverberation. On the other hand, a room with
wall hangings, thick carpets, and comfy sofas will absorb some of high-frequency energy
and the effect will be less treble. The more absorbent room will give the more accurate
sound as a greater proportion of the energy at the listener will be directly from the
loudspeaker, with an accurate frequency response, and will be subjected to less room
colouration. Correcting for high-frequency absorption is a job for the preamplifier rather
than the active crossover, and this is just one reason why the concept of preamplifiers
without tone-controls is a daft idea.

11.4 Equalisation Circuits

There are many ways of obtaining a desired equalisation response, and any attempt to
examine them all would probably fill up the whole book, so I have had to be very selective
in picking those looked at here. I have aimed to provide circuits that are easy to design,
predictable in their response, easy to configure for good noise and distortion performance,
and well-adapted for dealing with common loudspeaker problems. I have included some
where the fixed resistors that set the response can be temporarily replaced with variable
controls to speed the optimisation of a crossover design.

11.5 HF-Boost and LF-Cut Equaliser

This is also known as a shelving highpass equaliser. It gives a frequency response that at
low frequencies is flat, but begins to rise when the frequency passes the boost frequency fb.
It continues to rise at a basic rate of 6 dB/octave until the shelf frequency fs is reached, at
which point it shelves or levels out to a fixed gain. Unless the boost frequency and the shelf
frequency are spaced by several octaves the transition slope between the gain regimes will
not have time to develop an actual 6 dB/octave slope. Figure 11.5 shows the inverting form
of the circuit. A non-inverting version also exists but is less flexible because at no
frequency can it have a gain of less than unity.
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The circuit shown here is essentially a shunt-feedback amplifier with unity gain at low
frequencies because R1 = R3. To make it a HF-boost equaliser the extra network R2, C1 is
added. As the frequency rises the impedance of C1 falls and allows a greater input current
to flow into the virtual-earth point at the inverting input of A1. As the frequency increases
further, this current is limited by R2, causing the gain at high frequencies to reach a
maximum of R3 divided by the value of R1 and R2 in parallel. The stabilisation capacitor
C2 across R3 has no effect on the response at audio frequencies and is included only to
emphasise that it is always good practice to include such a measure. The shunt-feedback
configuration has no common-mode signal voltage; this is handy if you are using an opamp
prone to common-mode distortion. The downside is that it introduces a phase-inversion
which will need to be reversed somewhere else in the crossover system.

The design equations for the circuit are given in Figure 11.5, and the frequency response
with the values given is shown in Figure 11.6. The equations for the LF gain and the HF or
shelf gain are straightforward, but the expressions for the two frequencies require a little
explanation. The boost frequency fb is the frequency at which the gain would have
increased by 3 dB, just as the cutoff frequency of a lowpass filter is usually specified as the
frequency at which the amplitudes response has fallen by 3 dB. Likewise, the shelf
frequency fs is the frequency at which the gain is 3 d below its final shelving value. As with
the response slope, in practice the interaction between the boost and shelving actions is such
that the equaliser response will only show these 3 dB figures in its response if the boost
frequency and the shelf frequency are a long way apart—much farther apart than is likely in
any practical crossover design. This needs to be kept in mind when examining simulator
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Figure 11.5: Typical application of HF-boost equaliser for Constant Directivity Horn Equalisation;
with the values shown the boost starts around 2 kHz and begins to shelve to +15 dB above

20 kHz.
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outputs and measured frequency responses. It is perfectly possible to use component values
that give the same boost and shelving frequencies; this does not mean the equaliser is doing
nothing, it means that the LF and shelf gains are 6 dB apart.

If a basic gain of unity is not what is required, it can be set to any value above or below by
altering the value of R3. As with active filters and other frequency-dependent circuits, it is
best to decide on a capacitor value first and derive the resistor values from that, given the
much greater variety of resistor values available and the ease with which non-standard
values can be obtained by combining two of them.

In choosing component values, the resistors should be kept as low as possible to minimise
current noise and Johnson noise, but they must not be so low that opamp distortion is increased,
either in A1 or in the preceding stage. Particular care is needed with the latter because the input
impedance of the circuit falls to R1 in parallel with R2 at high frequencies, where opamp
distortion is most troublesome. The circuit values shown give an HF input impedance of 824 Ω,
and if 5532 opamps are being used you will not want to go much lower than this.

This type of HF-boost equaliser can be used to deal with response irregularities of many
kinds. A common application in the sound-reinforcement field for is Constant Directivity
Horn Equalisation; the requirement for this was explained earlier in this chapter. Siegfried
Linkwitz also recommends this configuration to smooth the transition between a floor-
mounted woofer and a free-standing midrange/tweeter assembly [3].

Figure 11.6: The frequency response of the HF-boost equaliser for constant directivity horn
equalisation shown in Figure 11.5.
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It is important to understand that while this circuit has so far been described as an HF-boost
equaliser, it can also be regarded as an LF-cut equaliser; it is simply a matter of how you
look at it. Figure 11.7 shows a circuit that has unity gain across most of the audio spectrum,
but gives a gentle cut from about 200 Hz down, as in Figure 11.8. The important point is
that to set the normal or unequalised gain, where the impedance of C1 is so low it has no
effect, to unity you must choose R1 and R2 so their combined value in parallel is equal to
that of R3. (Other unequalised gains greater or lesser than unity can be chosen.) As the
frequency falls, the impedance of C1 increases until the current flow through R2 is
negligible and the shelving gain of the circuit is set by R1 alone, to ‒2.5 dB. In this case,
the boost frequency is higher than the shelving frequency, and not lower as it was with the
CD horn example above.
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Figure 11.7: The same circuit treated as an LF-cut rather than an HF-boost equaliser.

Figure 11.8: The frequency response of the LF-cut equaliser in Figure 11.7.
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11.6 HF-Cut and LF-Boost Equaliser

This is also known as a shelving lowpass equaliser. It gives a frequency response that at
low frequencies is flat, but begins to fall as the frequency rises and approaches the cut
frequency fc. It continues to fall at a basic rate of 6 dB/octave until the shelf frequency fs is
reached, at which point it shelves, leveling out to a fixed gain. As with the HF-boost
equaliser, unless the boost and the shelf frequency are spaced by several octaves the slope
between the gain regimes will be much less than 6 dB/octave. Figure 11.9 shows the
inverting form of the circuit, with its design equations. A non-inverting version of this
equaliser also exists but is less flexible because it cannot have a gain of less than one.

The circuit is a shunt-feedback amplifier with unity gain at low frequencies because R1 = R3. To
make it a HF-cut equaliser the extra network R2, C1 is added. As the frequency rises the
impedance of C1 falls and allows a greater feedback current to flow into the virtual-earth point at
the inverting input of A1, reducing the gain. As the frequency increases further, this feedback
current is limited by R2, causing the gain at high frequencies to reach a minimum of R2 and R3
in parallel, divided by the value of R1. A small stabilisation capacitor C2 is placed across R3 as
before. Once again, the shunt-feedback configuration has the advantage of no common-mode
signal voltage, but it introduces a phase-inversion which will need to be reversed elsewhere.

A typical use of this kind of equaliser is compensating for the high-frequency boost
resulting from diffraction around the edges of the front panel of a loudspeaker. With the
values shown in Figure 11.9 the basic gain at low frequencies is unity, and the fall in
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Figure 11.9: Typical example of HF-cut equaliser set up for diffraction compensation; with the
values shown the response falls from about 200 Hz and shelves to ‒6 dB around 5 kHz. The middle

‒3 dB point is at 1 kHz.
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response starts at around 200 Hz, with the gain shelving to ‒6 dB around 5 kHz, as in
Figure 11.10. The middle ‒3 dB point is at 1 kHz.

As for the previous HF-boost/LF-cut equaliser, this HF-cut equaliser can also be regarded as
a LF-boost circuit. To obtain a normal gain of unity at high frequencies, R1 is set equal to
the value of the parallel combination of R2 and R3. Then, as frequency falls, the point is
reached where the impedance of C1 becomes significant, and reduces the feedback current
through R2; the gain therefore rises, and shelves when the impedance of C1 becomes large
compared with R3.

This form of equaliser is useful for compensating for the low frequency roll-off from a
loudspeaker fitted to an open baffle; the smaller the baffle, the greater is the loss of low-
frequency response, and the greater the amount of boost required. Since the drive unit cone
is not loaded at low frequencies, care must be taken to avoid excessive cone excursions.
The biquad equaliser provides a more complex but much more versatile alternative.

11.7 Combined HF-Boost and HF-Cut Equaliser

The first of the equaliser types examined has its frequency-dependent network in the input
arm of the shunt-feedback amplifier; the second has its frequency-dependent network in the
feedback arm. It is possible to put a frequency-dependent network in both input and
feedback arms, thus getting two equalisers for the cost of one opamp. Since the inverting
opamp input is at virtual earth, there is no interaction between the two networks.

Figure 11.10: The frequency response of the HF-cut equaliser in Figure 11.9, showing a typical
curve for diffraction correction.
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11.8 Adjustable Peak/Dip Equalisers: Fixed Frequency and Low Q

It is often desirable to include an equaliser that can put a peak (like that of a resonant
circuit) or a dip (essentially a broad notch) in the frequency response. This is particularly
useful for correcting amplitude response irregularities in drive units. The circuit shown in
Figure 11.11 is based on the Baxandall tone control concept, and is commonly used in low-
end mixing consoles. It can implement a low-Q peak or dip of variable height, giving a flat
response if the control is set centrally. The centre frequency can only be altered by changing
the capacitor values. This equaliser is described as “adjustable” because it can be set to
either peak or dip by any desired amount within its limits. It is unlikely you would want to
incorporate a peak/dip control potentiometer in a production crossover, though it could be
extremely useful during the development phase. In manufacture RV1 would be replaced by
a pair of fixed resistors that give the desired response.

The operation of this versatile circuit is very simple. As frequency increases from the low
end of the audio band, the impedance of C2 falls and the position of the pot wiper begins to
take effect. When RV1 is in the boost position more of the input signal is passed to the
inverting input of A1 and adds to the output, giving a peaking response. When RV1 is in
the cut position more of the output signal is passed to the inverting input, giving more
negative feedback, and the gain is reduced, causing a dip in the response.

At a still higher frequency, the impedance of C1 becomes low enough to effectively tie the
two ends of the pot together, and the position of the wiper no longer has any effect, the
circuit reverting to a fixed gain of unity at high frequencies. Thus the circuit only acts
over a limited band of frequencies, giving the pleasingly symmetrical response curves in
Figure 11.12 for varying control settings. It must be said that the benefits of symmetry are
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Figure 11.11: A adjustable peak/dip equaliser based on the Baxandall tone control concept.
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here visual rather than audible. Much more information on this type of equaliser can be
found in my book Small Signal Audio Design [4].

The component values shown in Figure 11.11 give a centre frequency of 1.26 kHz, which
can be simply altered by scaling the values of C1 and C2 while keeping them in the
same ratio. This apparently random frequency is a consequence of the fact that both
potentiometers and capacitors come in relatively few values. The maximum Q is 0.79,
though this is only obtained at maximum boost or cut. At intermediate settings the curves
are flatter and the Q considerably lower; with a boost of +8 dB the Q is only 0.29. The
boost/cut limits are +/‒15 dB, though this hopefully a much greater range than will be
required for equalisation in practice; the range can be reduced by increasing R1, R2. Note
that R4 and R5 are needed to maintain negative feedback for unity gain at DC, and to keep
the stage biased properly. They must be high in value compared with the impedances in the
rest of the circuit.

It is not possible to obtain high values of Q with this configuration, and that is probably its major
drawback. The capacitor ratio in Figure 11.11 gives the maximum possible Q. This equaliser is
therefore mainly useful for dealing with large-scale trends in the frequency response.
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Figure 11.12: Frequency response of the adjustable peak/dip equaliser, for different
boost/cut settings.
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As with the previous equalisers, the shunt-feedback configuration used here means there is
no common-mode voltage on the opamp inputs, but with that comes an inconvenient phase-
inversion which must be taken into account in the system design.

11.9 Adjustable Peak/Dip Equalisers: Variable Centre
Frequency and Low Q

The fixed-frequency peak/dip equaliser we have just looked at gives excellent control over
the amount of boost or cut applied, but the centre frequency can only be altered by
changing the capacitors. In the development phase of crossover design it is extremely useful
to be able to temporarily include an equaliser that also has continuously variable control of
its centre frequency as well as the amount of peak or dip. When optimisation of the
crossover is complete, it is replaced in the final design by a fixed equaliser like that in the
previous section.

The circuit shown in Figure 11.13 is also based on mixing console technology, where it is
usually called a “sweep-middle EQ.” It is based on a modified Wien-bridge network of the
sort sometimes used in oscillators; this acts as a low-Q bandpass filter, so that only a
selected band of frequencies reach the non-inverting input of A1. When RV1 is in the boost
position the input signal passes through the Wien network and adds to the output, giving a
peaking response. When RV1 is in the cut position the signal through the Wien network
constitutes extra negative feedback, and the gain is reduced, causing a dip in the response.
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Figure 11.13: A peak/dip equaliser with variable centre frequency, intended for crossover
development work.
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The variable load that the Wien network puts on the cut/boost pot RV1, and the variable
source impedance from its wiper cause a small amount of interaction between boost/cut and
centre frequency settings. This is not likely to cause any significant problem, but if
necessary it could be eliminated by putting a unity-gain buffer stage between RV1 wiper
and the Wien bandpass network. There will also be minor inaccuracies due to imperfect
matching of the two sections of the frequency control.

The combination of 100K pot sections and a 6K8 end-stop resistors gives a theoretical
centre frequency range of 15.7 to 1, which is about as much as can be usefully
employed when using reverse-log Law C pots. Greater ranges will give excessive
cramping of the frequency calibrations at the high-frequency end of the scale. Such
calibrations should only be used as a rough guide; it is much more accurate to measure
the response of the circuit after you have completed the optimisation of the crossover
system. The measured frequency responses at the control limits are shown in
Figure 11.14. The frequency range is from 150 Hz to 2.3 kHz; the ratio is slightly adrift
from theory due to component tolerances. To obtain different frequencies scale C1 and
C2, keeping the ratio between them the same. More information on this kind of
equaliser can be found in Small Signal Audio Design [5].

This variable-frequency circuit is relatively complex compared with fixed equalisers, and is
noisier because of the extra Johnson noise from the high-value frequency-determining resistors.

Figure 11.14: Frequency response of the variable-frequency peak/dip equaliser, showing
extremes of frequency setting.
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In production it would be replaced by a fixed equaliser like that in the previous section, with
component values set to give the desired response.

11.10 Adjustable Peak/Dip Equalisers with High Q

The two peak/dip equalisers we have just examined have low Qs and are not suitable for
dealing relatively narrow response irregularities; obtaining higher Qs requires more complex
circuitry. There are several different approaches that might be taken; for example a state-
variable filter would give the most flexibility, with control over centre frequency and Q as
well as the amount of peak or dip. While it could be very useful for optimisation, it would,
however, be excessively complex and costly for permanent inclusion in a crossover design.
The approach I have chosen here is based on using a gyrator to simulate a series LC
resonant circuit.

The essence of the scheme is shown in Figure 11.15, which the alert reader will spot as the
basic concept behind graphic equalisers [6]. L1, C1 and R3 make up an LCR series
resonant circuit; this has a high impedance except around its resonant frequency; at this
frequency the reactances of L1 and C1 cancel each other out and the impedance to ground
is that of R3 alone. (A parallel LC circuit works in the opposite way, having a low
impedance at all frequencies except at resonance.) At the resonant frequency, when the
wiper of RV1 is at the R1 end of its track, the LCR circuit forms the lower leg of an
attenuator of which R1 is the upper arm; this attenuates the input signal and a dip in the
frequency response is therefore produced. When the RV1 wiper is at the R2 end, an
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Figure 11.15: The basic idea behind the peak/dip equaliser; gain is unity with the wiper central.

322 Chapter 11



attenuator is formed with R2 that reduces the amount of negative feedback at resonance and
so creates a peak in the response. It is not exactly intuitively obvious, but this process does
give absolutely symmetrical cut/boost curves. At frequencies away from resonance the
impedance of the RLC circuit is high and the gain of the circuit is unity.

Inductors are always to be avoided if possible; they are relatively expensive, often because
they need to be custom-made. Unless they are air-cored (which limits their inductance to
low values) the ferromagnetic core material will cause non-linearity. They can crosstalk to
each other if placed close together, and can be subject to the induction of interference from
external magnetic fields. In general they deviate from being an ideal circuit element much
more than resistors or capacitors do.

Gyrator circuits are therefore extremely useful, as they take a capacitance and “gyrate” it so
it acts in some respects like an inductor. This is simple to do if one end of the wanted
inductor is grounded—which fortunately is the case here. Gyrators that can emulate floating
inductors do exist but are far more complex.

Figure 11.16 shows how it works; C1 is the normal capacitor as in the series LCR circuit,
while C2 is made to act like the inductor L1. As the applied frequency rises, the attenuation
of the highpass network C2, R1 falls, so that a greater signal is applied to unity-gain buffer
A1 and it more effectively bootstraps the point X, making the impedance from X to ground
increase. Therefore, we have a part of the circuit where the impedance rises proportionally
to frequency—which is just how an inductor behaves. There are limits to the Q values that
can be obtained with this circuit because of the inevitable presence of R1 and R2. The
remarkably simple equation for the inductor value is shown; note that this includes R2
as well as R1.
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Figure 11.16: Synthesising a grounded inductor in series with a resistance using a gyrator.
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The gyrator example in Figure 11.16 has values chosen to synthesise a grounded inductor of
100 mH in series with a resistance of 2 kΩ; that would be quite a hefty component if it was
a real coil, but it would have a much lower series resistance than the synthesised version.

Figure 11.17 shows a gyrator-based high-Q peak/dip equaliser, with a centre frequency of
1 kHz. The Q at the maximum boost or cut of 6.3 dB is 2.2, considerably higher than that
of the previous peak/dip equaliser we looked at, and much more suitable for correcting
localised response errors. The maximal cut and boost curves and some intermediate boost
values are seen in Figure 11.18. The +4 dB peak results from the values R2 = 9 KΩ and
R3 = 1 KΩ. The +1.5 dB peak results from the values R2 = 7 KΩ and R3 = 3 KΩ. For
development work R2 and R3 can be replaced by a 10 KΩ pot RV1. To obtain different
centre frequencies scale C1 and C2, keeping the ratio between them the same.

The beauty of this arrangement is that two, three, or more LCR circuits, with associated cut/
boost resistors or pots, can be connected between the two opamp inputs, giving us an
equaliser with pretty much as many bands as we want. It is, after all, based on the classic
graphic equaliser configuration.

This configuration can produce a response dip with well-controlled gain at the deepest
point, but it is not capable of generating very deep and narrow notches of the sort required
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Figure 11.17: Gyrator-based high-Q peak/dip equaliser, with centre frequency fixed at 1 kHz. For
development work R2 and R3 can be replaced by a 10 KΩ pot RV1.
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for notch crossovers (see Chapter 5). However, notches for equalisation purposes are not
normally required to be particularly deep or narrow. The implementation of filters that do
have deep and narrow notches is thoroughly dealt with in Chapter 9.

11.11 The Bridged-T Equaliser

There are many types of bridged-T equalisers [7], but the configuration shown in Figure 11.19
is probably the best known; it is described by Linkwitz in [8]. This equaliser is potentially
useful for modifying the LF roll-off of loudspeakers, but it has serious limitations compared
with the biquad equaliser described in the next section.

One of these limitations is that no design equations are in common use. Figure 11.19 shows
the values used for the attempt at LF equalisation in Figure 11.20, using the constraint
R1a = R1b = R1, and I quite happily admit that they were obtained by twiddling values on a
simulator and not by any more sophisticated process. The LF response of the loudspeaker
shows a fairly high Q of 1.20 and a ‒3 dB cutoff point of 74 Hz. This apparently random
value derives from the fact that if the Q was reduced to 0.7071, then the ‒3 dB point would
be at the nice round number of 100 Hz. As you can see, it is possible to convert the peaking
response to something approximating maximally flat, but in the process the ‒3 dB frequency
has actually increased from 74 Hz to 85 Hz, and there is a rather unhappy-looking bend in
the combined response around 60 Hz. Not until 50 Hz does the equalised response exceed
the unmodified loudspeaker response. Despite this, the equaliser gain at 40 Hz is +4.0 dB,

Figure 11.18: Frequency response of gyrator high-Q equaliser with various boost/cut settings.
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and so the amplifier power will have to be more than doubled to maintain the maximum
SPL down to this frequency. All in all, the result is not very satisfactory.

This bridged-T configuration has the disadvantage of high noise gain—in other words, the
gain of the circuit for the opamp noise is greater than the gain for the signal. This is
because at high frequencies C1 has negligible impedance so we have R1b connected from
the virtual-earth point at the opamp inverting input to ground. R2 also affects the noise gain
but by a small amount. In this case the noise gain is (R3 + R1b)/R1b, which works out at a
rather horrifying twelve times or +21.8 dB. This stage will be much noisier than the active
filters and other parts of the crossover system, and this is a really serious drawback.
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Figure 11.19: Bridged-T equaliser circuit designed for loudspeaker LF extension.

Figure 11.20: Low-frequency extension using a biquad equaliser for a loudspeaker with an
unequalised Q of 1.20. The dotted line is at ‒3 dB.
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Neville Thiele described several different bridged-T networks for loudspeaker LF extension
in 2004 [7], but these work rather differently since they are placed in the feedback path of
an opamp. He noted that he was surprised that he could find no earlier analysis of
bridged-T networks. I can testify that there appears to be no useful material on these
configurations on the Internet in December 2010.

11.12 The Biquad Equaliser

An especially effective equaliser is a combination of two bridged-T equalisers, as shown in
Figure 11.21. It is much better adapted to equalising drive unit errors, being able to
simultaneously generate a peak and an independently controlled dip in the response. It is
referred to as a biquad equaliser because its mathematical description is a fraction with one
quadratic equation divided by another.

While it is possible to alter all of the ten passive components independently, in practice it is
found that the easiest way to get manageable design equations is to set:

R1a = R1b = R1 (11.1)

R2a = R2b = R2 (11.2)

R3a = R3b = R3 (11.3)

C2a = C2b = C2 (11.4)

This approach is illustrated in Figure 11.21; it reduces the number of degrees of freedom to
four, and the amplitude response is conveniently defined by f0, Q0 (the frequency and Q of
the dip in the response) and fp, Qp (the frequency and Q of the peak in the response).
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Figure 11.21: Biquad equaliser circuit designed for f0= 100 Hz, Q0= 1.5, and fp = 45 Hz, Qp = 1.3.
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Note that Q values greater than 0.707 (1/
ffiffiffi
2

p
) are required to give peaking or dipping. The

circuit in Figure 11.21, derived from a crossover design I did for a client, has f0 = 100 Hz,
Q0 = 1.5, and fp = 45 Hz, Qp = 1.3, and so helpfully shows both a peak and a dip with
different Q’s; its response is shown in Figure 11.22. You will see that the gain flattens out
at +13.9 dB at the LF end, considerably greater than the HF gain of 0 dB. The further apart
the f0 and fp frequencies are, the greater in difference the gain will be, and care is needed to
make sure it does not become excessive. The actual peak frequency in Figure 11.22 is
36 Hz and the dip frequency 115 Hz, differing from the values put into the design equations
because f0 and fp are sufficiently close together for their responses to interact significantly.

The value of R2a and R2b (i.e., R2) has been kept reasonably low to reduce noise but, as a
consequence of the low frequencies at which the equaliser acts, the capacitors C1 and C3
are already sizable, and it is not very feasible to reduce R2 further. C1 in particular will be
expensive and bulky if it is a non-electrolytic component.

The gain of this circuit always tends to unity at the HF end of the response, so long as
R2a = R2b, because at high frequencies the impedance of C2a, C2b becomes negligible and
R2a, R2b set the gain. At the LF end all capacitors may be regarded as open-circuit, so gain
is set by R3/R1, and may be either much higher or much lower than unity, depending on
the values set for f0 and fp. Note that the stage is phase-inverting, and this must be allowed
for in the system design of a crossover.

Figure 11.22: Frequency response of the biquad equaliser in Figure 11.21.
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We saw in the previous section that the bridged-T configuration has the disadvantage of
high noise gain because at high frequencies C1 has negligible impedance and R1b is
effectively connected from the virtual-earth point to ground. In this case the value of R2a
cannot be neglected as it is comparable with R1b, so the parallel combination of the two is
used to give a more accurate equation for the noise gain:

Noise gain =
ðR2a+R1bÞR2b+ ðR2a .R1bÞ

R2a .R1b
(11.5)

Thus the noise gain for Figure 11.21 comes to 5.04 times or +14.0 dB, which is certainly
uncomfortably high but nothing like as bad as the +21.8 dB given by the bridged-T
equaliser in the previous section.

The design procedure given here is based on the equations introduced by Siegfried Linkwitz
[8]. The procedure is thus:

1. First calculate the design parameter k

k =

f0
fp

− Q0

Qp

Q0

Qp
−

fp
f0

(11.6)

The parameter k must come out as positive or the resistor values obtained will be
negative.

2. Choose a value for C2 (a preferred value is wise, because it’s probably the only one
you’re going to get, and it occurs twice in the circuit) then calculate R1:

R1 = 1

2π . f0 .C2 .
�
2Q0ð1+ kÞ

� (11.7)

3. Calculate R2, C1, C3 and R3

R2 = 2 . k .R1 (11.8)

C1 = C2
�
2Q0ð1+ kÞ

�2
(11.9)

C3 = C1
fp
f0

� �2

(11.10)

R3 = R1
f0
fp

� �2

(11.11)
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The HF gain is always unity, because R2a = R2b, but the LF gain in dB is variable and is
given by:

GainLF = 40 log
f0
fp

� �
(11.12)

These equations can be very simply automated on a spreadsheet, which is just as well as
several iterations may be required to get satisfactory answers.

The topology in Figure 11.21 appears to have been first put forward by Siegfried Linkwitz
in 1978 [3]; it is not clear if he invented it, but it seems he was certainly the first to develop
useful design equations. Its use for equalising the LF end of loudspeaker systems was
studied by Greiner and Schoessow in 1983 [9]. Rather surprisingly, Greiner and Schoessow
laid very little emphasis on the flexibility and convenience of this topology. The shunt-
feedback configuration means that the two halves of the circuit are completely independent
of each other and there is no interaction of the peak and dip parameters. However, it is
important to understand that if f0 and fp are close together the summation of their responses
at the output may make the centre frequencies appear to be wrong at a first glance.

We will now see how this equaliser can be used for LF response extension. Figure 11.23
shows the low-end response of the loudspeaker we used in the previous section, with the
relatively high Q of 1.20 and a ‒3 dB cutoff point of 74 Hz, which corresponds to a ‒3 dB
point would be at 100 Hz if the Q was reduced to 0.7071 for maximal flatness. The
loudspeaker response peaks by 2.4 dB at 124 Hz. We now design a biquad equaliser with

Figure 11.23: Low-frequency extension using a biquad equaliser for a loudspeaker with an
unequalised Q of 1.20. The dotted line is at ‒3 dB.
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f0 = 100 Hz—note that is the frequency for the Q = 0.7071 version of the loudspeaker—and
a Q of 1.20. This will cancel out the peaking in the loudspeaker response. The choice of fp
and Qp depends on how ambitious we are in our plan to extend the LF response, but in this
case fp has been set to 40 Hz and Qp to 0.5.

Figure 11.23 shows that the response peak from the original loudspeaker has been neatly
cancelled, and the overall LF response extended. The ‒3 dB point has only moved from
74 Hz to 62 Hz, which does not sound like a stunning improvement, but the gentler roll-off
of the new response has to be taken into account. The ‒6 dB point has moved from 63 Hz
to 40 Hz, a rather more convincing change. The LF roll-off takes on the Q of Qp, which at
0.5 would be considered over-damped by some critics, but I adopted it deliberately as it
shows how equalisation can turn an under-damped response into an over-damped one.

It is worth noting that it is not possible to set fp to 50 Hz instead of 40 Hz while leaving the
other setting unchanged. This gives a negative value for the parameter k and a negative
value of ‒3537Ω for R2. While it is possible to construct circuitry that emulates floating
negative resistors, it is not a simple business. If you run into trouble with this you should
use a different kind of equaliser.

The improvements may not be earth-shattering, but bear in mind that the equaliser has a
gain of 9.0 dB at 40 Hz, so if the maximum SPL is going to be maintained down to that
frequency, the output of the associated power output amplifier will have to increase by
almost eight times. Driver cone excursion increases rapidly—quadrupling with each octave
of decreasing frequency for a constant sound pressure, so great care is required to prevent it
becoming excessive, leading to much-increased non-linear distortion and possibly physical
damage. Thermal damage to the voice-coil must also be considered; a sobering thought.

The equaliser circuit for Figure 11.23 is shown in Figure 11.24. The noise gain is now a much
more acceptable 2.1 times or +6.4 dB, which emphasises that the biquad equaliser is much
superior to the bridged-T in this respect. C3 could be a 100 nF capacitor in parallel with
1.5 nF without introducing significant error. C1 is a really awkward value, and if you are
restricted to the E6 capacitor series, would have to be made up of 330 nF + 220 nF + 68 nF +
15 nF in parallel, which adds up to 633 nF, an error of +0.32%. This is a relatively expensive
solution, especially if you are using polypropylene capacitors to avoid distortion, and will also
use up a lot of PCB area. A solution to this problem is provided in the next section.

It is instructive to try some more options for LF extension. Once the design equations have been
set up on a spreadsheet and the circuit built on a simulator (including a block to simulate the
response of the loudspeaker alone, which can in many circumstances be a simple second-order
filter of appropriate cutoff frequency and Q) variations on a theme can be tried out very quickly.

Figure 11.25 shows an optimistic attempt to further extend the LF response further by
setting the equaliser fp to 50 Hz and keeping the Qp at 0.5. The ‒3 dB point is now moved
from 74 Hz to 31 Hz, which would be a considerable improvement were it practical, but
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note that the equaliser gain is now heading off the top of the graph, and does not begin to
level out until around 5 Hz, at which point the gain has reached 27 dB. At the 31 Hz ‒3 dB
point, equaliser gain is +17.4 dB, which would require no less than 55 times as much power
from the amplifier and a truly extraordinary drive unit to handle it. It is important to realise
that there is only so much you can do with LF extension by equalisation.

Figure 11.25: An ambitious attempt at low-frequency extension with the equaliser fp= 20 Hz and
Qp= 0.5. The combined response is now ‒3 dB at 31 Hz but the equaliser gain to achieve this is

excessive. The dotted line is at ‒3 dB.
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Figure 11.24: Schematic of a biquad equaliser designed for LF extension with exact
component values.
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Figure 11.26 shows a more reasonable approach. The aim is to make the combined response
maximally flat (Q = 0.707) rather than overdamped, and keep the demands for extra
amplifier power and increased cone excursion within practicable limits. We therefore set the
equaliser fp to 50 Hz and the Qp at 0.707. The ‒3 dB point is now moved from 74 Hz to
50 Hz, which is well worth having, but the equaliser gain never exceeds 12 dB and so the
amplifier power increase is limited to a somewhat more feasible but still very substantial
16 times. If it is accepted that maximum SPL will only be maintained down to the new
‒3 dB frequency, only six times as much power is required. In practice the drive unit cone
excursion constraints and the thermal performance of the voice-coil assembly will probably
set the limits of what is achievable.

An example of the use of the biquad equaliser for LF response extension is shown in the
Christhof Heinzerling subtractive crossover [10]. This design also includes a boost/cut
equalisation control for the low LF based on the 2-C version of the Baxandall tone-control.

11.13 Capacitance Multiplication for the Biquad Equaliser

Since this equaliser is commonly used at the LF end of the spectrum and must work at low
frequencies, if the resistors are to be kept low to minimise noise, then the capacitors can become
inconveniently large in value, physical size, and cost. This is particularly true if polypropylene
capacitors are used to prevent capacitor distortion. The use of a capacitance-multiplier

Figure 11.26: A more realistic plan for low-frequency extension, with the equaliser fp= 50 Hz and
Q= 0.707. The modified response is now ‒3 dB at 50 Hz and the equaliser gain is now acceptable.

The dotted line is at ‒3 dB.
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architecture in an LF biquad equaliser means that the capacitors can be kept to a reasonable size,
and any desired capacitance value can be obtained without paralleling components, simply by
varying the multiplication factor.

The capacitance multiplication is very straightforward because the capacitors in question are
grounded at one end in the basic circuit. Applying it to a floating capacitor would be much
more difficult. The basic plan is to connect the normally grounded end of the capacitor to an
opamp output, which is then driven so that as the voltage at the top of the capacitor (point A
in Figure 11.27) rises, then the voltage at the bottom of the capacitor falls, increasing the
current through the capacitor for a given voltage at point A. If the fall is equal in voltage to
the rise, then as far as the rest of the circuit is concerned, the value of the capacitor has
doubled. Varying the amount by which the bottom of the capacitor is driven allows the
multiplication factor to be set to any desired value by varying a single resistor.

This technique is implemented by the circuitry in Figure 11.27, which implements the
circuit of Figure 11.24, without the need to find and pay for a 635 nF capacitor. A3 is a
shunt-feedback inverting stage that drives the bottom of capacitor C1 in anti-phase to the
voltage at it top end. R4 and R5 are kept low in value to minimise current noise and
Johnson noise, and the resulting low input impedance of the A3 stage is therefore buffered

Input
R1a R1b

6316R6316R

R2a C2a

A

39.47K39.47K

630.9R

R2b

630.9R

C2b 100nF

100nF

R3a R3b

C3
101.6nF

A3+

−
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C1
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A2
1K+

−

A1
+

−

Figure 11.27: Capacitance multiplication applied to the biquad equaliser of Figure 11.24. Here
a 330 nF capacitor acts like a 635 nF capacitor as its lower terminal is driven in anti-phase.
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from the rest of the circuit by the voltage-follower A2. The multiplication factor, determined
by R5/R4, is 1.924 times. so the 330 nF capacitor will appear to the rest of the equaliser
circuit as 635 nF.

Any ingenious new circuitry that adds more active devices needs to be carefully scrutinised
to make sure that neither the noise or distortion performance is unduly compromised. The
capacitance multiplier method shown here does not significantly degrade either noise or
distortion. The lack of extra noise is explained by the fact that if a signal is injected into the
inverting input of A3 (which is a virtual-earth point) through a resistor of equal value to R5,
then the gain to the output of the stage is ‒11 dB, and so the extra noise contribution from
A2 and A3 is of little significance.

The technique does require careful consideration of signal levels. Given the condition R1a =
R1b referred to above, the signal voltage at the top of C1 is half that at the input of the
equaliser. Therefore if multiplication factors greater than two are used, clipping may occur
in the capacitance multiplier at the output of A3 before it does in any other part of the
circuit.

11.14 Equalisers with Non-6 dB Slopes

Since lowpass and highpass filter slopes come only in multiples of 6 dB/octave, creating any
other slope requires some approach other than a straightforward filter. Lesser slopes can be
made over small frequency ranges by putting single highpass and lowpass time-constants
close together, but this will not work over larger ranges. There are more sophisticated ways
of combining time-constants to get a non-standard response slope, which I shall illustrate
with a classic non-loudspeaker example. Pink noise is much more useful than white noise
for audio measurement because it gives a flat line on a spectrum analyser, but the various
methods of noise generation all give white noise. White noise is therefore converted into
pink noise by what is called a “pinkening filter,” which has a ‒3 dB/octave slope over the
whole audio band from 20 Hz to 20 kHz.

A 3 dB/octave slope is proverbially difficult, or at least non-obvious, to obtain as the
ultimate slopes of filters come in multiples of 6 dB/octave only. The standard solution when
you need a pinkening filter is a series of overlapping lowpass and highpass time-constants
(i.e., alternate poles and zeros) that approximate to the required slope. This gives a response
that wiggles up and down around a −3 dB/octave line, and the more pairs of poles and zeros
used, the less the wiggle and the more accurately the response approximates to the line.

Two possible versions are shown in Figure 11.28; in both cases capacitor values have been
restricted to the E6 series. The simpler version uses three RC networks to create pole-zero
pairs, with a final unmatched pole introduced by C4. Its response is shown in Figure 11.29
with an exact ‒3 dB/octave line (dotted) added for comparison; the error trace at the top has
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been multiplied by ten times to make the deviations more visible. The worst errors in the
100 Hz–10 kHz range are +0.22 dB at 259 Hz, ‒0.09 dB at 2.5 kHz, and +0.36 dB at
8.2 kHz, which I hope you will agree is not bad for a simple circuit.

This 3x RC circuit was originally published in Small Signal Audio Design [11], but with
R2 = 12K, R3 = 3K9, and R4 = 1K2. This had errors of up to ± 0.65 dB, because of a
historical requirement to use only E12 resistor values. The 3x RC circuit is not the best
option unless you are really closely counting the cost of every component, for reasons that
will now appear.

Figure 11.30 shows the response of the version with four RC networks shown in Figure
11.28b. It has four pole-zero pairs, with a final unmatched pole. It gives rather better
performance for two reasons, one obvious, the other less so. Clearly the more RC networks
are used, the closer is the pole-zero spacing, and so there less the wobble on the frequency
response. Less obvious is the fact that four RC networks allow the pole-zero frequencies
required to match E6 capacitor values much better—you will note the tidy pattern of
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Figure 11.28: Two ‒3 dB/octave filters built from repeated RC networks. The version at (b) is more
accurate over a wider frequency range.
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Figure 11.29: The response of the 3x RC ‒3 dB/octave filter in Figure 11.28a. The error trace at top
(multiplied by ten) shows a maximum error of +0.36 dB in the 100 Hz–10 kHz range. The dotted

line shows an exact ‒3 dB/octave slope.

Figure 11.30: The response of the 4x RC ‒3 dB/octave filter in Figure 11.28b. The error trace at
top (multiplied by ten) shows a maximum error of +0.28 dB over the 20 Hz–20 kHz range.
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component values in Figure 11.28b, where 100/33 = 3.03 and 33/10 = 3.3, giving near-equal
spacings on a log frequency scale.

The error plot now shows a pleasing sine-wave undulation around zero, with one cycle per
decade of frequency, indicating that the errors (± 0.28 dB) are as low as they can be with
this number of RC networks. The frequency range over which the errors are well-controlled
is also much greater; a very useful 20 Hz–20 kHz span. This is a good return from adding
just one resistor and one capacitor. Finally, you will note that our “premium” four-RC
network has an overall lower impedance to reduce Johnson noise in the resistors. This
means that C1 is relatively large at 1 uF, but I see no reason why the capacitance
multiplication concept described for biquad equalisers should not work nicely in this
application; I should however say that I have not yet tried it.

As we have just seen, it makes sense to go with the flow of the E6 capacitor series. The
4x RC network we have just looked at uses just two values from the series; 10 and 33. This
principle can be extended by using three values instead of two; 10, 22, and 47. This gives
ratios of 100/47 = 2.10, 47/22 = 2.14, and 22/10 = 2.20. The resulting circuit is seen in
Figure 11.31, where exact resistor values derived from the capacitor ratios have are shown,
rather than preferred values.

This gives considerably improved accuracy over the 4x RC network. The error is now within
+0.1 dB over a frequency range extended to 10 Hz–20 kHz, though the error curve does not
have the same symmetry; see Figure 11.32. It will of course be necessary to combine resistors
to obtain those awkward values. With the E6 capacitor series the ultimate accuracy could be
obtained by using all the values in a decade, with the ratios 100/68 = 1.47, 68/47 = 1.45,
47/33 = 1.42, 33/22 = 1.50, 22/15 = 1.47, and 15/10 = 1.50. For crossover design this would
give much greater accuracy than that permitted by normal transducer variations.

This approach can be used to create a filter with any desired slope by altering the spacing of
the poles and zeros. If a slope greater than 6 dB/octave but less than 12 dB/octave is required,
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Figure 11.31: A ‒3 dB/octave filter with better accuracy using seven RC networks that fit in with
the E6 capacitor series. Accuracy is within +0.1 dB over a 10 Hz–20 kHz frequency range.
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then a standard 6 dB/octave filter can be cascaded with one having a lesser slope. For example,
cascading a ‒6 dB/octave filter with a ‒3 dB/octave filter gives a ‒9 dB/octave slope.

All the filters examined above give a response that falls at 3 dB/octave with frequency; to
get a response that rises with frequency the networks can be inserted into the feedback
network of an opamp. Stability will need to be checked.

11.15 Equalisation by Filter Frequency Offset

In Chapter 4 we saw that peaks and dips in the crossover region between a pair of filters
can be manipulated and minimised by offsetting the frequencies of the two filters. If there is
a peak at the crossover frequency then it can very often be reduced to a much smaller peak
with two flanking dips by separating the filter frequencies. This technique can also be used
for the purposes of response equalisation, though since there are only two variables (the
highpass and lowpass filter cutoff frequencies) it is rather inflexible, and it is going to take
a good deal of luck to get a response irregularity of just the right size and shape so it can
be corrected simply by frequency offset. Even if this does happen, if you are manufacturing
you might need to change one of the drive units for a different type, with different response
irregularities, and you will then need to redesign the crossover to add extra equalisation
stages that can cope with them.

Figure 11.32: The response of the 7x RC ‒3 dB/octave filter in Figure 11.31. The error is now
within +0.1 dB over a 10 Hz–20 kHz frequency range.
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11.16 Equalisation by Adjusting All Filter Parameters

Much greater flexibility is possible if other filter parameters apart from the cutoff
frequencies are manipulated. If we assume we have a fourth-order Linkwitz–Riley crossover,
then the lowpass path has two cascaded Butterworth second-order filters. Both the cutoff
frequency and the Q of each Butterworth filter could be altered to meet specific
requirements, giving us four variables. The highpass path of the crossover similarly has four
variables, so there are many more degrees of freedom.

The problem is that all these variables have an interactive effect on the final response, and
tweaking them to get a desired response is going to be a deeply tiresome business; some
sort of automatic means of optimisation is highly desirable. The Linear-X Systems
Filtershop CAD software [12] contains optimisation routines that can take measured drive
unit amplitude response as input, and optimise the parameters of a chosen filter
configuration to get the desired final response. It is a most impressive software package.

This approach has the advantage that it has much more ability to correct response
irregularities than simple frequency-offsetting. It also requires no extra circuitry to perform
the equalisation; on the other hand adding dedicated equalisation stages will only have a
small impact on the price of a typical active crossover. It does have the serious drawback
that the resulting circuitry is likely to be wholly opaque, with no indication of what
parameters have been tweaked to compensate for what response irregularities. Good
documentation is essential, and if specialised software is used to perform the optimisation, it
will need to be kept available so that design changes can be made in necessary.

Passive crossovers must stringently minimise component count and power losses, so
equalisation often has to be performed by manipulating filter cutoff frequencies and Q’s.
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CHAPTER 12

Passive Components for Active Crossovers

In this chapter we will look at some passive component properties that are especially important
in the design of small-signal audio equipment in general and active crossovers in particular.
All passive components differ from the ideal mathematical models—resistors have series
inductance, capacitors have series resistance, and so on. There are also well-known issues with
the accuracy of the component value, and the way that the value changes with temperature.
What is less publicised is that some passive components can show significant non-linearity.

It is unwise to assume that all the distortion in an electronic circuit will arise from the active
devices. This is pretty clearly not true if transformers or other inductors are in the audio
path, but it is also a very unsafe assumption even if the only passive components you are
using are resistors and capacitors. I recall that I was horrified when I first began designing
active filters; the distortion from the capacitors completely obliterated the quite low THD
from the discrete transistor unity-gain buffers I was using. More on this problem later.

Active filters are the building blocks of electronic crossovers, and their proper operation
depends on having accurate ratios between resistors and capacitors. Setting up these ratios
is complicated by the fact that capacitors are available in a much more limited range of
values than resistors, often being restricted to the E6 series, which runs 10, 15, 22, 33, 47,
68. Fortunately resistors are widely available in the E24 series (twenty-four values per
decade) and the E96 series (ninety-six values per decade). There is also the E192 series
(you guessed it, 192 values per decade) but this is less freely available. Using the E96 or
E192 series means you have to keep an awful lot of different resistor values in stock, so
when non-standard values are required it is usually more convenient to use a series or
parallel combination of two E24 resistors. More on this later, too.

12.1 Resistors: Values and Tolerances

Active filters very often require precise resistor values, or precise resistor ratios. When designing
circuit blocks such as Sallen & Key highpass filters, where resistor ratios of exactly two are
required, it is useful to keep in mind the options in the E24 series, as in Table 12.1, and the E96
series, as in Table 12.2. The E24 series offers six options for a ratio of two, while the E96 series
offers twelve. In both cases the 1:2 pairs are closely spaced at the bottom of the decade, and this
will have to be taken into account when choosing capacitor values.

The Design of Active Crossovers
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In many cases you will aim to use a capacitor value or values in the relatively sparse E6
series, and this will almost invariably result in non-standard resistor values. These are easily
obtained by putting two or more resistors in series or parallel, and multiple resistors will be
cheaper than multiple capacitors. There are other advantages to this as I shall now explain.

12.2 Improving Accuracy with Multiple Components:
Gaussian Distribution

Using two or more resistors to make up a desired value has a valuable hidden benefit. If it
is done correctly it will actually increase the average accuracy of the total resistance value
so it is better than the tolerance of the individual resistors; this may sound paradoxical but it
is simply an expression of the fact that random errors tend to cancel out if you have a
number of them. This works for any parameter that is subject to random variations, but for
the time being we will focus on the concrete example of multiple resistors.

Resistor values are usually subject to a Gaussian distribution, also called a normal distribution.
It has a familiar peaked shape, not unlike a resonance curve, showing that the majority of
the values lie near the central mean, and that they get rarer the further away from the mean

Table 12.1: There Are Six E24 Resistor
Values in a 1:2 Ratio

75 150
100 200
110 220
120 240
150 300
180 360

Table 12.2: There Are Twelve E96 Resistor
Values in a 1:2 Ratio

100 200
105 210
113 226
140 280
147 294
158 316
162 324
174 348
187 374
196 392
221 442
232 464
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you look. This is a very common distribution in statistics, cropping up wherever there are
many independent things going on that all affect the value of a given component. The
distribution is defined by its mean and its standard deviation, which is the square-root of the
sum of the squares of the distances from the mean—the RMS-sum, in other words. Sigma (σ)
is the standard symbol for standard deviation. A Gaussian distribution will have 68.3% of its
values within ±1 σ, 95.4% within ±2 σ, 99.7% within ±3 σ, and 99.99% within ±4 σ. This is
illustrated in Figure 12.1, where the X-axis is calibrated in numbers of standard deviations on
either side of the central mean value.

If we put two equal-value resistors in series, the total value has a narrower distribution than that
of the original components. The standard deviation of summed components is the sum of the
squares of the individual standard deviations, as shown in Equation 12.1. σsum is the overall
standard deviation, and σ1 and σ2 are the standard deviations of the two resistors in series.

σsum =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1Þ2 + ðσ2Þ2

q
(12.1)

Thus if we have four 100Ω 1% resistors in series, the standard deviation of the total
resistance increases only by the square root of 4, that is 2 times, while the total resistance
has increased by 4 times; thus we have inexpensively made an otherwise costly 0.5% close-
tolerance 400Ω resistor. There is a happy analogue here with the use of multiple amplifiers
to reduce electrical noise; here we are using essentially the same technique to reduce

0.4

0.3

0.2

0.1

0
−3 σ −2 σ −1 σ 1 σ 2 σ 3 σ0

0.054

0.242

0.399

68.3%
of values

95.4% of values

99.7% of values

Figure 12.1: A Gaussian (normal) distribution with the X-axis marked in standard deviations on
either side of the mean. The apparently strange value for the height of the peak is actually

carefully chosen so the area under the curve is one.
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“statistical noise.” Note that this equation only applies to resistors in series, and cannot be
used when resistors are connected in parallel to obtain a desired value. The improvement in
accuracy nonetheless works in the same way.

You may object that putting four 1% resistors in series means that the worst-case errors can
be four times as great. This is obviously true—if all the components are 1% low, or 1%
high, the total error will be 4%. But the probability of this occurring is actually very, very
small indeed. The more resistors you combine, the more the values cluster together in the
centre of the range.

Perhaps you are not wholly satisfied that this apparently magical improvement in average
accuracy is genuine. I could reproduce here the statistical mathematics, but it is not very
exciting and can be easily found in the standard textbooks. I have found that showing the
process actually at work on a spreadsheet makes a much more convincing demonstration.

In Excel, the usual random numbers have a uniform distribution and are generated by the
function RAND(), but random numbers with a Gaussian distribution and specified mean and
standard deviation can be generated by the function NORMINV(). Let us assume we want
to make an accurate 20 kΩ resistance. We can simulate the use of a single 1% tolerance
resistor by generating a column of Gaussian random numbers with a mean of 20 and a
standard deviation of 0.2; we need to use a lot of numbers to smooth out the statistical
fluctuations, so we will generate 400 of them. As a check we calculate the mean and
standard deviation of our 400 random numbers using the AVERAGE() and STDEV()
functions. The results will be very close to 20 and 0.2 but not identical, and will change
every time we hit the F9 recalculate key as this generates a new set of random numbers.
The results of five recalculations are shown in Table 12.3, demonstrating that 400 numbers
are enough to get us quite close to our targets.

To simulate the series combination of two 10 kΩ resistors of 1% tolerance resistor we
generate two columns of 400 Gaussian random numbers with a mean of 10 and a standard
deviation of 0.1. We then set up a third column which is the sum of the two random
numbers on the same row, and if we calculate the mean and standard deviation using
AVERAGE() and STDEV() again, we find that the mean is still very close to 20 but the

Table 12.3: Mean and Standard Deviation of Five Batches of
400 Gaussian Random Resistor Values

Mean Standard Deviation

20.0017 0.2125
19.9950 0.2083
19.9910 0.1971
19.9955 0.2084
20.0204 0.2040
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standard deviation is reduced on average by the expected factor of √2. The result of five
trials is shown in Table 12.4. Repeating this experiment with two 40 kΩ resistors in parallel
gives the same results.

If we repeat this experiment by making our 20 kΩ resistance from a series combination of
four 5 kΩ resistors of 1% tolerance we have to generate four columns of 400 Gaussian
random numbers with a mean of 5 and a standard deviation of 0.05. We sum the four
numbers on the same row to get a fifth column, and calculate the mean and standard deviation
of that. The result of five trials is shown in Table 12.5. The mean is again very close to 20 but
the standard deviation is now reduced on average by the a factor of √4, which is 2. Once
again, repeating this for four parallel resistors gives the same improvement in accuracy.

I think this demonstrates quite convincingly that the spread of values is reduced by a factor
equal to the square root of the number of the components used be they in series or parallel. The
principle works equally well for capacitors or indeed any quantity with a Gaussian distribution
of values. The downside is the fact that the improvement depends on the square of the number
of equal-value components used, which means that big improvements require a lot of parts and
the method quickly gets unwieldy. Table 12.6 demonstrates how this works; the rate of
improvement slows down noticeably as the number of parts increases. Constructing a 0.1%
resistance from 1% resistors would require a hundred of them, and would not normally be
considered a practical proposition. The largest number of components I have ever used in this
way for a production design is five. (Capacitors in a precision RIAA preamplifier)

Table 12.4: Mean and Standard Deviation of Five Batches
of 400 Gaussian Resistors Made Up from Two in Series

Mean Standard Deviation

19.9999 0.1434
20.0007 0.1297
19.9963 0.1350
20.0114 0.1439
20.0052 0.1332

Table 12.5: Mean and Standard Deviation of Five Batches
of 400 Gaussian Resistors Made Up from Four in Series

Mean Standard Deviation

20.0008 0.1005
19.9956 0.0995
19.9917 0.1015
20.0032 0.1037
20.0020 0.0930
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The spreadsheet experiment is easy to set up, though it does involve a bit of copy-and-paste
to set up 400 rows of calculation. It takes only about a second to recalculate on my PC,
which is by no stretch of the imagination state-of-the-art.

You may be wondering what happens if the resistors used are not equal. If you are in
search of a particular value the method that gives the best resolution is to use one large
resistor value and one small one to make up the total, as this gives a very large number of
possible combinations. However, the accuracy of the final value is essentially no better than
that of the large resistor. Two equal resistors, as we have just demonstrated, give a √2
improvement in accuracy, and near-equal resistors give almost as much, but the number of
combinations is very limited, and you may not be able to get very near the value you want.
The question is, how much improvement in accuracy can we get with resistors that are
some way from equal, such as one resistor being twice the size of the other?

The mathematical answer in the series case is very simple; even when the resistor values are
not equal, the overall standard deviation is still the RMS-sum of the standard deviations of
the two resistors, as shown in Equation 12.1 above; σ1 and σ2 are the standard deviations
of the two resistors in series. Note that this equation is only correct if there is no correlation
between the two values whose standard deviations we are adding; this is true for two
separate resistors but would not hold for two film resistors fabricated on the same substrate.

Since both resistors have the same percentage tolerance, the larger of the two has the greater
standard deviation, and dominates the total result. The minimum total deviation is thus achieved
with equal resistor values. Table 12.7 shows how this works, and it is clear that using two
resistors in the ratio 2:1 or 3:1 still gives a worthwhile improvement in average accuracy.

The entries for 19.5 K + 500 and 19.9 K + 100 demonstrate that when one large resistor
value and one small are used to get a particular value, its accuracy is very little better than
that of the large resistor alone.

Table 12.6: The Improvement in Value Tolerance with
Number of Equal-Value Parts

Number of Equal-Value Parts Tolerance Reduction Factor

1 1.000
2 0.707
3 0.577
4 0.500
5 0.447
6 0.408
7 0.378
8 0.354
9 0.333

10 0.316
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12.3 Resistor Value Distributions

At this point you may be complaining that this will only work if the resistor values have
a Gaussian (also known as normal) distribution with the familiar peak around the mean
(average) value. Actually, it is a happy fact this effect does not assume that the component
values have a normal (Gaussian) distribution, as we shall see in a moment. An excellent
account of how to handle statistical variations to enhance accuracy is in [1]. This deals
with the addition of mechanical tolerances in optical instruments, but the principles are
just the same.

You sometimes hear that this sort of thing is inherently flawed, because, for example, 1%
resistors are selected from production runs of 5% resistors. If you were using the 5%
resistors, then you would find there was a hole in the middle of the distribution; if you
were trying to select 1% resistors from them, you would be in for a very frustrating time as
they have already been selected out, and you wouldn’t find a single one. If instead you
were using the 1% components obtained by selection from the 5% population, then you
would find that the distribution would be much flatter than Gaussian and the accuracy
improvement obtained by combining them would be reduced, although there would still be
a definite improvement.

However, don’t worry. In general this is not the way that components are manufactured
nowadays, though it may have been so in the past. A rare contemporary exception is the
manufacture of carbon composition resistors [2] where making accurate values is difficult,
and selection from production runs, typically with a 10% tolerance, is the only practical way
to get more accurate values. Carbon composition resistors have no place in audio circuitry,
because of their large temperature and voltage coefficients and high excess noise, but they

Table 12.7: The Improvement in Value Tolerance with
Unequal Resistors

Series Resistor Values Ω Resistor Ratio Standard Deviation

20 K single 0.2000
19.9 K + 100 199:1 0.1990
19.5 K + 500 39:1 0.1951
19 K + 1 K 19:1 0.1903
18 K + 2 K 9:1 0.1811

16.7 K + 3.3 K 5:1 0.1700
16 K + 4 K 4:1 0.1649
15 K + 5 K 3:1 0.1581

13.33 K + 6.67 K 2:1 0.1491
12 K + 8 K 1.5:1 0.1442
11 K + 9 K 1.22:1 0.1421
10 K + 10 K 1:1 0.1414
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live on in specialised applications such as switch-mode snubbing circuits, where their ability
to absorb high peak power in bulk material rather than a thin film is useful, and in RF
circuitry where the inductance of spiral-format film resistors is unacceptable.

So, having laid that fear to rest, what is the actual distribution of resistor values like? It is
not easy to find out, as manufacturers are not very forthcoming with this sort of
information, and measuring thousands of resistors with an accurate DVM is not a pastime
that appeals to all of us. Any nugget of information in this area is therefore very welcome;
Hugo Kroeze [3] reported the result of measuring 211 metal film resistors from the same
batch with a nominal value of 10 kΩ and 1% tolerance. He concluded that:

1. The mean value was 9.995 kΩ
2. All the resistors were within the 1% tolerance range
3. The distribution appeared to be Gaussian, with no evidence that it was a subset from a

larger distribution
4. The spread in value was surprisingly small, the standard deviation actually being about

10Ω, ie only 0.1%

(Bear in mind here that the resistors were all from the same batch, and the spread in value
across batches widely separated in manufacture date might have been less impressive.)

Now this is only one report, and it would be nice to have more confirmation, but there
seems to be no reason to doubt that the distribution of resistance values is Gaussian, though
the range of standard deviations you are likely to meet remains enigmatic. When ever I have
attempted this kind of statistical improvement in accuracy, I have always found that the
expected benefit really does appear in practice.

Up until now, we have just looked at the distribution of values around the mean, implicitly
assuming that the mean is absolutely accurate. This is not as daft as it sounds because
controlling the mean value emerging from a manufacturing process is usually relatively easy
compared with controlling all the variables that lead to a spread in values. In the example
given above, it appears that the mean is very well controlled indeed and the spread is very
much under control as well.

12.4 Improving Accuracy with Multiple Components:
Uniform Distribution

As I mentioned earlier, improving average accuracy by combining resistors does not depend
on the resistance value having a Gaussian distribution. Even a batch of resistors with a
uniform distribution gives better accuracy when two of them are combined. A uniform
distribution of component values may not be likely but the result of combining two or more
of them is highly instructive, so stick with me for a bit.
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Figure 12.2a shows a uniform distribution that cuts off abruptly at the limits L and –L, and
represents 10 kΩ resistors of 1% tolerance. We will assume again that we want to make a
more accurate 20 kΩ resistance. If we put two of the uniform-distribution 10 kΩ resistors in
series, we get not another uniform distribution, but the triangular distribution shown in
Figure 12.2b. This shows that the total resistance values are already starting to cluster in the
centre; it is possible to have the extreme values of 19.8 kΩ and 20.2 kΩ, but it is very
unlikely.

Figure 12.2c shows what happens if we use more resistors to make the final value; when
four are used the distribution is already beginning to look like a Gaussian distribution, and
as we increase the number of components to 8 and the sixteen, the resemblance becomes
very close.

Uniform distributions have a standard deviation just as Gaussian ones do. It is calculated
from the limits L and –L as in Equation 12.2. Likewise, the standard deviation of a
triangular distribution can be calculated from its limits L and –L as in Equation 12.3

Standard deviation of uniform distribution σ = 1ffiffiffi
3

p L (12.2)

Standard deviation of triangular distribution σ = 1ffiffiffi
6

p L (12.3)

Applying Equation 12.2 to the uniformly-distributed 10 kΩ 1% resistors in Figure 12.2a, we
get a standard deviation of 0.0577. Applying Equation 12.3 to the triangular distribution of
20 kΩ resistance values in Figure 12.2b, we get 0.0816. The mean value has doubled, but
the standard deviation has less than doubled, so we get an improvement in average
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Figure 12.2: How a uniform distribution of values becomes a Gaussian (normal) distribution when
more component values are summed (after Smith).
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accuracy; the ratio is √2, just as it was for two resistors with a Gaussian distribution. This is
also easy to demonstrate with the spreadsheet method described earlier.

12.5 Obtaining Arbitrary Resistance Values

If you are making up a particular resistance value, the method that gives the best resolution
is to use one large resistor value and one small one to make up the total, so for example
3100Ω would be made up of 3000Ω and 100Ω; this is what you might call the asymmetrical
solution. One the other hand, if it is possible to make up the required value with two resistors
of roughly the same value, there is an advantage in terms of increased precision, for the
statistical reasons described above. In the optimal case, where the two resistors are equal, the
average accuracy is improved by √2, but resistors in the ratio 2:1 or 3:1 still give a useful
improvement.

The best procedure is therefore to determine at the beginning how accurate the resistor value
needs to be, start with two near-equal resistor values, and if no combination can be found
within our error window, we try values that are more and more unequal until we get a
satisfactory result. As an example, we will assume that we are using E24 values, and our
calculations show that 2090Ω is the exact value required. The closest we can get with near-
equal resistors in series is 1000Ω + 1100Ω = 2100Ω, an error of 0.48%, which you may
well be able to live with. If not, we try again using near-equal resistors in parallel, and we
come up with 4300Ω in parallel with 3900Ω = 2045Ω; this is in error by ‒2.2%, which is
rather less appealing. Clearly the series option comes up with the closer answer in this case,
but if 2100 Ω is not close enough, one option is to abandon completely the “near-equal”
constraint and go for one large value and one small value. The obvious answer is 2000Ω +
91Ω = 2091Ω, which is an error of only +0.048%, small enough to be utterly lost in other
component tolerances. However, there is no improvement in precision. As we saw in
Table 12.7, intermediate conditions between “near-equal” and “one large and one small”
will give intermediate improvements in precision.

The equivalent asymmetrical parallel-combination best approach is 2200 Ω in parallel with
43 k = 2092.9Ω, which has an error of +0.14%, and so the series solution is in this case the
better one.

A step-by step example of choosing parallel resistor combinations for the best possible
increased precision while achieving a result within a specified percentage error window is
given in Chapter 19, where a complete active crossover is designed.

Trying out the various resistor combinations on a hand calculator rapidly becomes life-
threatingly tedious, even on my much-prized Casio FX-19. A spreadsheet is much
quicker once you’ve set it up, but still involves a lot of work and the best answer is a
clearly software that automatically comes up with the best answers. One example is a
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resistor combination calculator utility called “ResCalc” by Mark Lovell and Morgan
Jones [4], which is superior to most as it allows mixed E24 and E96 series, but like all
the other resistor-calculator applications I have seen, it does not appear to prioritise near-
equal values to minimise tolerance errors. I have therefore written a Javascript program
that explores the resistor combinations for a specified error window around the nominal
value, keeping the resistors as nearly equal as possible. By the time this book appears I
hope to have a fully debugged version on my website [5].

A closer approach to the desired value while keeping the values near-equal is possible by
using combinations of three resistors rather than two. The cost is still low because resistors
are cheap, but seeking out the best combination is an even more unwieldy process. I plan to
write another Javascript app to deal with this problem.

All of the statistical features described here apply to capacitors as well, but are harder to
apply because capacitors come in sparse value series, and it is also much more expensive
to use multiple parts to obtain an arbitrary value. It is worth going to a good deal of
trouble to come up with a circuit design that uses only standard capacitor values; the
resistors will then almost certainly be all non-standard values, but this is easier and
cheaper to deal with. A good example of the use of multiple parallel capacitors, both
to improve accuracy and to make up values larger than those available, is the Signal
Transfer RIAA preamplifier [6, 7]; see also the end of this book. This design is noted for
giving very accurate RIAA equalisation at a reasonable cost. There are two capacitors
required in the RIAA network, one being made up of four polystyrene capacitors in
parallel and the other of five polystyrene capacitors in parallel. This also allows non-
standard capacitance values to be used.

12.6 Resistor Noise: Johnson and Excess Noise

All resistors, no matter what their method of construction, generate Johnson noise. This is
white noise, which has equal power in equal absolute bandwidth, ie with the bandwidth
measured in Hz, not octaves. There is the same noise power between 100 and 200 Hz as
there is between 1100 and 1200 Hz. The level of Johnson noise that a resistor generates is
determined solely by its resistance value, the absolute temperature, (in degrees Kelvin)
and the bandwidth over which the noise is being measured. For our purposes the
temperature is 25°C and the bandwidth is 22 kHz, so the resistance is really the only
variable. The level of Johnson noise is based on fundamental physics and is not subject
to modification, negotiation or any sort of rule-bending. Sometimes it places the limit on
how quiet a circuit can be, though often the noise from the active devices is dominant. It
is a constant refrain in this book that resistor values should be kept as low as possible,
without introducing distortion by overloading the circuitry, in order to minimise the
Johnson noise contribution.
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The rms amplitude of Johnson noise is calculated from the classic equation:

vn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 kTRB

p
(12.4)

Where:

vn is the rms noise voltage
T is absolute temperature in °K
B is the bandwidth in Hz
k is Boltzmann’s constant
R is the resistance in Ohms

The thing to be careful with here is to use Boltzmann’s constant (1.380662 × 10‒23), and NOT
the Stefan-Boltzmann constant (5.67 × 10‒08) which relates to black-body radiation, has
nothing to do with resistors, and will give some impressively wrong answers. The voltage
noise is often left in its squared form for ease of RMS-summing with other noise sources.

The noise voltage is inseparable from the resistance, so the equivalent circuit is of a voltage
source in series with the resistance present. Johnson noise is usually represented as a
voltage, but it can also be treated as a Johnson noise current, by means of the Thevenin-
Norton transformation, which gives the alternative equivalent circuit of a current-source in
shunt with the resistance. The equation for the noise current is simply the Johnson voltage
divided by the value of the resistor it comes from:

in = vn/R:

Excess resistor noise refers to the fact that some resistors, with a constant voltage drop across
them, generate extra noise in addition to their inherent Johnson noise. This is a very variable
quantity, but is essentially proportional to the DC voltage across the component; the specification
is therefore in the form of a “Noise Index” such as “1 uV/V.” The uV/V parameter increases with
increasing resistor value and decreases with increasing resistor size or power dissipation capacity.
Excess noise has a 1/f frequency distribution. It is usually only of interest if you are using carbon
or thick film resistors—metal film and wirewound types should have little or no excess noise.
A rough guide to the likely range for excess noise specs is given in Table 12.8.

Table 12.8: Resistor Excess Noise

Type Noise Index uV/V

Metal film TH 0
Carbon film TH 0.2–3
Metal oxide TH 0.1–1
Thin film SM 0.05–0.4

Bulk metal foil TH 0.01
Wirewound TH 0

(Wirewound resistors are normally considered to be completely free of excess noise.)
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One of the great benefits of opamp circuitry is that it is noticeably free of resistors with
large DC voltages across them; the offset voltages and bias currents involved are much too
low to cause measurable excess noise. If you are designing an active crossover on this basis
then you can probably forget about the issue. If, however, you are using discrete transistor
circuitry, it might possibly arise; specifying metal film resistors throughout, as you no doubt
would anyway, will ensure you have no problems with excess noise.

To get a feel for the magnitude of excess resistor noise, consider a 100 kΩ 1/4W carbon
film resistor with a steady 10 V across it. The manufacturer’s data gives a noise parameter
of about 0.7 uV/V and so the excess noise will be of the order of 7 uV, which is −101 dBu.
That could definitely be a problem in a low-noise preamplifier stage.

12.7 Resistor Non-Linearity

Ohm’s Law is, strictly speaking, a statement about metallic conductors only. It is dangerous
to assume that it invariably applies exactly to resistors simply because they have a fixed
value of resistance marked on them; in fact resistors—whose main raison d’etre is packing a
lot of controlled resistance in a small space—sometimes show significant deviation from
Ohm’s Law in that current is not exactly proportional to voltage. This is obviously unhelpful
when you are trying to make low-distortion circuitry. Resistor non-linearity is normally
quoted by manufacturers as a voltage coefficient, usually the number of parts per million
(ppm) that the resistance changes when one volt is applied. The measurement standard for
resistor non-linearity is IEC 6040.

The common through-hole metal film resistors show effectively perfect linearity, as do
wirewound types, both having voltage coefficients of less than 1 ppm. Carbon film resistors,
now almost totally obsolete, tend to be quoted at around 100 ppm; in many circumstances
this is enough to generate more distortion than that produced by the active devices. Carbon
composition resistors are of historical interest only so far as audio is concerned, and have
rather variable voltage coefficients in the area of 350 ppm, something that might be
pondered by connoisseurs of antique amplifying equipment. Today the real concern over
resistor non-linearity is about thick-film surface-mount resistors, which have high and rather
variable voltage coefficients; more on this below.

Table 12.9 (calculated with SPICE) gives the THD in the current flowing through the
resistor for various voltage coefficients when a pure sine voltage is applied. If the voltage
coefficient is significant this can be a serious source of non-linearity.

Distortion here is assumed to be second-order, and so varies proportionally with level.
Third-order distortion, which will be dominant if a resistor has no steady voltage across it,
rises as the square of level.
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My own test setup is shown in Figure 12.3. The resistors are usually of equal value, to
give 6 dB attenuation. A very low-distortion oscillator that can give a large output voltage
is necessary; the results in Figure 12.4 were taken at a 10 Vrms (+22 dBu) input level.
Here thick-film surface-mount (SM) and through-hole (TH) resistors are compared. The
gen-mon trace at the bottom is the record of the analyser reading the oscillator output and
is the measurement floor of the AP System 1 used. The THD plot for the through-hole
case is higher than this floor, but this is not due to distortion. It simply reflects the extra
Johnson noise generated by two 10 kΩ resistors. Their parallel combination is 5 kΩ, and
so this noise is at −115.2 dBu. The SM plot, however, is higher again, and the difference
is the distortion generated by the thick-film component.

For both thin-film and thick-film SM resistors non-linearity increases with resistor value,
and also increases as the physical size (and hence power rating) of the resistor shrinks. The
thin-film versions are much more linear; see Figures 12.5 and 12.6.

Sometimes it is appropriate to reduce the non-linearity by using multiple resistors in series.
If one resistor is replaced by two with the same voltage coefficient in series, the THD in the

LDO
input

R1

DUT
R2

Metal
film

To distortion
analyser

Figure 12.3: Test circuit for measuring resistor non-linearity.
The not-under-test resistor R2 in the potential divider must be

a metal-film type with negligible voltage coefficient.

Table 12.9: Resistor Voltage Coefficients and the Resulting
Distortion at +15 and +20 dBu

Voltage Coefficient THD at +15 dBu THD at +20 dBu

1 ppm 0.00011% 0.00019%
3 ppm 0.00032% 0.00056%

10 ppm 0.0016% 0.0019%
30 ppm 0.0032% 0.0056%

100 ppm 0.011% 0.019%
320 ppm 0.034% 0.060%

1000 ppm 0.11% 0.19%
3000 ppm 0.32% 0.58%
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Figure 12.4: SM resistor distortion at 10 Vrms input, using 10 kΩ 0805
thick-film resistors.
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Figure 12.5: Non-linearity of thin-film surface-mount resistors of different sizes.
THD is here in dB rather than percent.
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current flowing is halved. Similarly, three resistors reduces THD to a third of the original
value. There are obvious economic limits to this sort of thing, and it takes up PCB area, but
it can be useful in specific cases, especially where the voltage rating of the resistor is a
limitation.

12.8 Capacitors: Values and Tolerances

The need for specific capacitor ratios creates problems as capacitors are available in a much
more limited range of values than resistors, usually the E6 series, running 10, 15, 22, 33,
47, 68. If other values are needed then they often have to be made up of two capacitors in
parallel; this puts up the cost and uses significantly more PCB area so it should be avoided
if possible, but for applications like Sallen & Key lowpass filters where a capacitance ratio
of two is required, it is often the only way. Sallen & Key filters with equal component
values can be used (see Chapter 8), but they must be configured to give voltage gain, which
is often unwanted and will force compromises over either noise performance or headroom.
Selecting convenient capacitor values will almost invariably lead to a need for non-standard
resistance values, but this is much less of a problem as combining two resistors to get the
right value is much cheaper and uses less PCB area.

As for the case of resistors, when contriving a particular capacitor value, the best resolution
is obtained by using one large value and one small one to make up the total, but two
capacitors of approximately the same value give better average accuracy. When the two
capacitors used are equal in nominal value, the accuracy is improved by √2. This effect is
more important for capacitors because the cost premium for 1% parts is considerable,
whereas for resistors it is very small, if it exists at all. When using multiple components like
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this to make up a value or improve precision, it is important to keep an eye on both the
extra cost and the extra PCB area occupied.

The tolerance of non-electrolytic capacitors is usually in the range ±1% to ±10%; anything
more accurate than this tends to be very expensive. Electrolytic capacitors used to have
much wider tolerances, but things have recently improved and ±20% is now common. This
is still wider than any other component you are likely to use in a crossover, but this is not a
problem, for as described below, it is most unwise to try to define frequencies or time-
constants with electrolytic capacitors.

12.9 Capacitor Shortcomings

Capacitors fall short of being an ideal circuit element in several ways, notably leakage,
Equivalent Series Resistance (ESR), Equivalent Series Inductance (ESL), dielectric
absorption, and non-linearity.

Capacitor leakage is equivalent to a high value resistance across the capacitor terminals,
which allows a trickle of current to flow when a DC voltage is applied. Leakage is usually
negligible for non-electrolytics, but is much greater for electrolytics. It is not normally a
problem in audio design.

Equivalent Series Resistance (ESR) is a measure of how much the component deviates from
a mathematically pure capacitance. The series resistance is partly due to the physical
resistance of leads and foils, and partly due to losses in the dielectric. It can also be
expressed as tan-δ, (tan-delta) which is the tangent of the phase angle between the voltage
across and the current flowing through the capacitor. Once again it is rarely a problem in
the audio field, the values being small fractions of an Ohm and very low compared with
normal circuit resistances.

Equivalent Series Inductance (ESL) is always present. Even a straight piece of wire has
inductance, and any capacitor has lead-out wires and internal connections. The values are
normally measured in nano-Henries and have no effect in normal audio circuitry.

Dielectric absorption is a well known effect; take a large electrolytic, charge it up, and
then fully discharge it. Over a few minutes the charge will partially reappear. This
“memory effect” also occurs in non-electrolytics to a lesser degree; it is a property of the
dielectric, and is minimised by using polystyrene, polypropylene, NPO ceramic, or PTFE
dielectrics. Dielectric absorption is invariably modelled by adding extra resistors and
capacitances to an ideal main capacitor, as shown in Figure 12.7 for a 1 uF polystyrene
capacitor. Note there is no hint of any source of non-linearity [8]. However, the dielectric
absorption mechanism does seem to have some connection with capacitor distortion, since
the dielectrics that show the least dielectric absorption also show the lowest non-linearity.
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Dielectric absorption is a major consideration in sample-and-hold circuits and the like, but
of no account in itself for normal linear audio circuitry; you can see from Figure 12.7
that the additional components are very small capacitors with very large resistances in
series, and the effect these could have on the response of a filter is microscopic, and far
smaller than the effects of component tolerances. Be aware that the model is just an
approximation and is not meant to imply that each extra component directly represents
some part of a physical process.

Capacitor non-linearity is the least known but by far the most troublesome of capacitor
shortcomings. A typical RC lowpass filter can be made with a series resistor and a shunt
capacitor, as in Figure 12.8, and if you examine the output with a distortion analyser, you
will find to your consternation that the circuit is not linear. If the capacitor is a non-
electrolytic type with a dielectric such as polyester, then the distortion is relatively pure
third harmonic, showing that the effect is symmetrical. For a 10 Vrms input, the THD level
may be 0.001% or more. This may not sound like much but it is substantially greater than
the mid-band distortion of a good opamp. The definitive work on capacitor distortion is a
magnificent series of articles by Cyril Bateman in Electronics World [9]. The authority of
this is underpinned by Cyril’s background in capacitor manufacturing.
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Figure 12.7: A model of dielectric absorption in a 1 uF polystyrene capacitor.
All components are linear.
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Figure 12.8: Simple lowpass test circuit for
non-electrolytic capacitor distortion.
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Capacitors are used in audio circuitry for four main functions, where their possible non-
linearity has varying consequences:

1. Coupling or DC blocking capacitors. These are usually electrolytics, and if properly
sized have a negligible signal voltage across them at the lowest frequencies of interest.
The non-linear properties of the capacitor are then unimportant unless current levels are
high; power amplifier output capacitors can generate considerable mid-band distortion
[10]. This makes you wonder what sort of non-linearity is happening in those big non-
polarised electrolytics in passive crossovers.
A great deal of futile nonsense has been talked about the mysterious properties of
coupling capacitors, but it is all total twaddle. How could a component with negligible
voltage across it put its imprint on a signal passing through it? For small-signal use, as
long as the signal voltage across the coupling capacitor is kept low, non-linearity is not
detectable by the best THD methods. The capacitance value is non-critical, as it has to
be, given the wide tolerances of electrolytics.

2. Supply filtering or decoupling capacitors. Electrolytics are used for filtering out supply
rail ripple, etc., and non-electrolytics, usually around 100 nF, are used to keep the
supply impedance low at high frequencies and thus keep opamps stable. The
capacitance value is again non-critical.

3. For active crossover purposes, by far the most important aspect of capacitors is their role in
active filtering. This is a much more demanding application than coupling or decoupling,
for firstly, the capacitor value is now crucially important as it defines the accuracy of the
frequency response. Secondly, there is by definition a significant signal voltage across the
capacitor and so its non-linearity can be a serious problem. Non-electrolytics are always
used in active filters, though sometimes a time-constant involving an electrolytic is ill-
advisedly used to define the lower end of the system bandwidth; this is a very bad practice
because it is certain to introduce significant distortion at the bottom of the frequency range.

4. Small value ceramic capacitors are used for opamp compensation purposes, and
sometimes in active filters in the HF path of a crossover. So long as they are NPO
(C0G) ceramic types, their non-linearity should be negligible. Other kinds of ceramic
capacitor, using the XR7 dielectric, will introduce copious distortion and must never be
used in audio paths. They are intended for high-frequency decoupling where their
linearity or otherwise is irrelevant.

12.10 Non-Electrolytic Capacitor Non-Linearity

It has often been assumed that non-electrolytic capacitors, which generally approach an ideal
component more closely than electrolytics, and have dielectrics constructed in a totally
different way, are free from distortion. It is not so. Some non-electrolytics show distortion at
levels that is easily measured, and can exceed the distortion from the opamps in the circuit.
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Non-electrolytic capacitor distortion is essentially third harmonic, because the non-polarised
dielectric technology is basically symmetrical. The problem is serious, because non-
electrolytic capacitors are commonly used to define time-constants and frequency responses
(in RIAA equalisation networks, for example) rather than simply for DC-blocking.

Very small capacitances present no great problem. Simply make sure you are using the
COG (NP0) type, and so long as you choose a reputable supplier, there will be no
distortion. I say “reputable supplier” because I did once encounter some allegedly COG
capacitors from China that showed significant non-linearity [11].

Middle-range capacitors, from 1 nF to 1 uF, present more of a problem. Capacitors with a
variety of dielectrics are available, including polyester, polystyrene, polypropylene,
polycarbonate and polyphenylene sulphide, of which the first three are the most common.
(Note that what is commonly called “polyester” is actually polyethylene terephthalate, PET.)

Figure 12.8 shows a simple low-pass filter circuit which, with a good THD analyser, can be
used to measure capacitor distortion. The values shown give a pole frequency, or ‒3 dB roll-
off point, at 710 Hz. We will start off with polyester, the smallest, most economical, and
therefore the most common type for capacitors of this size.

The THD results for a microbox 220 nF 100 V capacitor with a polyester dielectric are
shown in Figure 12.9, for input voltages of 10, 15 and 20 Vrms. They are unsettling.

The distortion is all third harmonic. It peaks at around 300 to 400 Hz, well below the
‒3 dB frequency, and even with the input limited to 10 Vrms will exceed the non-linearity
introduced by opamps such as the 5532 and the LM4562. Interestingly, the peak frequency
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Figure 12.9: Third-harmonic distortion from a 220 nF 100 V polyester capacitor, at 10, 15, and
20 Vrms input level, showing peaking around 400 Hz.
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changes with applied level. Below the peak, the voltage across the capacitor is constant but
distortion falls as frequency is reduced, because the increasing impedance of the capacitor
means it has less effect on a circuit node at a 1 kΩ impedance. Above the peak, distortion
falls with increasing frequency because the lowpass circuit action causes the voltage across
the capacitor to fall.

The level of distortion varies with different samples of the same type of capacitor; six of the
above type were measured and the THD at 10 Vrms and 400 Hz varied from 0.00128% to
0.00206%. This puts paid to any plans for reducing the distortion by some sort of
cancellation method.

The distortion can be seen in Figure 12.9 to be a strong function of level, roughly tripling
as the input level doubles. Third harmonic distortion normally quadruples for doubled level,
so there may well be an unanswered question here. It is however clear that reducing the
voltage across the capacitor reduces the distortion. This suggests that if cost is not the
primary consideration, it might be useful to put two capacitors in series to halve the voltage,
and the capacitance, and then double up this series combination to restore the original
capacitance, giving the series-parallel arrangement in Figure 12.10. The results are shown in
Table 12.10, and once more it can be seen that halving the level has reduced distortion by a
factor of three rather than four.

Table 12.10: The Reduction of Polyester Capacitor Distortion by
Series-Parallel Connection

Input Level Vrms Single Capacitor Series-Parallel Capacitors

10 0.0016% 0.00048%
15 0.0023% 0.00098%
20 0.0034% 0.0013%

In Out
R1

1 K

C1
220 nF

C2
220 nF

C3
220 nF

C4
220 nF

Figure 12.10: Reducing capacitor distortion by series-parallel connection.
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The series-parallel arrangement has obvious limitations in terms of cost and PCB area
occupied, but might be useful in some cases. It has the advantage that, as described earlier
in the chapter, using multiple components improves the average accuracy of the total value.

Clearly polyester capacitors can generate significant distortion, despite their extensive use in
audio circuitry of all kinds. The next dielectric we will try is polystyrene. Capacitors with a
polystyrene dielectric are extremely useful for some filtering and RIAA-equalisation
applications because they can be obtained at a 1% tolerance at up to 10 nF at a reasonable
price. They can be obtained in larger sizes but at much higher prices.

The distortion test results are shown in Figure 12.11 for three samples of a 4n7 2.5%
capacitor; the series resistor R1 has been increased to 4.7 kΩ to keep the −3 dB point inside
the audio band, and it is now at 7200 Hz. Note that the THD scale has been extended down
to a subterranean 0.0001%, because if it was plotted on the same scale as Figure 12.9 it
would be bumping along the bottom of the graph. Figure 12.11 in fact shows no distortion
at all, just the measurement noise floor, and the apparent rise at the HF end is simply due to
the fact that the output level is decreasing, because of the lowpass action, and so the noise
floor is relatively increasing. This is at an input level of 10 Vrms, which is about as high as
might be expected to occur in normal opamp circuitry. The test was repeated at 20 Vrms,
which might be encountered in discrete circuitry, and the results were the same, yielding no
measurable distortion.

The tests were done with four samples of 10 nF 1% polystyrene from LCR at 10 Vrms and
20 Vrms, with the same results for each sample. This shows that polystyrene capacitors can
be used with confidence; this finding is in complete agreement with Cyril Bateman’s
findings [12].
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Figure 12.11: The THD plot with three samples of 4n7 2.5% polystyrene capacitors, at 10 Vrms
input level. The reading is entirely noise.
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Having resolved the problem of capacitor distortion below 10 nF, we need now to tackle it for
larger capacitor values. Polyester having proven unsatisfactory, the next most common
capacitor type is polypropylene, and I am glad to report that these are effectively distortion-
free. Figure 12.12 shows the results for four samples of a 220 nF 250 V 5% polypropylene
capacitor from RIFA. The plot shows no distortion at all, just the noise floor, with the
apparent rise at the HF end being increasing relative noise due to the lowpass rolloff, as in
Figure 12.11. This is also in agreement with Cyril Bateman’s findings [13]. Rerunning the
tests at 20 Vrms gave the same result—no distortion. This is very pleasing, but there is a
downside. Polypropylene capacitors of this value and voltage rating are much larger than the
commonly used 63 or 100 V polyester capacitor, and more expensive.

It was therefore important to find out if the good distortion performance was a result of the
250 V rating, and so I tested a series of polypropylene capacitors with lower voltage ratings from
different manufacturers. Axial 47 nF 160V 5% polypropylene capacitors from Vishay proved to
be THD-free at both 10 Vrms and 20 Vrms. Likewise, microbox polypropylene capacitors from
10 nF to 47 nF, with ratings of 63 V and 160 V from Vishay and Wima proved to generate no
measurable distortion, so the voltage rating appears not to be an issue. This finding is particularly
important because the Vishay range has a 1% tolerance, making them very suitable for precision
filters and equalisation networks. The 1% tolerance is naturally reflected in the price.

The higher values of polypropylene capacitors (above 100 nF) appear to be currently only
available with 250 V or 400 V ratings, and that means a physically big component. For
example, the EPCOS 330 nF 400 V 5% part has a footprint of 26 mm by 6.5 mm, with a
height of 15 mm, and capacitors like that take up a lot of PCB area. One way of dealing
with this is to use a smaller capacitor in a capacitance multiplication configuration, so, for
example, a 100 nF 1% component could be made to emulate 330 nF. It has to be said that
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Figure 12.12: The THD plot with four samples of 220 nF 250 V 5% polypropylene
capacitors, at 10 Vrms input level. The reading is again entirely noise.
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this is only straightforward if one end of the capacitor is connected to ground; see Chapter 11
for an example of this technique applied to a biquad equaliser.

When I first started looking at capacitor distortion, I thought that the distortion would
probably be lowest for the capacitors with the highest voltage rating. I therefore tested
some RF-suppression X2 capacitors, rated at 275 Vrms, equivalent to a peak or DC rating
of 389 V. The dielectric material is unknown. An immediate snag is that the tolerance is
10 or 20%, not exactly ideal for precision filtering or equalisation. A more serious problem,
however, is that they are far from distortion-free. Four samples of a 470 nF X2 capacitor
showed THD between 0.002% and 0.003% at 10 Vrms. A high voltage rating alone does
not mean low distortion.

12.11 Electrolytic Capacitor Non-Linearity

Cyril Bateman’s series in Electronics World [10] included two articles on electrolytic
capacitor distortion. It proved to be a complex subject, and many long-held assumptions,
such as “DC biasing always reduces distortion” were shown to be quite wrong. (My own
results confirm this—DC biasing is at best pointless, and can increase distortion.) The
distortion levels Cyril measured were in general a good deal higher than for non-electrolytic
capacitors, and I can confirm that too.

My view is that electrolytics should never, ever, under any circumstances, be used to set
time-constants in audio. There should be a time-constant early in the signal path, based
on a non-electrolytic capacitor, that determines the lower limit of the system bandwidth;
preferably proper bandwidth definition should be implemented with a subsonic filter. All the
electrolytic-based time-constants should be much longer so that the electrolytic capacitors
can never have significant signal voltages across them and so never generate detectable
distortion. Electrolytics have large tolerances, and cannot be used to set accurate time-
constants anyway.

However, even if you think you are following this plan, you can still get into trouble.
Figure 12.13 shows a simple highpass test circuit representing an electrolytic capacitor in

In
C1

Out

47 uF 25 V
R1
1 K

+

Figure 12.13: Highpass test circuit for examining
electrolytic capacitor distortion.
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use for coupling or DC-blocking. The load of 1 KΩ is the sort of value that can easily be
encountered if you are using low-impedance design principles. The calculated ‒3 dB rolloff
point is 3.38 Hz, so the attenuation at 10 Hz, at the very bottom of the audio band, will be
only 0.47 dB; at 20 Hz it will be only 0.12 dB, which is surely a negligible loss. As far as
frequency response goes, we are doing fine. But… examine Figure 12.14, which shows the
measured distortion of this arrangement. Even if we limit ourselves to a 10 Vrms level, the
distortion at 50 Hz is 0.001%, already above that of a good opamp. At 20 Hz it has risen to
0.01%, and at 10 Hz is a most unwelcome 0.05%. The THD is increasing by a ratio of 4.8
times for each octave fall in frequency, in other words increasing faster than a square law.
The distortion residual is visually a mixture of second and third harmonic, and the levels
proved surprisingly consistent for a large number of 47 uF 25 V capacitors of different ages
and from different manufacturers.

Figure 12.14 also shows that the distortion rises rapidly with level; at 50 Hz going from an
input of 10 Vrms to 15 Vrms almost doubles the THD reading. To underline the point,
consider Figure 12.15, which shows the measured frequency response of the circuit with
47 uF and 1 KΩ; note the effect of the capacitor tolerance on the real versus calculated
response. The rolloff that does the damage, by allowing an AC voltage to exist across the
capacitor, is very modest indeed, less than 0.2 dB at 20 Hz.

Figure 12.14: Electrolytic capacitor distortion from the circuit in Figure 12.13. Input level
10, 15, and 20 Vrms.
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Having demonstrated how insidious this problem is, how do we fix it? As we have seen,
changing capacitor manufacturer is no help. Using 47 uF capacitors of higher voltage
does not work—tests showed there is very little difference in the amount of distortion
generated. An exception was the sub-miniature style of electrolytic, which was markedly
worse.

The answer is simple—just make the capacitor bigger in value. This reduces the voltage
across it in the audio band, and since we have shown that the distortion is a strong function
of the voltage across the capacitor, the amount produced drops more than proportionally.
The result is seen in Figure 12.16, for increasing capacitor values with a 10 Vrms input.

Replacing C1 with a 100 uF 25 V capacitor drops the distortion at 20 Hz from 0.0080% to
0.0017%, an improvement of 4.7 times; the voltage across the capacitor at 20 Hz has been
reduced from 1.66 Vrms to 790 mV rms. A 220 uF 25 V capacitor reduces the voltage across
itself to 360 mV, and gives another very welcome reduction to 0.0005% at 20 Hz, but it
is necessary to go to 1000 uF 25 V to obtain the bottom trace, which is the only one
indistinguishable from the noise floor of the AP-2702 test system. The voltage across the
capacitor at 20 Hz is now only 80 mV. From this data, it appears that the AC voltage across
an electrolytic capacitor should be limited to below 80 mV rms if you want to avoid
distortion. I would emphasise that these are ordinary 85°C rated electrolytic capacitors,
and in no sense special or premium types.

Figure 12.15: The measured rolloff of the highpass test circuit for examining electrolytic
capacitor distortion.

366 Chapter 12



This technique can be seen to be highly effective, but it naturally calls for larger and
somewhat more expensive capacitors, and larger footprints on a PCB. This can be to some
extent countered by using capacitors of lower voltage, which helps to bring back down the
CV product and hence the can size. I tested 1000 uF 16 V and 1000 uF 6V3 capacitors, and
both types gave exactly the same results as the 1000 uF 25 V part in Figure 12.16, which
seems to indicate that the maximum allowable signal voltage across the capacitor is an
absolute value and not relative to the voltage rating. 1000 uF 16 V and 1000 uF 6V3
capacitors naturally gave very useful reductions in CV product, can size, and PCB area
occupied. This does of course assume that the capacitor is, as is usual, being used to block
small voltages from opamp offsets to prevent switch clicks and pot noises rather than for
stopping a substantial DC voltage.

The use of large coupling capacitors in this way does require a little care, because we are
introducing a long time-constant into the circuit. Most opamp circuitry is pretty much free
of big DC voltages, but if there are any, the settling time after switch-on may become
undesirably long.
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CHAPTER 13

Opamps for Active Crossovers

13.1 Active Devices for Active Crossovers

It is a truth universally acknowledged, that if you are designing an active crossover, you will
need active devices. In this day and age that almost always means opamps. Active crossovers
can be built with discrete transistor circuitry if this is desirable for performance benefits or
marketing reasons. This is relatively straightforward for Sallen & Key filters that require only
a unity-gain buffer or voltage-follower, which can be implemented as some form of emitter-
follower. It is a bit more complex for MFB filters and some equaliser circuits, which require a
high-open-loop-gain inverting amplifier, and more complex again for configurations such as
state-variable filters, which require multiple differential amplifiers. (The first active crossover
I designed for production was in fact a discrete-transistor system, solely on the grounds of
performance, for the affordable opamps of the time were really not very good.) However,
even if the crossover architecture is confined to Sallen & Key filters, matching the distortion
performance of the newer opamps is going to be no easy matter. The noise performance of
discrete circuitry should be slightly better, but in a typical application the differences will be
marginal. Discrete transistor circuitry undoubtedly scores on the issue of headroom, because
you can use supply rails that are pretty much as high as you like; the downside is that the rail
voltages have to be increased considerably to get a meaningful increase in headroom when it
is expressed in dB, and equipment capable of producing very high output voltages can be
dangerous to other parts of the system if the output levels are mismanaged. While the study of
suitable discrete circuitry for active crossovers would be fascinating, its doubtful utility means
that space cannot be given to it here, and this chapter concentrates solely on opamps.

It is of course also possible to make active crossovers using valves. Given the large number
of active elements required in a high-quality crossover, and the necessity of working at high
impedance levels with accompanying higher noise, this is for most of us a truly unattractive
proposition. If you are one of those who insist on using directly-heated triodes left over
from WW1, then the prospect becomes quite surreal.

An active crossover is an optional part of an audio system, in the sense that you could use
passive crossovers instead. If you are inserting an extra piece of equipment into the audio
path, especially one that requires a good deal of expenditure on additional power amplifiers
and so on, it really makes sense that it should be of high quality. The cost of a mediocre
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active crossover is not going to be radically different from that of a really good one, the
main differences being the cost of the opamps, the cost of the capacitors (there is a great
deal on this issue in Chapters 8 and 12), and perhaps the cost of balanced outputs with their
associated connectors. In active crossovers there are likely to be four or more filter stages in
succession, so the quality of each one must be high. For these reasons this chapter focuses
on achieving the best possible performance rather than cutting the last penny off the costing
sheet.

13.2 Opamp Types

You might be questioning how a discourse on opamps for active crossovers will differ from
one on opamps for general use in audio circuitry. One issue is that active crossover design
tends to make great use of Sallen & Key filters, which rely on voltage-followers as the
active part of the circuitry. Opamps in voltage-followers work under the most demanding
conditions possible as regards common-mode (CM) distortion, and this topic, which gets
little attention in most textbooks, is therefore examined in detail here.

General audio design has for a great many years relied on a very small number of opamp
types; the dual-opamp TL072, the single-opamp 5534, and the dual-opamp 5532 dominated
the audio small-signal scene for a long time. The TL072, with its JFET inputs, was used
wherever its negligible input bias currents, lower power consumption, and lower cost were
important. For a long time the 5534 and 5532 were much more expensive than the TL072,
so the latter was used wherever feasible in an audio system, despite its markedly inferior
noise, distortion, and load-driving capabilities. The 5534 or 5532 was reserved for critical
parts of the circuitry. Although it took many years, the price of the 5534 or 5532 is now
down to the point where it is usually the cheapest opamp you can buy, and its cost/
performance ratio is outstanding. You need a very good reason to choose any other type of
opamp for audio work.

The TL072 and the 5532 are dual opamps; the single equivalents are TL071 and 5534. Dual
opamps are used almost universally, as the package containing two is usually cheaper than
the package containing one, simply because it is more popular. The 5534 also requires
an external compensation capacitor for closed-loop gains of less than three, which adds to
the cost.

It took a long time for better opamps for audio to come along. Some were marketed
specifically for audio applications, such as the idiosyncratic OP275, which had both BJT
and JFET input devices. Unfortunately it also had higher noise and higher distortion than a
5532, and cost six times as much, so it made little headway It is only in the last few years
that opamps have appeared that have better performance than the 5532. Notable examples
are the LM4562 and the LME49990, and these are examined in this chapter.
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There are many opamps on the market which could be applied to audio purposes, and to
deal with them all in detail would fill this book, so only a selected range is covered here.
Samuel Groner [1] has measured a wide range of opamp types and his published
measurements should be your first recourse if your favourite opamp is not included here.

13.2.1 Opamp Properties: Noise

Table 13.1 ranks the opamps most commonly used for audio in order of voltage noise. The
great divide is between JFET input opamps and BJT (bipolar junction transistor) input
opamps. The JFET opamps have more voltage noise but less current noise than bipolar
input opamps, the TL072 being particularly noisy. The BJT opamps have the lowest voltage
noise, but the current noise is much higher. The voltage noise of a modern JFET-input
opamp such as the OPA2134 is 4 dB greater than that of the old faithful 5532; and the
JFET part is a good deal more costly.

It is important to realise that the voltage noise, like the poor, is always with you, but the
effect of the current noise is negotiable in that it only becomes measurable and audible
voltage noise when it flows through an impedance. Current noise can therefore be reduced
by using suitably low circuit impedances, and here the ability of an opamp to drive heavy
loads without increased distortion becomes very important. This noise advantage is

Table 13.1: Opamps Ranked by Typical Voltage Noise Density

Opamp en nV/rtHz in pA/rtHz Input Device Type Bias Cancel?

TL072 18 0.01 JFET No
OPA604 11 0.004 JFET No
NJM4556 8 Not spec’d BJT No
OPA2134 8 0.003 JFET No
LME49880 7 0.006 JFET No
OP275 6 1.5 BJT + FET No
OPA627 5.2 0.0025 DIFET No
5532A 5 0.7 BJT No
LM833 4.5 0.7 BJT No
MC33078 4.5 0.5 BJT No
5534A 3.5 0.4 BJT No
OP270 3.2 0.6 BJT No
OP27 3 0.4 BJT YES
LM4562 2.7 1.6 BJT No
LME49710 2.5 1.6 BJT No*
LME49990 0.9 2.8 BJT No*
AD797 0.9 2 BJT No
LT1115 0.85 1 BJT No*
LT1028 0.85 1 BJT YES

*Not directly stated on datasheet but inferred from specifications.
NB: A DiFET is a dielectrically-isolated FET, i.e., a MOSFET rather than a JFET.
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one reason why BJT opamps are a better choice for high-quality circuitry where the
impedance levels can be chosen for best results.

Looking at the range of BJT opamps in Table 13.1, the current noise increases as the
voltage noise decreases, as both depend on the standing current in the input devices, so
parts like the AD797 and LME49990 are definitely best suited to low impedance circuitry.
The LM4562 has almost 6 dB less voltage noise than the 5532, while both the LME49990
and the AD797 are almost 15 dB quieter, given sufficiently low impedance levels that their
high current noise does not intrude.

A further complication in this noise business is that the OP27, and LT1028 devices have
bias cancellation systems which can cause unexpectedly high noise, for reasons described
later. Opamps with bias cancellation circuitry are often unsuitable for audio use due to the
extra noise this creates. The amount depends on circuit impedances, and is not taken into
account in Table 13.1.

13.2.2 Opamp Properties: Slew Rate

Slew rates vary more than most parameters; a range of 100:1 is shown here in Table 13.2.
A maximum slew rate greatly in excess of what is required appears to confer no benefits
whatever.

Table 13.2: Opamps Ranked by Typical Slew Rate

Opamp V/us

OP270 2.4
OP27 2.8
NJM4556 3
MC33078 7
LM833 7
5532A 9
LT1028 11
TL072 13
5534A 13
LT1115 15
LME49880 17
LME49710 20
OPA2134 20
LM4562 20
AD797 20
OP275 22
LME49990 22
OPA604 25
OPA627 55
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The 5532 slew rate is typically ±9 V/us. This opamp is internally compensated for
unity-gain stability, not least because there are no spare pins for compensation when you
put two opamps in an 8-pin dual package. The single-amp version, the 5534, can afford a
couple of compensation pins, and so is made to be stable only for gains of 3x or more.
The basic slew rate is therefore higher at ±13 V/us.

Compared with power-amplifier specs, which often quote 100 V/us or more, these speeds
may appear rather sluggish. In fact they are not; even ±9 V/us is more than fast enough.
Assume you are running your opamp from ±18 V rails, and that it can give a ±17 V swing
on its output. For most opamps this is distinctly optimistic, but never mind. To produce a
full-amplitude 20 kHz sine wave you only need 2.1 V/us, so even in the worst case there is
a safety-margin of at least four times. Such signals do not of course occur in actual use, as
opposed to testing. More information on slew-limiting is given in the section on opamp
slew-limiting distortion.

13.2.3 Opamp Properties: Common-Mode Range

This is simply the range over which the inputs can be expected to work as proper
differential inputs. It usually covers most of the range between the rail voltages, with
one notable exception. The data sheet for the TL072 shows a common-mode (CM)
range that looks a bit curtailed at −12 V. This bland figure hides the deadly trap this IC
contains for the unwary. Most opamps, when they hit their CM limits, simply show
some sort of clipping. The TL072, however, when it hits its negative limit, promptly
inverts its phase, so your circuit either latches up, or shows nightmare clipping
behaviour with the output bouncing between the two supply rails. The positive CM limit
is in contrast trouble-free. This behaviour can be especially troublesome when TL072s
are used in high-pass Sallen & Key filters; they are definitely not recommended for
this role.

13.2.4 Opamp Properties: Input Offset Voltage

A perfect opamp would have its output at 0 V when the two inputs were exactly at the same
voltage. Real opamps are not perfect and a small voltage difference usually a few milliVolts
is required to zero the output. These voltages are large enough to cause switches to click
and pots to rustle, and DC blocking capacitors are very often required to keep them in their
place.

The typical offset voltage for the 5532A is ±0.5 mV typical, ±4 mV maximum at 25 °C; the
5534A has the same typical spec but a lower maximum at ±2 mV. The input offset voltage
of the new LM4562 is only ±0.1 mV typical, ±4 mV maximum at 25 °C.
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13.2.5 Opamp Properties: Bias Current

Bipolar-input opamps not only have larger noise currents than their JFET equivalents, they
also have much larger bias currents. These are the base currents taken by the input
transistors. This current is much larger than the input offset current, which is the difference
between the bias current for the two inputs. For example, the 5532A has a typical bias
current of 200 nA, compared with a much smaller input offset current of 10 nA. The
LM4562 has a much lower bias current of 10 nA typical, 72 nA maximum. In the case of
the 5532/4 the bias current flows into the input pins as the input transistors are NPN.

Bias currents are a considerable nuisance when they flow through variable resistors they
make them noisy when moved. They will also cause significant DC offsets when they flow
through high-value resistors.

It is often recommended that the effect of bias currents can be cancelled out by making the
resistance seen by each opamp input equal. Figure 13.1a shows a shunt-feedback stage with
a 22 kΩ feedback resistor. When 200 nA flows through this it will generate a DC offset of
4.4 mV, which is a good deal more than we would expect from the input offset voltage
error.

If an extra resistance Rcompen, of the same value as the feedback resistor, is inserted into
the non-inverting input circuit then the offset will be cancelled. This strategy works well
and appears to be done almost automatically by some designers. However, there is a snag.
The resistance Rcompen generates extra Johnson noise, and to prevent this it is necessary to
shunt the resistance with a capacitor, as in Figure 13.1b. This extra component costs money
and takes up PCB space, so it is questionable if this technique is actually very useful for
audio work. It is usually more economical to allow offsets to accumulate in a chain of
opamps, and then remove the DC voltage with a single output blocking capacitor. This
assumes that there are no stages with a large DC gain, and that the offsets are not large
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Figure 13.1: Compensating for bias current errors in a shunt-feedback stage. The compensating
resistor must be bypassed by a capacitor C2 to prevent it adding Johnson noise to the stage.
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enough to significantly reduce the available voltage swing. Care must also be taken if
controls are involved, because even a small DC voltage across a potentiometer will cause it
become crackly, especially as it wears.

FET input opamps have very low bias current at room temperature; however it doubles
for every 10° Centigrade rise. This is pretty unlikely to cause trouble in most audio
applications, but a combination of high internal temperatures and high-value pots could lead
to some unexpected and unwelcome crackling noises.

13.2.6 Opamp Properties: Cost

While it may not appear on the datasheet, the price of an opamp is obviously a major factor in
deciding whether or not to use it. Table 13.3 lists the opamps commonly used in audio, and was
derived from the averaged prices for 25+ quantities across a number of UK distributors. At the
time of writing (2010) the 5532 was not only by far the most popular audio opamp but also the
cheapest, so its price was taken as unity and used as the basis for the price ratios given.

The table is ranked by cost per package, but of course some are dual and some are single
packages. The column on the right shows cost per actual opamp, with the singles bolded.
This shows that some parts are relatively very expensive indeed, costing almost 100 times
as much per opamp as a 5532.

Table 13.3: Opamps Ranked by Price per Package (2010) Relative to the 5532

Opamp Format Price Ratio per Package 25+ Price Ratio per Opamp 25+

5532 Dual 1.00 1.00
TL072 Dual 1.00 1.00
LM833 Dual 1.12 1.12
MC33078 Dual 1.27 1.27
5534A Single 1.52 3.04
TL052 Dual 2.55 2.55
OP275GP Dual 3.42 3.42
OPA2134PA Dual 4.45 4.45
OPA604 Dual 5.03 5.03
OP27 Single 6.76 13.52
LM4562 Dual 9.06 9.06
LME49990 Single 9.58 19.15
LT1115 Single 12.73 25.45
AD797 Single 13.09 26.18
LT1028 Dual 17.88 17.88
OPA270 Single 24.42 48.85
LME49710 Single 30.58 61.15
OPA627 Single 48.42 96.85

(No representative UK distributor was found for the LME49880 at time of writing.)
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Table 13.3 was compiled using prices for DIL packaging and the cheapest variant of each
type. It is obviously only a rough guide. Purchasing in large quantities or in different
countries may change the rankings somewhat, but the basic look of things will not alter too
much. One thing is obvious—the 5532 is one of the great opamp bargains of all time.

Active crossovers are not going to be used in low-cost systems where every penny counts;
they are found in high-end hi-fi systems and professional PA rigs, and so they are expected
to have appropriately good performance. There is usually no point in compromising this to
make minor cost savings. However, as we shall see, there is in fact very little in the way
of agonising dilemmas about cost/performance tradeoffs. The 5532/5534 may be the
cheapest opamp, but it is also an exceptionally good one. When first introduced it was
very much an expensive premium part, but its popularity has driven prices down. When
used with a little care (and I shall be going into that in detail in this chapter) it is capable
of a performance that can only be beaten by using parts that cost ten times as much, such
as the LM4562.

13.2.7 Opamp Properties: Internal Distortion

This is what might be called the basic distortion produced by the opamp you have selected.
Sam Groner calls it “transfer distortion” [1]. Even if you scrupulously avoid clipping, slew-
limiting, common-mode issues, and excessive output loading, opamps are not completely
distortion free, though some types such as the 5532, the LM4562, and the LME49990 do
have very low levels indeed. If distortion appears when the opamp is run with shunt
feedback, to prevent common-mode voltages on the inputs, and with very light output
loading, then it is probably wholly internal and all you can do is a) run the opamp at the
maximum safe supply rails (this will improve linearity but not usually by very much) or
b) pick a better opamp.

If the distortion is higher than expected, the cause may be internal instability provoked by
putting a capacitative load directly on the output, or neglecting the supply decoupling. The
classic example of the latter effect is the 5532, which shows high distortion if there is not a
capacitor across the supply rails close to the package; 100 nF is usually adequate. No actual
HF oscillation is visible on the output with a general-purpose oscilloscope, so the problem
is presumably instability in one of the intermediate gain stages.

13.2.8 Opamp Properties: Slew-Rate Limiting Distortion

This is essentially an overload condition, and it is the designer’s responsibility to make sure
it never happens. If users crank up the gain until the signal is within a hair of clipping, they
should still be able to assume that slew-limiting will never occur, even with aggressive
material full of high frequencies.
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Arranging this is not too much of a problem. If the rails are set at the usual maximum
voltage, i.e., ±18 V, then the maximum possible signal amplitude is 12.7 Vrms, ignoring the
saturation voltages of the output stage. To reproduce this level cleanly at 20 kHz requires a
minimum slew rate of only 2.3 V/usec. Most opamps can do much better than this, though
with the OP27 (2.8 V/usec) you are sailing rather close to the wind. This calculation
obviously assumes that the incoming signal is free of ultrasonic signals at any significant
level; these may not be audible, but if they are large enough to provoke slew-limiting, there
will be severe intermodulation distortion in the audio band. Bandwidth definition filters at
the start of the audio chain will stop such unwanted signals.

Horrific as it may now appear, audio paths full of LM741s were quite common in the early
1970’s. Entire mixers were built with no other active devices, and what complaints there
were tended to be about noise rather than distortion. (This is not surprising as the voltage
noise of a 741 has been measured at 22nV/√Hz; higher than any opamp in Table 13.1. No
wonder it never appeared on the spec sheets) The reason for this is that full-level signals at
20 kHz simply do not occur in reality; the energy at the HF end of the audio spectrum is
well-known to be lower than that at the bass end. See Chapter 14.

This assumes that slew-limiting has an abrupt onset as level increases, rather like clipping.
This is in general the case with opamps. As the input frequency rises and an opamp gets
closer to slew-limiting, the input stage is working harder to supply the demands of the
compensation capacitance. There is an absolute limit to the amount of current this stage can
supply, and when you hit it the distortion shoots up, much as it does when you hit the supply
rails and induce voltage clipping. Before you reach this point, the linearity may be degraded,
but usually only slightly until you get close to the limit. It is not normally necessary to keep
big margins of safety when dealing with slew-limiting. If you are employing the Usual
Suspects in the audio opamp world—the 5532 and TL072, with maximal slew rates of 9 and
13 V/usec respectively, you are most unlikely to suffer any slew-rate non-linearity.

13.2.9 Opamp Properties: Distortion Due to Loading

Output stage distortion is always worse with heavier output loading because the increased currents
flowing exacerbate the gain changes in the Class-B output stage. These output stages are not in
general individually trimmed for optimal quiescent conditions (as are audio power amplifiers) and
so the crossover distortion produced by opamps tends to be both higher and can be more variable
between different specimens of the same chip. On the other hand, the intimate contact between
biasing circuits and the output transistors means that it is possible to make the quiescent
conditions very stable against temperature, especially when compared with discrete-component
power amplifiers where the thermal losses and lags are much greater. Distortion increases with
loading in different ways for different opamps. It may rise only at the high-frequency end, or there
may be a general rise at all frequencies. Often both effects occur, as in the TL072 and the 5532.
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The lowest load that a given opamp can be allowed to drive is an important design decision. It
will typically be a compromise between the distortion performance required and opposing
factors such as number of opamps in the circuit, cost of load-capable opamps, and so on. It
even affects noise performance, for the lower the load resistance an amplifier can drive, the
lower the resistance values in the negative feedback can be, and hence the lower the Johnson
noise they generate. There are limits to what can be done in noise-reduction by this method,
because Johnson noise is proportional to the square-root of circuit resistance, and so improves
only slowly as opamp loading is increased. Voltage noise from the opamps is not reduced at all,
but the effect of current noise falls proportionally to the value of the circuit resistances. Overall
the sum of these contributions decreases at a fairly gentle rate. Opamp distortion, however, at
least in the case of the ubiquitous 5532, tends to rise rapidly when the loading exceeds a certain
amount, and a careful eye needs to be kept on this issue. More modern devices such as the
AD797 and the LM4562 handle heavy loading better, with less increase in distortion, and the
very recent LME49990 barely reacts at all to loads down to 500Ω. (See Figure 13.19 below)

13.2.10 Opamp Properties: Common-Mode Distortion

This is the general term for extra distortion that appears when there is a large signal voltage on
both the opamp inputs. The voltage difference between these two inputs will be very small,
assuming the opamp is in its linear region, but the common-mode (CM) voltage can be a large
proportion of the available swing between the rails, and in the case of the voltage-follower will
equal it.

Common-mode distortion appears to be the least understood distortion mechanism, and it gets
little or no attention in opamp books, but it is actually one of the most important influences on
opamp non-linearity. It is simple to separate this effect from the basic forward-path distortion
by comparing THD performance in series and shunt-feedback modes; this should be done at
the same noise gain. The distortion is often a good deal lower for the shunt-feedback case
where there is no common-mode voltage. BJT and JFET input opamps show rather different
behaviour as regards common-mode distortion, and this is an important difference between the
two types. This fact seems to be very little appreciated.

A BJT opamp requires both a CM voltage and a significant source resistance driving an
input for it to generate CM distortion. While this is somewhat speculative, my hypothesis
is that this is due to Early effect occurring in the input stage when there is a large CM
voltage, modulating the high input bias currents, and this is the cause of the distortion.
(Early effect occurs in a bipolar transistor when changes in its collector-emitter voltage
cause changes in the collector current, even though the base-emitter voltage is constant.)
The signal input currents, which are in general non-linear, are much smaller due to the high
open-loop gain of the opamp, and appear to have a negligible effect. There is more on this
in the section below on the CM distortion behaviour of the 5532.
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With JFET inputs the problem is not the input bias currents of the input devices themselves,
which are quite negligible, but the currents drawn by the non-linear junction capacitances
inherent in field-effect devices. These capacitances are effectively connected to one of the
supply rails. For P-channel JFETs, as used in the input stages of most JFET opamps, the
important capacitances are between the input JFETs and the substrate, which is normally
connected to the V- rail. See, for example, Jung [2]. According to the Burr-Brown data
sheet for the OPA2134, “The P-channel JFETs in the input stage exhibit a varying input
capacitance with applied CM voltage.” It goes on to recommend that the input impedances
should be matched if they are above 2 kΩ, to cancel out the non-linearity.

The amount of CM distortion generated by a given type of opamp is very important for our
purposes here because active crossover circuitry very often uses voltage-followers, primarily in
Sallen and Key filters, but also for general buffering purposes. This configuration is the worst
case for CM distortion because the full output voltage appears as a CM signal on the inputs. With
BJT opamps CM distortion can be rendered negligible by keeping the source impedances low,
which is also a very good idea as it reduces noise and susceptibility to electrostatic interference.

13.3 Opamps Surveyed

As we have seen, opamps with JFET inputs tend to have higher voltage noise but lower
current noise than BJT-input types, and therefore give a better noise performance with high
source resistances. Their very low bias currents often allow circuitry to be simplified by
omitting DC blocking. These advantages are, however, of little use in active crossover
circuitry. Their CM distortion performance also tends to be much worse, and for this reason,
and to economise on space, I shall only look at one JFET opamp before examining some
BJT types in detail.

Figure 13.2 shows some of the test circuits used in this chapter.

13.4 The TL072 Opamp

The TL072 is, or perhaps was, one of the most popular opamps, having very high-
impedance inputs, with effectively zero bias and offset currents. The JFET input devices
give their best noise performance at medium impedances, in the range 1 kΩ−10 kΩ. It has a
modest power consumption at typically 1.4 mA per opamp section, which is significantly
less than the 5532. The slew rate is higher than for the 5532, at 13 V/us against 9 V/us. The
TL072 is a dual opamp; there is a single version called the TL071 that has offset null pins.
Nowadays, the TL072 is regarded as somewhat obsolescent, as a result of its high voltage
noise and mediocre load-driving capabilities, but it still gives a good illustration of JFET
opamp issues.
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Figure 13.3 shows the distortion performance of the TL072 in voltage-follower mode as
in Figure 13.2c, with varying extra source resistance in the input path. With a low
driving impedance the THD at 10 kHz is 0.0025%, but with a 10 kΩ source resistance
inserted, this rises to an alarming 0.035%. Note that the flat parts of the traces to the left
are not the noise floor, as would be the case with more modern opamps; it is real
distortion at about 0.0006%. The noise floor is equivalent to 0.00035%. Be aware that
the test level is almost as high as possible at 10 Vrms, to get the low-frequency distortion
clear of the noise floor; practical internal levels such as 3 Vrms will give much lower
levels of distortion. This applies to all the distortion tests in this chapter, and indeed to
the whole book.

Figure 13.3 should be compared with the same test carried out on BJT opamps; see
Figure 13.10 (5532) where for Rs = 10 KΩ at 10 kHz the THD is 0.0015% against
0.035% for the TL072. Figure 13.19 (LM4562) shows 0.0037%, Figure 13.24
(LME49990) shows 0.024%, and Figure 13.27 (AD797) shows 0.0025%. Clearly the
TL072 has far worse CM distortion than all except the LME49990, and that opamp is
redeemed by its very low voltage noise.

Since the inputs of an opamp are nominally identical, it is possible to greatly reduce the
effects of CM distortion by making both input see the same source impedance. In the
voltage-follower case, this can be done by inserting an equal resistance in the feedback path,
as in Figure 13.2d above. Figure 13.4 shows the how the high level of CM distortion can
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Figure 13.2: Opamp test circuits with added source resistance Rs: (a) shunt; (b) series;
(c) voltage-follower; (d) voltage-follower with cancellation resistor in feedback path.
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be radically reduced—observe the “Cancel” trace. However, adding resistances for distortion
cancellation in this way has the obvious disadvantage that they introduce extra Johnson
noise into the circuit. Taking that with the higher voltage noise of JFET opamps, this
approach is definitely going to be noisy.

This cancellation technique is not pursued further in the sections on BJT opamps because
there the effects of extra resistance noise are relatively more serious due to the lower opamp
voltage noise.

It would clearly be desirable to examine more JFET opamps, but for reasons of space we
need to cut to the chase and look in detail at the far more promising BJT opamps.

13.5 The NE5532 and NE5534 Opamps

Since the 5534/5532 is by far the most popular audio opamp I make no apology for describing
its behaviour in quite a bit of detail. This will also illuminate issues that apply to all the other
opamps examined here.

Figure 13.3: The TL072 in voltage-follower mode, with varying extra source resistance in the input
path. CM distortion is much higher than for the BJT opamps. 10 Vrms out, ±18 V supply rails.
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The 5532 is a low-noise, low distortion bipolar dual opamp, with internal compensation for
unity-gain stability. The 5534 is a single version internally compensated for gains down to
three, and an external compensation capacitor can be added for unity-gain stability; 22 pF is
the usual value. The dual 5532 is used much more than the single 5534 as it is cheaper per
opamp and does not require an external compensation capacitor when used at unity gain;
the 5534 is however significantly quieter. The common-mode range of the inputs is a
healthy ±13 V, with no phase inversion problems if this is exceeded. It has a distinctly
higher power consumption than the TL072, drawing approx 4 mA per opamp section when
quiescent. The DIL version runs perceptibly warm when quiescent on ±17 V rails.

The internal circuitry of the 5532 has never been publicly explained, but appears to consist
of nested Miller loops that permit high levels of internal negative feedback.

The 5534/5532 has BJT input devices. It therefore gives low noise with low source
resistances, but the downside is that it draws relatively high bias currents through the input
pins. The input transistors are NPN, so the bias currents flow into the chip from the positive rail.

Figure 13.4: A TL072 voltage-follower driven from a low source resistance produces reasonably low
distortion (Rs= 0R), but adding a 10 kΩ source resistance makes things much worse (Rs= 10K).
Putting a 10 kΩ resistance in the feedback path as well gives complete cancellation of this extra
distortion (Cancel). Output 5 Vrms, supply ±18 V. ‘Gen-mon’ means generator monitor i.e., the

testgear output.
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If an input is fed through a significant resistance then the input pin will be more negative
than ground due to the voltage-drop caused by the bias current. The inputs are connected
together with back-to-back diodes for reverse-voltage protection, and therefore should not
be forcibly pulled to different voltages.

The 5532 and 5534 type opamps require adequate supply-decoupling if they are to
remain stable; otherwise they appear to be subject to some sort of internal instability that
seriously degrades linearity without being visible as oscillation on a normal oscilloscope.
The essential requirement is that the +ve and −ve supply rails should be decoupled with
a 100 nF capacitor between them, not more than a few millimetres from the opamp;
normally one such capacitor is fitted per package as close to it as possible. It is not
necessary, and often not desirable to have two capacitors going to ground; every
capacitor between a supply rail and ground carries the risk of injecting rail noise into the
ground.

The 5532 is a robust opamp but it is possible to permanently damage it so that it keeps
working but shows high distortion. This seems to be associated with faults where one
supply rail fails; see Chapter 18 for ways of guarding against this. Obviously such
specimens should be disposed of at once to prevent confusion in the future.

13.6 The 5532 with Shunt Feedback

Figure 13.5 shows the distortion from a 5532 working in shunt mode with low-value
feedback resistors of 1 kΩ and 2k2 setting a gain of 2.2 times, at an output level of
5 Vrms. This is the circuit of Figure 13.2a with Rs set to zero. This is the simplest
situation as the use of shunt mode means there is no CM voltage, and hence no extra
CM distortion. The THD is well below 0.0005% up to 20 kHz; this underlines what a
superlative bargain the 5532 is.

Figure 13.6 shows the same situation but with the output increased to 10 Vrms (the clipping
level on ±18 V rails is about 12 Vrms), and there is now some significant distortion above
10 kHz, though it only exceeds 0.001% when the frequency reaches 18 kHz. This remains
the case when Rs in Figure 13.2a is increased to 10 kΩ and 47 kΩ- the noise floor is higher
but there is no real change in the distortion behaviour. The significance of this will be seen
later when we look at CM distortion.

13.7 5532 Output Loading in Shunt-Feedback Mode

When a significant load is placed on a 5532 output, the distortion performance deteriorates
in a predictable way. Figure 13.7 shows the effect on a shunt-feedback amplifier (to
eliminate the possibility of input common-mode distortion). The output of the opamp is of
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Figure 13.5: 5532 distortion in a shunt-feedback circuit (as in Figure 13.2a at 5 Vrms out. This
shows the AP SYS-2702 output (lower trace) and the opamp output (upper trace). Supply ±18 V.

Figure 13.6: 5532 distortion in the shunt-feedback circuit of Figure 13.2a. Adding extra resistances
of 10 kΩ and 47 kΩ in series with the inverting input does not degrade the distortion at all, but

does bring up the noise floor a bit. Test level is now 10 Vrms out, supply ±18 V.
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course always loaded by the feedback resistor, which is effectively connected to ground at
its other end. The circuit is as shown in Figure 13.2b.

There are two different distortion regimes visible. At low frequencies (below 10 kHz) the
distortion is flat with frequency. Above this, the THD rises rapidly, at approximately 12 dB/
octave. This is very different from Blameless power amplifier behaviour, where the distortion
normally rises at only 6 dB/octave when it emerges from the noise floor, typically around
2 kHz. The increase in THD in the flat region (at 1 kHz) is summarised in Table 13.4.

Figure 13.7: The effect of output loading on a shunt-feedback 5532 stage; 500Ω, 1 KΩ, 2 KΩ,
3 KΩ, and No load, plus gen-mon (bottom trace). Feedback resistors 1 KΩ and 2K2, noise gain

3.2 times. Output 9 Vrms, supply ±18 V.

Table 13.4: THD at 1 kHz for Varying External
Loads on a Shunt Feedback 5532

External Load Resistance Ω THD at 1 kHz

No external load 0.00030%
3 KΩ 0.00036%
2 KΩ 0.00040%
1 KΩ 0.00052%
500Ω 0.00072%
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With no external load, the THD trace is barely distinguishable from the Audio Precision
output until we reach 10 kHz, where the THD rises steeply. In this condition the opamp is
of course still loaded by the 2K2 feedback resistor.

13.8 The 5532 with Series Feedback

Figure 13.8 shows the distortion from a 5532 working in series-feedback mode, as in
Figure 13.2b. Note that the stage gain is greater at 3.2 times but the opamp is working at
the same noise gain and so has the same amount of negative feedback available to reduce
distortion. The working conditions are however less favourable, as we shall see in the next
section on common-mode problems, and the distortion now begins to rise from 5 kHz and
reaches 0.0025% at 20 kHz, as opposed to 0.0014% at 20 kHz for the shunt version, as in
Figure 13.7.

Figure 13.8 also shows the effect of loading the output. As for the shunt case, the increased
distortion is mostly apparent in the flat LF section of the traces.

Figure 13.8: 5532 distortion in a series feedback stage with 2k2 & 1 kΩ feedback resistors,
(gain 3.2 times) and zero source resistance. The output level is 10 Vrms with 500Ω, 1 kΩ loads,
and no load. The gen-mon trace is the output of the distortion analyser measured directly.

Supply ±18 V.
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13.9 Common-Mode Distortion in the 5532

In a series-feedback amplifier with a gain of 3.2 times the CM voltage is 3.1 Vrms for a
10 Vrms output. See Figure 13.9. The trace labelled “0R” (i.e., zero source resistance) is the
same as the “No load” trace of Figure 13.8. The source resistance seen by the inverting
input is not zero, because of the impedance of the feedback network, but this is only 2K2
in parallel with 1 KΩ; in other words 687Ω. Figure 13.9 implies that this will have only a
very small effect, but more on that later. When we add some source resistance Rs, the
picture is radically worse, with serious midband distortion rising at 6 dB/octave, and roughly
proportional to the amount of resistance added. We will note it is 0.0015% at 10 kHz with
Rs = 10 kΩ. The horizontal low-frequency parts of the traces are raised by the Johnson
noise from the source resistances and also by the opamp current noise flowing in those
resistances.

The worst case for CM distortion is the voltage-follower configuration, as in Figure 13.2c,
where the CM voltage is equal to the output voltage. Voltage-followers typically give low
distortion because they have the maximum possible amount of negative feedback, and
Figure 13.8 shows that even with a CM voltage of 10 Vrms, the distortion when driven
from a low impedance is no greater than for the shunt mode. However, when source
resistance is inserted in series with the input, the distortion mixture of second, third and
other low-order harmonics increases markedly; in the 3.2 times stage 10 KΩ of source

Figure 13.9: 5532 distortion in a series feedback stage with 2k2 & 1 kΩ feedback resistors,
(gain 3.2 times) and varying source resistances. 10 Vrms output.
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resistance caused 0.0015% THD at 10 kHz, but with a voltage-follower we get 0.0035%.
The distortion increases with output level, approximately quadrupling as level doubles.
Figure 13.10 shows what happens with source resistances of 10 kΩ and below; when the
source resistance is below 2k2, the distortion is close to the zero source resistance trace.

Close examination reveals the intriguing fact that a 1 kΩ source actually gives less distortion
than no source resistance at all, reducing THD from 0.00065% to 0.00055% at 10 kHz.
Minor variations around 1 kΩ make no measurable difference. This effect is due to the 1 kΩ
source resistance cancelling the effect of the source resistance of the feedback network,
which is 1 kΩ in parallel with 2k2, i.e., 688Ω. The improvement is small, but if you are
striving for the very best linearity, the result of deliberately adding a small amount of source
resistance appears to be repeatable enough to be exploited in practice. A large amount will
compromise the noise performance, as seen in Figure 13.9, and this is another argument for
keeping feedback network impedances as low as practicable without impairing distortion.

This CM distortion behaviour is unfortunate because voltage-followers are very frequently required
in active crossover design, primarily in Sallen and Key filters, but also for general buffering purposes.
The only cure is to keep the source impedances low, which is obviously a good idea from the noise
point of view also. A total of 2 kΩ is about as high as you want to go, and this is why the lowpass
Sallen& Key filters in Chapter 8 have been given series resistors that do not exceed this figure.

Figure 13.10: 5532 distortion in a voltage-follower circuit with a selection of source resistances;
a 1 kΩ source resistance actually gives less distortion than no resistance, due to cancellation.

The gen-mon THD was as before. Test level 10 Vrms, supply ±18 V.
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So, what exactly is going on here with common-mode distortion? Is it simply due to
non-linear currents drawn being drawn by the opamp inputs? Audio power amplifiers have
discrete input stages which are very simple compared with those of most opamps, and draw
relatively large input currents. These currents show appreciable non-linearity even when the
output voltage of the amplifier is virtually distortion-free, and if they flow through
significant source resistances will introduce added distortion [3].

If this was the case with the 5532 then the extra distortion would manifest itself whenever
the opamp was fed from a significant source resistance, no matter what the circuit
configuration. But as we saw earlier, it only occurs in series-feedback situations; increasing
the source resistance in a shunt-feedback amplifier does not perceptibly increase distortion.

The only difference is that the series circuit has a CM voltage of about 3 Vrms, while the
shunt circuit does not, and the conclusion is that with a bipolar input opamp, you must have
both a CM voltage and a significant source resistance to see extra distortion. The input
stage of a 5532 is a straightforward long-tailed pair, with a simple tail current source and no
fancy cascoding, and I suspect that Early Effect is significant when there is a large CM
voltage, modulating the quite high input bias currents, and this is what causes the distortion.
The signal input currents are much smaller, due to the high open-loop gain of the opamp,
and as we have seen appear to have a negligible effect.

13.10 Reducing 5532 Distortion by Output Biasing

There is an extremely useful, though relatively little-known (and where it is known it is
almost universally misunderstood) technique for reducing the distortion of the 5532 opamp.
While the general method may be applicable to some other opamp types, here I concentrate
on the 5532, as probably the most popular opamp in the world, and it must not be assumed
that the relationships or results will be emulated by any other opamp type.

The principle is that if a biasing current of the right polarity is injected into the opamp
output, then the output stage distortion can be significantly reduced. This technique is
sometimes called “output biasing” though it must be understood that the DC voltage
conditions are not significantly altered; because of the high level of voltage feedback the
actual DC potential at the output is shifted by only a tenth of a millivolt or so.

You may have recognised that this scheme is very similar to the Crossover Displacement
(Class XD) system I introduced for power amplifiers, which also injects an extra current,
either steady or signal-modulated, into the amplifier output [4]. It is not however quite the
same in operation. In power amplifiers the main aim of Crossover Displacement is to
prevent the output stage from traversing the crossover region at low powers. In the 5532 at
least the crossover region is not easy to spot on the distortion residual, the general effect
being of second and third harmonic distortion rather than spikes or edges; it appears that the
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5532 output stage is more linear when it is pulling down rather than pulling up, and the
biasing current is compensating for this.

For the 5532, the current must be injected from the positive rail; currents from the negative
rail make the distortion emphatically worse. This confirms that the output stage of the 5532
is in some way asymmetrical in operation, for if it was simply a question of suppressing
crossover distortion by Crossover Displacement, a bias current of either polarity would be
equally effective. The continued presence of the crossover region, albeit displaced, would
mean that the voltage range of reduced distortion would be quite small, and centred on 0 V.
It is rather the case that there is a general reduction in distortion across the whole of the
5532 output range, which seems to indicate that the 5532 output stage is better at sinking
current than sourcing it, and therefore injecting a positive current is effective at helping out.

Figure 13.11a shows a 5532 running in shunt-feedback mode with a moderate output load
of 1 KΩ; the use of shunt feedback makes it easier to see what’s going on by eliminating
the possibility of common-mode distortion. With normal operation we get the upper trace in
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Figure 13.11: Reducing 5532 distortion in the shunt-feedback mode by biasing the output stage
with a current injected through a resistor R+ or a current source.
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Figure 13.12, labelled “No bias.” If we then connect a current-injection resistor between the
output and to the V+ rail, we find that the LF distortion (the flat bit) drops almost
magically, giving the trace labelled “3K3”, which is only just above the gen-mon trace.
Since noise makes a significant contribution to the THD residual at these levels, the actual
reduction in distortion is greater than it appears.

The optimum resistor value for the conditions shown (5 Vrms and 1 KΩ load) is about
3K3, which injects a 5.4 mA current into the output pin. A 2K2 resistor gives greater
distortion than 3K3, due to the extra loading it imposes on the output; in AC terms the
injection resistor is effectively in parallel with the output load. In fact, 3K3 seems to be
close to the optimal value for a wide range of output levels and output loadings.

The extra loading that is put on the opamp output by the injection resistor is a disadvantage,
limiting the improvement in distortion performance that can be obtained. By analogy with
the canonical series of Class-A power amplifier outputs [5], a more efficient and elegant
way to inject the required biasing current is by using a current source connected to the V+
rail, as in Figure 13.11b. Since this has a very high output impedance the loading on
the opamp output is not increased. Figure 13.11c shows a simple but effective way to do

Figure 13.12: The effect of output biasing, with a 3K3 resistor to V+, on a unity-gain shunt-
feedback 5532 stage. Output load 1 KΩ, input and feedback resistors are 2K2, noise gain 2.0

times. Output 5 Vrms, supply ±18 V.
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this; the current source is set to the same current as the 3K3 resistor injects when the output
is at 0 V, (5.4 mA) but the improvement in distortion is greater. There is nothing magical
about this figure; however, increasing the injection current to say, 8 mA, gives only a small
further improvement in the THD figure, and in some cases may make it worse; also the
circuit dissipation is considerably increased, and in general I would not recommend using a
current-source value of greater than 6 mA. Here in Table 13.5 are typical figures for a unity-
gain shunt amplifier as before, with the loading increased to 680Ω to underline that the
loading is not critical; output biasing is effective with a wide range of loads.

As mentioned before, at such low THD levels the reading is largely noise, and the reduction
of the distortion part of the residual is actually greater than it looks from the raw figures.
Viewing the THD residual shows a dramatic difference.

You might be concerned about the Cbc of the transistor, which is directly connected to the
opamp output. The 5532/5534 is actually pretty resistant to HF instability caused by load
capacitance, and in the many versions of this configuration I tested I have had no HF
stability problems whatever. The presence of the transistor does not reduce the opamp
output swing.

Output biasing is also effective with series feedback amplifier stages in some circumstances.
Table 13.6 shows it working with a higher output level of 9.6 Vrms, and a 1 KΩ load.
The feedback resistors were 2K2 and 1 KΩ to keep the source resistance to the inverting
input low.

Table 13.5: Output Biasing Improvements with Unity-Gain
Shunt Feedback, 5 Vrms Out, Load 680Ω, Supply ±18 V

Injection Method
THD at 1 kHz

(22 kHz Bandwidth)

None 0.00034%
3K3 resistor 0.00026%

5.4 mA current-source 0.00023%
8.1 mA current-source 0.00021%

Table 13.6: Output Biasing Improvements with 3.2 Times Gain,
Series Feedback, 9.6 Vrms Out, Load 1 KΩ, Supply ±18 V

Injection Method
THD at 1 kHz

(22 kHz Bandwidth)

None 0.00037%
3K3 resistor 0.00033%

5.4 mA current-source 0.00027%
8.1 mA current-source 0.00022%
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The output biasing technique is in my experience only marginally useful with voltage
followers, as the increased feedback factor with respect to a series amplifier with gain reduces
the output distortion below the measurement threshold. Table 13.7 demonstrates this.

As a final example, Figure 13.13 shows that the output biasing technique is particularly
effective with higher gains, here 14 times. The distortion with the 5.4 mA source is barely
distinguishable from the testgear output up to 2 kHz. The series-feedback stage had its gain

Table 13.7: Output Biasing Improvements for Voltage-
Follower, 9.6 Vrms out, Load 680Ω, Supply ±18 V

Injection Method
THD at 1 kHz

(22 kHz Bandwidth)

None 0.00018% (almost all noise)
3K3 resistor 0.00015% (all noise)

5.4 mA current-source 0.00015% (all noise)
8.1 mA current-source 0.00015% (all noise)

Figure 13.13: Reducing 5532 distortion with series feedback by biasing the output stage with a 3K3
resistor, or 5.2 or 8.1 mA current sources. Gain 14 times, no external load.

Test level 5 Vrms out, supply ±18 V.
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set by 1K3 and 100Ω feedback resistors, their values being kept low to minimise common-
mode distortion. It also underlines the point that in some circumstances an 8.1 mA current
source gives worse results than the 5.4 mA version.

When extra common-mode distortion is introduced by the presence of a significant source
resistance, this extra distortion is likely to swamp the improvement due to output biasing. In
a 5532 amplifier stage with a gain of 3.2 times and a substantial source resistance, the basic
output distortion with a 1 KΩ load at 9.6 Vrms, 1 kHz out was 0.0064%. A 3K3 output
biasing resistor to V+ reduced this to 0.0062%, a marginal improvement at best, and an
8.1 mA current source could only reduce it to 0.0059%.

Earlier I said that the practice of output stage biasing appears to be pretty much universally
misunderstood, judging by how it is discussed on the Internet. The evidence is that every
application of it that my research has exposed shows a resistor (or current source) connected
between the opamp output and the negative supply rail. This is very likely based on the
assumption that displacing the crossover region in either direction is a good idea, coupled
with a vague feeling that a resistor to the negative rail is somehow more “natural” and looks
more like the familiar drawing of a load to ground. However, the assumption that the output
stage is symmetrical is usually incorrect; as we have seen, it is certainly not true for the
5532/5534. For the 5532—which surely must be the most popular audio opamp by a long
way—a pulldown resistor would be completely inappropriate as it increases rather than
decreases the output stage distortion.

You may be thinking that this is an ingenious method of reducing distortion, but rather
clumsy compared with simply using a more linear opamp like the LM4562. This is true, but
on the other hand, if the improvement from output biasing is adequate, it will be much
cheaper than switching to a more advanced opamp that costs ten times as much.

13.11 Which 5532?

It is an unsettling fact that not all 5532s are created equal. The part is made by a number of
manufacturers, and there are definite performance differences. While the noise characteristics
appear to show little variation in my experience, the distortion performance does vary
noticeably from one manufacturer to another. Although, to the best of my knowledge, all
versions of the 5532 have the same internal circuitry, they are not necessarily made from
the same masks, and even if they were there would inevitably be process variations between
manufacturers.

The main 5532 sources at present are Texas Instruments, Fairchild Semiconductor, ON
Semiconductor (was Motorola), NJR (New Japan Radio), and JRC (Japan Radio Company).
I took as wide a range of samples as I could, ranging from brand-new devices to parts over
twenty years old, and it was reassuring to find that without exception, every part tested gave
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the good linearity we expect from a 5532. But there were differences. I did THD tests on
six samples from Fairchild, JRC, and Texas, plus one old Signetics 5532 for historical
interest.

All tests were done using a shunt-feedback stage with a gain of unity, both input and
feedback resistors being 2 KΩ; the supply rails were ±18 V. The output level was high at
10.6 Vrms, only slightly below clipping. No external load was applied, so the load on the
output was solely the 2 KΩ feedback resistor; applying extra loading will make the THD
figures worse. The test instrumentation was an Audio Precision SYS-2702.

For most of the manufacturers distortion only starts to rise very slowly above the measurement
floor at about 5 kHz, and remains well below 0.0007% at 20 kHz. The exceptions were the six
Texas 5532s, which consistently showed somewhat higher distortion at high frequencies.
Distortion at 20 kHz ranged from 0.0008% to 0.0012%, showing more variation than the other
samples as well as being generally higher in level. The low-frequency section of the plot, below
10 kHz, was at the measurement floor, as for all the other devices, and distortion is only just
visible in the noise in the THD residual.

Compared with other maker’s parts, the THD above 20 kHz is much higher—at least
three times greater at 30 kHz. Fortunately this should have no effect unless you have very
high levels of ultrasonic signals that could cause intermodulation. If you do, then you have
bigger problems than picking the best opamp manufacturer.

All of the measurements given in this book were performed using the Texas version of the
5532, to ensure worst-case results. If you use 5532s from one of the other manufacturers
then your high-frequency distortion results should be somewhat better.

13.12 The 5534 Opamp

The single-opamp 5534 is somewhat neglected compared with the 5532, often being
regarded as the same thing but inconveniently packaged with only one opamp per 8-pin
DIL and in many cases requiring the expense of an external compensation capacitor.
However, it can in fact be extremely useful when a somewhat better performance than
the 5532 can give needs to be achieved economically, as it is between two and three
times as expensive per opamp as the 5532 but about five times cheaper than the still
somewhat exotic LM4562. The price ratio is likely to be nearer two when purchasing
large quantities. (There was once a 5533 which was basically a dual 5534, with external
compensation and offset null facilities in a 14-pin DIL package, but it seems to have
achieved very little market penetration—the only place I have ever seen one is on the
equaliser board of the famous EMT turntable. However, Philips were still putting out
spec sheets for it in 1994.)
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The 5534 has a very significant distortion advantage when gains of greater than unity are
required, because the lighter internal compensation means that a greater NFB factor can be
applied, with distortion reduced proportionally.

The 5534 also has lower noise than the 5532, its input voltage noise density being 3.5 uV/√Hz
rather than 5 uV/√Hz. This means that in situations where the voltage noise dominates over the
current noise- the sort of situation where you would want to use a BJT input opamp—the noise
performance is potentially improved by 3.0 dB. Johnson noise from the circuit resistances is
likely to reduce this difference in some cases.

Samuel Groner points out [1] that the higher voltage noise of the 5532 is almost certainly
because the input pair has emitter degeneration resistors added to make unity-gain
compensation easier. These are not shown on any internal schematic I have ever seen, but
their presence is suggested by the fact that the 5532 has more voltage noise but much the
same current noise, and has a faster slew rate than a unity-gain compensated 5534 because
its compensation capacitor can be smaller.

Figure 13.14 demonstrates the excellent linearity of an uncompensated 5534 with shunt
feedback for 3.2 times gain and no external loading; distortion is 0.0005% at 20 kHz and
10 Vrms out. Compare this with Figure 13.6, which shows 0.0015% at 20 kHz for a 5532

Figure 13.14: Distortion from an uncompensated 5534 with shunt feedback with 3.2 times gain
and no external loading, at 5 Vrms and 10 V rms out. The gen-mon (testgear output) is also shown.

Supply ±18 V.
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section in the same situation. The 5534 distortion is reduced proportionally to the increased
NFB factor, being three times less.

Figure 13.15 shows an uncompensated 5534 with series feedback for 3.2 times gain and no
external loading; distortion is 0.00077% at 20 kHz and 10 Vrms out. Compare this with the
“No-load” trace in Figure 13.8, which shows 0.0022% at 20 kHz for a 5532 section in the
same situation. The reduction is again proportional to the increased NFB factor, being three
times lower once more. Note that there is no source resistance added so the 5534 is fed
from a low impedance and will not exhibit CM distortion.

If the 5534 is used with external compensation to allow unity-gain stability, then the
distortion advantage is lost but the better noise performance remains. The generally accepted
value is 22 pF for unity-gain stability, though this does not as far as I know have any official
seal of approval from a manufacturer. In fact I have often found that uncompensated 5534s
were stable and apparently quite happy at unity gain, but this is not something to rely on.

For a unity-gain shunt-feedback stage the opamp noise gain is two times. There appears to
be no generally accepted value for the external compensation capacitor required in this
situation, or other circuits requiring a 5534 to work at a noise gain of two, but I have
always found that 10 pF does the job.

Figure 13.15: Distortion from an uncompensated 5534 with series feedback and 3.2 times gain,
no external loading, at 5 Vrms and 10 V rms out. Supply ±18 V.
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13.13 The LM4562 Opamp

The LM4562 is a relatively new opamp, which first become freely available at the
beginning of 2007. It is a National Semiconductor product. It is a dual opamp—there is no
single or quad version. It costs about ten times as much as a 5532.

The input noise voltage is typically 2.7 nV/√Hz, which is substantially lower than the
5 nV/√Hz of the 5532. For suitable applications with low source impedances this translates
into a useful noise advantage of 5.3 dB. The bias current is 10 nA typical, which is very low
and would normally imply that bias-cancellation, with its attendant noise problems, was
being used. However in my testing I have seen no sign of excess noise, and the data sheet
is silent on the subject. No details of the internal circuitry have been released so far, and
quite probably never will be. The LM4562 is not fussy about decoupling, and as with the
5532, 100 nF across the supply rails close to the package seems to ensure HF stability.
The slew rate is typically ±20 V/us, more than twice as fast as the 5532.

The first THD plot in Figure 13.16 shows the LM4562 working at a closed-loop gain of 2.2
times in shunt-feedback mode, at a high level of 10 Vrms. The top of the THD scale is now

Figure 13.16: The LM4562 in shunt-feedback mode, with 1 kΩ, 2k2 feedback resistors giving a
gain of 2.2x. Shown for no load (NL) and 1 kΩ, 500Ω loads. Note the vertical scale ends at 0.001%

this time. Output level is 10 Vrms. ±18 V supply rails.
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a very low 0.001%, and the plots look a bit jagged because of noise. The no-load trace is
barely distinguishable from the AP SYS-2702 output, and even with a heavy 500Ω load
driven at 10 Vrms there is only a very small amount of extra THD, reaching 0.0007% at
20 kHz. Compare this with the 5532 performance in Figure 13.7, where loading brings up
the distortion in the flat region below 10 kHz to 0.0008%, and gives a THD of 0.0020% at
20 kHz with a 500Ω load, as opposed to only 0.0007% for the LM4562.

Figure 13.17 shows the LM4562 working at a gain of 3.2x in series feedback mode, both modes
having a noise gain of 3.2 times. The extra distortion from the 500Ω loading is very low.

13.14 Common-Mode Distortion in the LM4562

For Figures 13.16 and 13.17 the feedback resistances were 2k2 and 1 kΩ, so the minimum
source resistance presented to the inverting input is 688Ω. In Figure 13.18 extra source
resistances were then put in series with the input path (as was done with the 5532 in the
section above on common-mode distortion), and this revealed a remarkable property of the
LM4562—with moderate levels of CM voltage it is much more resistant to common-mode
distortion than the 5532. At 10 Vrms and 10 kHz, with a 10 kΩ source resistance the 5532

Figure 13.17: The LM4562 in series feedback mode, with 1 kΩ, 2k2 feedback resistors giving a gain
of 3.2x. No load (NL) and 500 Ω load. 10 Vrms output. ±18 V supply rails.
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generates 0.0014% THD (see Figure 13.9), but the LM4562 gives only 0.00046% under the
same conditions. I strongly suspect that the LM4562 has a more sophisticated input stage
than the 5532, probably incorporating cascoding to minimise the effects of common-mode
voltages. Note that only the rising curves to the right represent actual distortion. The raised
levels of the horizontal traces at the LF end are due to Johnson noise from the added series
resistances, plus opamp current noise flowing in them.

As we saw with the 5532, the voltage-follower configuration is the most demanding test for
CM distortion, because the CM voltage is at a maximum. Here the LM4562 does not work
quite so well. At 10 kHz the distortion with a 10 KΩ source resistance has leapt up from
0.00046% in Figure 13.18 to 0.0037% in Figure 13.19, which allowing for the noise
component in the former must be an increase of about ten times. This is a surprising and
unwelcome result, because it means that despite its much greater cost the performance of
the LM4562 in the voltage-follower configuration is no better than that of the 5532;
compare Figure 13.10 above.

The reason for this rapid increase in distortion with CM voltage appear to be a non-linearity
mechanism that is activated when the CM voltage exceeds 4 Vrms. This is illustrated in

Figure 13.18: The LM4562 in series feedback mode, gain 3.2x, with varying extra source
resistance in the input path. The extra distortion is much lower than for the 5532.

10 Vrms out, ±18 V supply rails.
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Figure 13.20, which shows distortion against level for the voltage-follower at 10 kHz, with
different source resistances. The left side of the plot shows only noise decreasing relatively
as the test level increases; the steps in the lowest trace are measurement artefacts. Since the
CM voltage for the series feedback configuration is only about 3 Vrms, the non-linearity
mechanism is not activated and CM distortion in that case is very low.

The conclusion has to be once more that if you are using voltage-followers and want low
distortion it is well worthwhile to expend some time and trouble on getting the source
impedances as low as possible.

It has taken an unbelievably long time—nearly thirty years—for a better audio opamp
than the 5532 to come along, but at last it has happened. The LM4562 is superior in just
about every parameter, apart from having more than twice as much current noise and no
better CM distortion in voltage-follower use. These issues should not be serious problems
if the low-impedance design philosophy is followed. At present the LM4562 has a much
higher price; hopefully that will change, but it may take a very long time, based on the

Figure 13.19: The LM4562 in voltage-follower mode, with varying extra source resistance in the
input path. CM distortion is much higher than for the series-feedback amplifier in Figure 13.16.

10 Vrms out, ±18 V supply rails.
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price history of other opamps. It has already begun to appear in hi-fi equipment, one
example being the Benchmark DAC1 HDR, a combined DAC and preamplifier.

13.15 The LME49990 Opamp

The LME49990 from National Semiconductor is a single opamp available only as an 8-lead
narrow body SOIC surface-mount package. It was released in early 2010. It is part of their
“Overture” series, which the data sheet describes as an “ultra-low distortion, low noise, high
slew rate operational amplifier series optimized and fully specified for high performance,
high fidelity applications,” and from my measurements on the LME49990 I’ll go along with
that. The Overture series also includes the LME49880, which is a dual JFET-input opamp.
The LM49710 is another BJT opamp with very low noise and distortion specs but for
unknowable reasons it does not appear to be part of the Overture series.

Figure 13.21 shows the distortion performance in the shunt-feedback configuration, to prevent
any common-mode distortion issues. The input and feedback resistors are 1 kΩ and 2k2, giving
a gain of 2.2 times (and a noise gain of 3.2 times, as for the series version of this test). The

Figure 13.20: The LM4562 in voltage-follower mode, showing CM distortion versus signal voltage
with varying extra source resistance. The frequency is 10 kHz. A non-linearity is kicking in at about

4 Vrms. 1 to 10 Vrms out, ±18 V supply rails.
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traces are for no load (apart from the feedback resistor) and 1 kΩ, and 500Ω loads at an output
of 9 Vrms, and also the AP 2722 output for reference. As you can see, these traces are pretty
much piled up on top of each other, with no distortion visible on the residual except for a small
amount between 10 kHz and 20 kHz with the 500 Ω load; clearly the LME49990 is very good
at driving 500 Ω loads. The step at 20 kHz is an artefact of the Audio Precision SYS-2702
measuring system.

If we compare this plot with Figure 13.5 above, we can see that the LME49990 is somewhat
superior to the 5532, but since we are down in the noise floor most of the time the differences
are not great.

In the series configuration, with 1 kΩ and 2k2 feedback resistors giving a gain of 3.2
times, and a significant common-mode voltage of 3 Vrms, things are not quite so linear;
there is now clearly detectable distortion at high frequencies, as shown in Figure 13.22.
Even so, the distortion is less than half that of a 5532 in the same situation—compare
Figure 13.6 above.

500R

Figure 13.21: The LME49990 in shunt-feedback mode, with a 1 kΩ input resistor and a 2k2
feedback resistor giving a gain of 2.2x. Shown for no load (NL) and 1 kΩ, 500Ω loads. The

generator output is also plotted. Note the top of the vertical scale is at only 0.001%. The output
level is 9 Vrms. with ±17 V supply rails.
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13.16 Common-Mode Distortion in the LME49990

It looks as though common-mode distortion may be more of an issue with the LME49990
than it was with the LM4562. As we saw earlier, BJT input opamps do not show common-
mode distortion unless the configuration has both a significant common-mode voltage and a
significant source impedance. If we repeat the series feedback test with no external load, but
increasing source resistance, we get Figure 13.23, where as usual more source resistance
means more high-frequency distortion. The exception is for a 1 kΩ source resistance, where
the distortion actually decreases; this is because the 1 kΩ is partially cancelling the 688Ω
source resistance of the feedback network. We saw exactly the same effect with the 5532;
see Figure 13.10 above. The horizontal low-frequency parts of the traces are raised by the
Johnson noise from the added source resistances and also by the opamp current noise
flowing in those resistances. There is no distortion visible in this region.

The voltage-follower configuration has the worst working conditions for CM distortion
because since there is no amplification, the CM voltage on the inputs is as large as the output

Figure 13.22: The LME49990 in series feedback mode, with 1 kΩ, 2k2 feedback
resistors giving a gain of 3.2x. No load, 1 kΩ, and 500Ω loads. 9 Vrms output.

±17 V supply rails.
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voltage. Figure 13.24 shows that in this case the CM distortion is much worse. With a 2 KΩ
source resistance the THD at 10 kHz has increased from 0.0015% to 0.0042%, and all the
other figures show a similar increase. The conclusion has to be that if you are working with a
large CM voltage and a significant source resistance, the LME49990 is not the best choice,
and either the 5532, the LM4562, or the AD797 will give considerably lower distortion.

The SOIC-only format of the LME4990 is not helpful for experimentation or home
construction. I soldered my samples to an 8-pin DIL adaptor and plugged that into a prototype
board without any problems. The LME49990 samples were kindly supplied by Don Morrison.

13.17 The AD797 Opamp

The AD797 (Analog Devices) is a single opamp with very low voltage noise and distortion. It
appears to have been developed primarily for the cost-no-object application of submarine sonar,
but it works very effectively with normal audio- if you can afford to use it. The cost is something
like twenty times that of a 5532. No dual version is available, so the cost ratio per opamp section

Figure 13.23: The LME49990 in series feedback mode, gain 3.2x, with varying extra source
resistance in the input path; note that a 1 kΩ source resistance actually gives less distortion than
none. The CM distortion is lower than for the 5532, but higher than for the LM4562. 10 Vrms out,

±18 V supply rails.
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is a hefty forty times. The AD797 incorporates an ingenious error-correction feature for internal
distortion cancellation, the operation of which is described on the manufacturer’s data sheet. The
measurements presented below seem to show that it works effectively.

The AD797 is a remarkably quiet device in terms of voltage noise, but current noise is
correspondingly high due to the large standing currents in the input devices. Early versions
appeared to be quite difficult to stabilise at HF; the current product seems to be easier to
handle but still a bit harder to stabilise than the 5532 or the LM4562. Possibly there has
been a design tweak, or on the other hand my impression may be wholly mistaken.

It has taken quite a long time for the AD797 to make its way into audio circuitry, possibly
because of the discouraging early reports on instability, but more likely because of the high
cost. At the time of writing (2010) they are showing up in commercial audio equipment, a
contemporary example being the Morrison E.L.A.D. line-level preamplifier, and they are
also appearing in DIY designs. Audio Precision use this opamp in their 2700 series state-of-
the-art distortion analysers.

Figure 13.25 shows the AD797 in shunt-feedback mode, to assess how it copes with output
loading; as you can see, the effect is very small, with a very modest rise above 10 kHz with

Figure 13.24: LME49990 distortion in a voltage-follower circuit with a selection of source
resistances; test level 10 Vrms, supply ±18 V.
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the 500Ω load. Below 10 kHz the loading has no detectable effect at all, which makes it a
better opamp than the 5532—see Figure 13.5. The step at 20 kHz is a measurement artefact.
When the loads were applied a 33 pF capacitor had to be put across the 2k2 feedback
resistor to obtain stability—this was not required with either the 5532, the LM49990, or the
LM4562, and shows that the AD797 does require a little more care to get dependable HF
stability.

Figure 13.26 shows the AD797 in series-feedback mode, with no output loading apart from
its own 2k2 feedback resistor, to test its CM distortion with moderate CM voltages, here
3.1 Vrms. The series feedback test also needed 33 pF across the feedback resistor to ensure
HF stability.

13.18 Common-Mode Distortion in the AD797

The AD797 is next tested in voltage-follower mode with a 10 Vrms signal level and various
source impedances. The traces in Figure 13.27 do not fall out very neatly because there
appear to be some sort of cancellation effect going on, but from the difference between the

Figure 13.25: The AD797 in shunt-feedback mode, with 1 kΩ, 2k2 feedback resistors giving a gain
of 2.2x. No load and 1 kΩ, 500Ω loads. Note top of vertical scale is at 0.001%. Output level is

10 Vrms. ±18 V supply rails.
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Figure 13.26: AD797 with series feedback THD with no external load, at 10 Vrms.
Gain= 3.2x, ±18 V supply rails.

Figure 13.27: AD797 voltage-follower THD, at 10 Vrms. Output is virtually
indistinguishable from input.
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Rs = 4k7 and Rs = 10 kΩ traces it is abundantly clear that, as usual, source impedances
need to be kept low when there is a large CM signal. The results are significantly better
than the 5532 in voltage-follower mode–compare above.

13.19 The OP27 Opamp

The OP27 from Analog Devices is a bipolar-input single opamp primarily designed for
low noise and DC precision. It was not intended for audio use, but in spite of this it is
frequently recommended for such applications as RIAA and tape head preamps. This
is unfortunate, because while at first sight it appears that the OP27 is quieter than the
5534/5532, as the en is 3.2 nV/rtHz compared with 4 nV/rtHz for the 5532, in practice it is
usually slightly noisier. This is because the OP27 is in fact optimised for DC characteristics,
and so has input bias-current cancellation circuitry that generates common-mode noise.
When the impedances on the two inputs are very different the CM noise does not cancel,
and this can degrade the overall noise performance significantly, and certainly to the point
where the OP27 is noisier than a 5532.

For a bipolar input opamp, there appears to be a high level of common-mode input distortion,
enough to bury the output distortion caused by loading; see Figures 13.28 and 13.29. It is
likely that this too is related to the bias-cancellation circuitry, as it does not occur
in the 5532.

Figure 13.28: OP27 THD in shunt-feedback mode with varying loads. This opamp accepts even
heavy (1 kΩ) loading relatively gracefully.
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The maximum slew rate is low compared with other opamps, being typically 2.8V/us.
However, this is not the problem it may appear. This slew rate would allow a maximum
amplitude at 20 kHz of 16 Vrms, if the supply rails permitted it. I have never encountered
any particular difficulties with decoupling or stability of the OP27.

13.20 Opamp Selection

In audio work, the 5532 is pre-eminent. It is found in almost every mixing console,
and in a large number of preamplifiers. Distortion is very low, even when driving
600Ω loads. Noise is very low, and the balance of voltage and current noise in the
input stage is well-matched to low-impedance audio circuitry. Large-quantity production
has brought the price down to a point where a powerful reason is required to pick any
other device.

The 5532 is not, however, perfect. It suffers common-mode distortion. It has high bias and
offset currents at the inputs, as an inevitable result of using a bipolar input stage (for low
noise) without any sort of bias-cancellation circuitry.

With tiresome inevitability, the very popularity and excellent technical performance of the
5532 has led to it being savagely criticised by Subjectivists who have contrived to convince

Figure 13.29: OP27 THD in series feedback mode. The common-mode input distortion completely
obscures the output distortion.
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themselves that they can tell opamps apart by listening to music played through them. This
always draws a hollow laugh from me, as there is probably no music on the planet that has
not passed through a hundred or more 5532s on its way to the consumer.

In some cases, such as variable frequency crossover filters, bipolar-style bias currents
are a nuisance because keeping them out of pots to prevent scratching noises requires
the addition of blocking capacitors. JFET-input opamps have negligible bias currents and
so do not need these extra components, but there is no obviously superior device that is
the equivalent of the 5532 or 5534. The TL072 has been used in the EQ sections of
low-cost preamplifiers and mixers application for this purpose for many years, but its
HF linearity is poor by modern standards and distortion across the band deteriorates
badly as output loading increases. It is also more subject to common-mode distortion
than bipolar types. There are of course more modern JFET opamps such as the
OPA2134, but their general linearity is not much better and they also suffer from
common-mode distortion.

If you are looking for something better than the 5532, the newer opamps (LM4562,
LME49990, AD797) have definite advantages in noise performance. The LM4562 has almost
6 dB less voltage noise, while both the LME49990 and the AD797 are nearly 15 dB quieter,
given sufficiently low impedance levels. Both have better load-driving characteristics than the
5532. The LME49990 has really excellent load-driving capabilities but its CM distortion is
disappointingly high. The 3 dB noise advantage of the 5534A over the 5532 should not be
forgotten.

To summarise some related design points:

• The trade-off between noise and distortion-reducing circuit impedances will reduce noise
relatively slowly. The effect of opamp current noise is proportional to impedance, but
Johnson noise is proportional to square-root of impedance.

• Keep circuit impedances as low as possible to minimise the effect of current noise
flowing through them, and their Johnson noise. This will also reduce common-mode
distortion and capacitive crosstalk.

• If distortion is more important than noise, and you don’t mind the phase inversion, use
the shunt configuration.

• If noise is more important than distortion, or if a phase inversion is undesirable, use the
series configuration. In this case keeping circuit impedances low has an extra
importance as it minimises common-mode distortion arising in the feedback network.

• To minimise distortion, keep the output loading as light as possible. This of course runs
counter to the need to keep feedback resistances as low as possible.

• If the loading on a 5532/5534 output is heavy, consider using output biasing to reduce
distortion. If the improvement is sufficient, this will be cheaper than switching to a
more advanced opamp.
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CHAPTER 14

Active Crossover System Design

So far we have looked at the design of the functional blocks that go together to make an
active crossover. It is now time to look at putting them together into a complete system.
This involves not only selecting the optimal types of circuit block to perform the required
crossover functions, but also considerations about what order in which to place them in the
signal path, and what nominal signal levels to operate them at. This chapter also covers
minor crossover functions such as output level controls and channel muting switches.

14.1 Crossover Features

The actual crossover functions of filtering and equalisation make up the main part of a
crossover’s circuitry, but other functions are required to make a device that is practically
useful. Not all crossovers have all of them. They are as follows.

14.1.1 Input Level Controls

These allow varying incoming levels to be normalised to the nominal internal level of the
crossover. They frequently have a deliberately restricted gain range, typically not going
down to zero; they are not intended to be used as volume controls. As described later in this
chapter, better signal-to-noise performance can be obtained by using active gain controls
that actually vary the gain of an amplifier stage, as opposed to combinations of fixed-gain
amplifiers and variable passive attenuation. This often means designing a variable-gain
balanced input stage, which requires some subtlety if a good CMRR is to be obtained at all
gain settings. This issue is thoroughly explored in Chapter 16 on line inputs.

14.1.2 Subsonic Filters

High-pass filters used to stop subsonic signals and so protect loudspeakers. They are
typically of the second-order or third-order Butterworth (maximally flat) configuration,
rolling off at rates of 12 dB/octave and 18 dB/octave respectively. Fourth order 24 dB/octave
filters are less common, presumably due to worries about the possible audibility of rapid
phase changes at the very bottom of the audio spectrum; when they are used the cutoff
frequency is lower. There seems to be a general consensus that a third-order Butterworth
filter with a cutoff frequency around 20 to 25 Hz is the correct approach, though at least one
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manufacturer has used a fourth-order filter starting at 15 Hz. A third-order Butterworth filter
with a −3 dB cutoff at 20 Hz will be −18.6 dB down at 10 Hz, and −36.0 dB down at 5 Hz.
The 30 Hz response is down by −0.37 dB, and if you feel that is too much the filter cutoff
frequency can be moved down a little.

Subsonic filters are placed as early in the signal path as possible, typically immediately after
a balanced input amplifier. This is not so much to avoid the generation of intermodulation
distortion (which should be negligible at low frequencies in a decent opamp), but to prevent
headroom being eroded by large subsonic signals. Standard Sallen & Key filters are
normally used.

14.1.3 Ultrasonic Filters

These are also intended for speaker protection, in the event of HF instability somewhere
upstream in the audio system A typical ultrasonic filter would be a second-order Butterworth
with a cutoff frequency around 40 kHz; this will be only −0.24 dB at 20 kHz. If you feel that
is too much of an intrusion on the audio spectrum, moving the cutoff frequency up to 50 kHz
gives a 20 kHz loss of only −0.09 dB. Ultrasonic filters are rarely steeper than second-order,
presumably because of a fear that phase changes are more audible at the very top of the audio
spectrum than the very bottom. The ultrasonic filter may be placed just after the balanced
input amplifier to minimise HF intermodulation distortion in the following circuitry, or
alternatively placed only in the HF crossover path, the assumption being that the lowpass
filters in the LF and MID paths will very effectively remove any ultrasonic signals, and that it
is better to put as little of the audio spectrum as possible through as few stages as possible, to
minimise signal degradation. Standard Sallen & Key filters are commonly used.

The combination of a subsonic filter and an ultrasonic filter is often called a bandwidth
definition filter. There is much information on how to make them economically in Chapter 8.

14.1.4 Output Level Trims

Output level controls tend also to have a limited range; once again they are not intended to be
used as volume controls. Allowing for power amplifier gain variations in a nominally identical
set of power amplifiers may require as little as ±1 dB, but it is advisable to provide at least ±3
dB to allow for drive unit variations and ±6 dB is more usual. If the crossover is intended to
work with a wide range of power amplifiers of differing sensitivities the range may need to be
considerably greater than this. There is more on output level controls later in this chapter.

14.1.5 Output Mute Switches, Output Phase-Reverse Switches

These are also dealt with later in this chapter.
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14.1.6 Control Protection

Active crossovers are not some sort of glorified tone-control—they do a quite different job
and are meant to be carefully set up to match the power amplifiers and loudspeakers and
then left alone. They are not meant to be tweaked, twiddled, or frobbed by every casual
passer-by. It is possible to cause serious damage by maladjustment—if the highpass cutoff
frequency for the HF loudspeakers is adjusted radically downwards then expensive and
gig-cancelling damage is virtually a certainty.

It is therefore common to cover up crossover controls with a panel to prevent tampering;
this is sometimes called a “security cover.” This might be a substantial piece of clear plastic
(the look-but-don’t-touch approach) or a solid piece of metal, which is more robust against
impact. It is usually fixed with so-called “security screws” but since you can buy sets of
drivers for those very easily we’re not exactly talking Fort Knox here.

14.2 Features Usually Absent

There are also some features that, while appearing in many kinds of audio equipment, are
rarely if ever found in active crossovers. These include the following.

14.2.1 Metering

Active crossovers are not usually fitted with comprehensive level metering, as the assumption
is that they will be installed in some secluded spot where a visual display will not be seen.
Peak detect or clip-detect indicators can however be useful if there is a possibility of internal
clipping. These are dealt with later in this chapter. Signal-present indicators, that illuminate
some way below the nominal signal level, (often at −20 dB) can be useful for fault-finding.

14.2.2 Relay Output Muting

Active crossovers are not normally expected to have relay output muting, the function of
which is to avoid sending out unpleasant transients at power-up and power-down. Since
there are likely to be six outputs, probably balanced, the extra cost of six good-quality
two-changeover relays is significant. In sound-reinforcement work putting mute relays
on every piece of equipment is very much not favoured as they present one more place
for things to go wrong and stop the signal. Thump suppression is normally considered
to be the job of the power amplifier output muting relays, which must always be fitted
as one of their most important functions is protection of the loudspeakers from DC fault
conditions.

Manual mute switches for each output are however often fitted to sound reinforcement
crossovers to simplify checking and fault finding.
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14.2.3 Switchable Crossover Modes

Crossovers intended for sound reinforcement are often constructed so they can be used in
several different modes. Figure 14.1 shows the block diagram of a stereo 2-way crossover
that can be switched to act as a mono 3-way crossover, or as a 2-way crossover with a
single mono LF output for a subwoofer. Alternatively, a crossover might be switchable
between stereo 2-way and mono 3-way crossover, with a wholly separate mono subwoofer
output always available.

Figure 14.1 has the mode switches in the normal stereo 2-way crossover position, and 2-way
outputs are obtained as shown in the left column of the text in Figure 14.1. If the 2-way/
3-way switch is operated then the Right input is not used, and the input to the Right filter
block now comes from the highpass output of the Left filter block. If the Left filter block
is set to the LF/MID crossover frequency, and the Right filter block set to the MID/HF
crossover frequency, 3-way outputs are obtained as shown in the middle column of the text
in Figure 14.1. This kind of mode switching requires a very wide range of filter frequency
variation, as the filter block must be able to cover both LF/MID and MID/HF crossover
points.

For mono-sub operation the 2-way/3-way switch is left in its normal position, and the
mono-sub switch operated instead. This causes the Left LF output to be fed with the mono
sum of the two LF outputs from the filter blocks. The Right LF output is not used. In this
case the Left and Right filter blocks are set to the same frequency—the crossover point

Left In

Input amp

Highpass

Highpass
Mono
3-wayRight In

Input amp Stereo
2-way

Frequency
50 Hz–4 kHz

Frequency
50 Hz–4 kHz

Lowpass

Lowpass

Normal

Mono sub
Output amp

Output amp

Output amp

Output amp

HF left

HF right

LF left

LF right

LF

HF

MID

HF right

Not used

Not used HF left

LF mono

Stereo
2-way

Mono
3-way

Mono
sub

Figure 14.1: Mode-switching in an electronic crossover: it can be used as a stereo 2-way crossover,
a mono 3-way crossover, or a 2-way crossover with a mono subwoofer output.
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between the two HF outputs and the single LF output. The summing function has to be
implemented carefully if crosstalk between the two channels feeding it is to be avoided.

Each filter block is shown with a single frequency control to emphasise that the cutoff
frequencies of the highpass and lowpass sections move together; this is usually implemented
with a state-variable filter (SVF) that simultaneously gives highpass and lowpass outputs.

More complex mode switching schemes are possible. A stereo 3-way crossover could be
switchable to work as a mono 4-way or 5-way crossover. This is all very ingenious, but it
does require a lot of complicated switching and a very clear head when you are setting up
all those crossover frequencies.

Manufacturers often warn that mode switches should not be operated while the whole
system is active, stating that this can lead to damaging transients; presumably they are
worried that you might get an excessive level you don’t expect, rather than concerned about
minor DC clicks.

14.3 Noise, Headroom, and Internal Levels

The choice of the internal signal level in a piece of audio equipment is a serious matter, as
it controls both the signal-to-noise ratio and the headroom available before clipping occurs.
A vital step in any design is the determination of the optimal signal level at each point in
the circuit; there is no reason why you have to stick to the same level in every section.
Obviously a real signal, as opposed to a test sinewave, continuously varies in amplitude,
and the signal level chosen is purely a nominal level. One must steer a course between
two evils:

1. If the signal level is too low, it will be contaminated unduly by noise. The absolute
level of noise in a circuit is not of great significance in itself—what counts is how
much greater the signal is than the noise—in other words the signal to noise ratio.

2. If the signal level is too high there is a risk it will clip and introduce severe distortion.

You will note that the first evil is a certainty, while the second is a statistical risk.

The wider the gap between the noise level and the clipping level, the greater is the
dynamic range. If the best possible signal-to-noise is required for hi-fi use, then the internal
level should be high, and if there is an unexpected overload it’s not the end of the world.
In sound-reinforcement applications it will often be preferable to use a lower internal level,
sacrificing some noise performance to reduce the risk of clipping. Heavy clipping, which in
an active-crossover system can be surprisingly hard to detect by ear, is likely to imperil HF
speaker units, though not for the frequently quoted but quite untrue reason that extra
harmonics are generated; the real problem is the general rise in level [1]. Later in this
chapter we will look at some ways of detecting and indicating clipping.
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The internal levels chosen depends on the purpose of the equipment. For example,
suppose you are designing a mixing console. If it is intended for studio recording you
only have to get the performance right once, but you do have to get it exactly right, that
is, with the best possible signal-to-noise ratio, so the internal level is relatively high, very
often −2 dBu (615 mV rms), which gives a headroom of about 24 dB. If it is intended for
broadcast work to air you only have one chance to get it right, and a mildly impaired
signal-to-noise ratio is much acceptable than a crunching overload, so the internal levels
need to be significantly lower. The Neve 51 Series broadcast consoles used –16 dBu
(123 mV rms), which gives a much increased headroom of 38 dB. Apart from this
specialised application, general audio equipment might be expected to have a nominal
internal level in the range −6 dBu (388 mV rms) to 0 dBu (775 mV rms) with −2 dBu
probably being the most popular choice.

If you have a given dynamic range and you’re not happy with it, you can either increase the
maximum signal level or lower the noise floor. The maximum signal levels in opamp-based
equipment are set by the voltage capabilities of the opamps used, and this usually means a
maximum signal level of about 10 Vrms or +22 dBu. Discrete transistor technology removes this
absolute limit on supply voltage, and allows the voltage swing to be at least doubled before the
supply rail voltages get inconveniently high. For example, +/−40 V rails are quite practical for
small-signal transistors and permit a theoretical voltage swing of 28 Vrms or +31 dBu. However,
in view of the complications of designing your own discrete circuitry, and the greater space and
power it requires, the extra 9 dB of headroom is bought at a high price. You will need a lot more
PCB area, and of course the knowledge of how to design discrete transistor stages. My book,
Small Signal Audio Design, will be of help with the latter [2]. If you are using high signal levels
like 28 Vrms you may need to consider what will happen if they are applied to opamp circuitry.

A current example of a crossover with all discrete circuitry in the signal path is the
Bryston 10 B [3].

14.4 Circuit Noise and Low-Impedance Design

Increasing the dynamic range by reducing the noise levels in the circuitry is more practical
(and in general a good deal cheaper) than increasing the nominal level, but there are some quite
restrictive limits on how much you can do this. Adopting Low-Impedance Design—in other
words using the lowest resistor values you can without creating extra distortion by overloading
the opamps—will reduce the Johnson noise the resistors generate. It also makes the circuit
more immune to capacitive crosstalk and interference pick-up. However, Johnson noise is
proportional to the square-root of the resistance, and so moving from 10 kΩ to 1 kΩ will only
reduce the noise by 10 dB (√10 times) rather than 20 dB (10 times). A reduction of 10 dB is
nevertheless very well worth having. Things get more difficult if you want to reduce the
impedance levels further, as opamp distortion will start to increase due to the heavier loading.
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This can be countered by using opamps in parallel to increase the drive capability, assuming
you’re not designing to the absolute minimum cost. Two opamps working together allow
the circuit impedances to be halved, giving us another 3 dB improvement, while four opamps
allow them to be halved again, giving 6 dB less noise. This is going to be about as far as it is
economical to go unless you’re designing really gold-plated gear, so we have a possible
Johnson noise improvement from Low-Impedance Design of 16 dB.

Johnson noise is, however, only one component of the circuit noise, the other two important
contributions coming from the voltage noise and the current noise of the active devices.
Reducing the circuit impedances reduces the effect of current noise—proportionally this time,
as the current noise only manifests itself when it causes a voltage drop across an impedance.
Voltage noise is a tougher proposition to reduce, the options being a) shell out for quieter and
more expensive active devices; or b) make use of opamps in parallel again. If two opamp
stages of the same gain are connected together by low-value resistors (say 10Ω) then at their
junction you get the average of the two outputs, so the signal level is unchanged, but the noise
drops by 3 dB (1/√2) as the two noise components are uncorrelated and so partially cancel. Four
opamp stages give a 6 dB improvement. This technique obviously goes extremely well with
using opamps in parallel to allow circuit impedance reduction, and can make for some very neat
and effective circuitry.

14.5 Using Raised Internal Levels

When setting the internal levels of an active crossover a great deal depends on the way that
it is going to built into the overall system. If the crossover is running directly into a power
amplifier with no intermediate level control, it can be guaranteed that the output of the
power amplifier will clip long before the crossover outputs, as even the most insensitive
amplifiers are unlikely to need more than +8 dBu (2 Vrms) to drive them fully. It therefore
occurred to me that it would be quite safe to raise the crossover internal level to 2 Vrms,
which would theoretically give a 10 dB better signal-to-noise than the often-used −2 dBu
level. That is a significant improvement.

As an example, look at Figure 14.2a, where the crossover is operating with an internal level
of 0 dBu throughout, which is also the input required by the power amp. Only one of the
paths through the crossover is shown. There is a unity-gain input amplifier A1 which has an
equivalent input noise level of −100 dBu. (The input signal is assumed to be completely
noise-free; keeping down the noise level from the preamplifier is someone else’s problem.)
The filters, etc. of the crossover have a noise level of −85 dBu, and when this is summed
with the −100 dBu from A1 we get −84.9 dBu at the crossover output; the noise from A1
makes only a tiny contribution. The signal is then passed directly to the power amplifier,
and our signal-to-noise ratio is 84.9 dB.
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An elevated internal level +8 dBu (2 Vrms) is used in Figure 14.2b, input amplifier A1 having
a gain of +8 dB. The noise out from A1 is now −92 dBu, and with the −85 dBu of noise from
the crossover filters added the total is −84.2 dBu. A passive 8 dB output attenuator R1, R2
then reduces the signal level back to the 0 dBu required by the power amplifier, and the noise
is also reduced by 8 dB, giving us −92.5 dBu at the amplifier input. The signal-to-noise ratio
has therefore increased from 84.9 dB to 92.5 dBu, an improvement of 7.6 dBu. We do not get
the whole 8 dB because of the increased noise from input amplifier A1.

An elevated internal level not only makes the signal more proof against noise as it passes
through the signal chain, but also against hum and other interference, though a good design
should have negligible levels of these anyway.

You will note that I specified a passive output attenuator, so that the very low noise output is
not compromised by an opamp stage after it. The attenuation can be made variable to give an
output level trim control, working over perhaps a ±3 dB range. Given opamps with good
load-driving capability, it is possible to make the passive attenuator with low resistance values
so the output impedance is still acceptably low for driving long cables. The attenuator values
shown in Figure 14.2b give an output impedance of 166Ω, which is not perhaps to the
highest professional standards but quite good enough for a domestic installation with limited
cable runs. The load on the last opamp in the crossover is 700Ω, which is high enough to
prevent significantly increased distortion from a 5532 stage. There is more on such output
networks, and how they can be combined with balanced outputs, later in this chapter.

There is an assumption here that the crossover is mostly composed of unity-gain circuitry
such as the standard Sallen & Key filters. This is not always true—if you are using equal-C
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Figure 14.2: Gain structure for the preamplifier-crossover-power amplifier chain: (a) internal
crossover level of 0 dBu gives an S/N ratio of 84.9 dB; (b) raising the internal level to +8 dBu gives

an S/N ratio of 92.5 dB, an improvement of 7.6 dB.
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Sallen and Key Butterworth filters then each second-order stage has a gain of +4.0 dB,
and this will have to be dealt with somehow. Equalisation circuitry may have gains greater
than this at some frequencies, with a corresponding reduction in headroom; this applies
particularly to equalisers intended to extend the LF speaker unit response, which may have
gains of +6 dB or more.

However, let’s take it a little further. If our power amplifier clips with an input of 0 dBu,
which corresponds to a crossover internal level of +8 dBu (2 Vrms), then as far as the
crossover is concerned there is a range of signal levels from 2 Vrms to 10 Vrms (opamp
maximum output) that is unusable. That is a 14 dB range. The effective signal-to-noise ratio
could be further improved if that the crossover ran at a still higher level, say 5 Vrms (we
want to keep a little safety margin). With the signal more heavily attenuated at the output to
reduce it to 0 dBu; the internal crossover signals would then be another 8 dB higher, and we
should now get some 16 dB more signal-to-noise ratio than with the 0 dBu internal level.

If there are full-range level controls between the crossover outputs and the power amplifiers,
to allow level trimming, then the operator may unwisely set them for a considerable degree
of attenuation; they will probably then crank up the input into the crossover to compensate,
so there is now a higher nominal level in the crossover to obtain the same final output
level. This means that the headroom in the crossover is reduced and the option of running
it at a deliberately elevated internal level to improve the signal-noise ratio now looks less
attractive. The question here is whether the noise performance should be compromised by
increasing the headroom to allow for maladjustment.

14.6 Placing the Output Attenuator

Let’s stick for the moment with the situation that there are no full-range level controls on
the power amplifiers, just an output level trim on the crossover as described above. We
therefore have our passive attenuator at the crossover outputs. The signal has therefore
been brought back down to something of the order of 1 Vrms before it passes along the
interconnection between crossover and power amplifier. However, if the attenuator is placed
at the destination end of the interconnect cable, as in Figure 14.3a, any hum and interference
picked up because of currents flowing through the cable ground will also be attenuated.

Ideally the output attenuator should be actually inside the power amplifier, as in Figure 14.3b,
as this would also deal with any voltages caused by ground current flowing through the
connector earth pins, but this requires a specialised amplifier design which would have a low
input impedance, and low overall gain. Its input parameters would have to be defined by a
Domestic Electronic Crossover Standard and unless there was some sort of input switching it
would not be usable as an ordinary power amplifier. A better idea is to put the attenuator
inside the connector that plugs into the power amp.
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By now you are probably thinking: “Why not use a balanced interconnection? They are
designed to discriminate against ground voltages,” which is of course absolutely correct.
However, if you peruse the chapter on line inputs and outputs, you will note that a practical
real-life balanced input has a fairly modest Common-Mode Rejection Ratio (CMRR) of the
order of 40 to 50 dB, and the most straightforward way of improving that is to have a preset
CMRR trim. On a six-channel amplifier that is six adjustments to make, and while they are
set-and-forget adjustments, this won’t appeal to all manufacturers. Putting the passive
attenuator at the power-amplifier end of the cable gives another 10 to 16 dB of immunity
against ground noise on top of the basic CMRR. This plan obviously makes for a more
complicated cable but it may be worth it, because ground-loop problems are a never-ending
cause of distress in the audio business.

14.7 The Amplitude/Frequency Distribution of Musical Signals and
Internal Levels

In considering the headroom requirements, it is important to remember that the signal levels
in the HF, MID, and LF bands of the typical crossover are very different. The energy in the
HF band is much lower, and this prompts me to suggest the possibility of running the HF
channel at a higher nominal level than the others so noise performance can be improved
without significantly compromising headroom. This is particularly appropriate for the HF
channel because it contains no low-pass filters and therefore may be expected to have a
higher noise output.

So, how much should the HF channel level be raised? Statistics on the distribution of amplitude
with frequency are surprisingly hard to find, given how fundamental this information is to
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audio design; some information is given in [4] but it is not presented in an very convenient
form for our purposes. A good source is Greiner and Eggars [5] who derived a lot of
statistical data from 30 CDs of widely varying musical genres. The data is presented as the
level in each of ten octave bands which is exceeded 90% of the time, 50% of the time,
10% of the time, and so on. This is a great deal of very useful information, but it does not
directly tell us what we want to know, which might be phrased as: “If I have a 3-way system
with crossover frequencies at 500 Hz and 3 kHz, how much level can I expect in each of the
three crossover bands?” Greiner and Eggars do however at the end of their paper summarise
the spectral energy levels in each octave band, which is more useful. See Table 14.1, which
gives the levels in dB with respect to full CD level, for eight different musical genres, and
the average of them all. The frequencies are the centres of the octave bands. Note that the
results are from 1989, before the so-called ‘Loudness Wars’ in CD mastering broke out.

Figure 14.4 shows how the average levels are distributed across the audio band. The
maximal levels are the region 100−2 kHz, with roll-offs of about 10 dB per octave at each
end of the audio spectrum.

What we have to do now is decide which of the octave bands fit into our crossover bands,
and sum the levels in those bands to arrive at a composite figure for each crossover band.
A puzzling difficulty is to decide how to sum them—should they be treated as correlated
(so two −6 dB levels sum to 0 dB) or uncorrelated (two −3 dB levels sum to 0 dB)? At first
it seems unlikely that there would be much correlation between the octave bands, but on the
other hand harmonics from a given musical instrument are likely to spread over several of
them, giving some degree of correlation. I tried both ways, and for our purposes here the
results are not very different.

Let’s assume that our LF crossover band includes the bottom four octave bands (31.5 to
250 Hz), the MID crossover band includes the middle three octave bands (500 Hz to 2 kHz)
and the HF crossover band includes the top three octave bands (4 kHz to 16 kHz).

Table 14.1: Spectral Energy Levels in Octave Bands for Different Genres, in dB
(After Greiner and Eggars)

Octave Centre Hz 31.5 63 125 250 500 1 K 2 K 4 K 8 K 16 K

Piano B −63 −47 −34 −28 −27 −33 −38 −46 −58 −63
Organ A −32 −30 −29 −31 −30 −29 −32 −37 −50 −69

Orchestra B −34 −33 −29 −29 −28 −30 −32 −39 −48 −58
Orchestra C −26 −26 −30 −32 −32 −33 −35 −38 −45 −54

Chamber music −78 −62 −45 −39 −41 −46 −49 −51 −65 −78
Jazz A −48 −36 −33 −31 −29 −27 −29 −32 −39 −49
Rock A −39 −35 −34 −32 −31 −32 −30 −36 −48 −57

Heavy metal −45 −31 −27 −27 −33 −37 −31 −29 −36 −46
AVERAGE −45.6 −37.5 −32.6 −31.1 −31.4 −33.4 −34.5 −38.5 −48.6 −59.3
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Uncorrelated summing gives us Table 14.2, where the actual levels in each crossover band
are on the left, and the relative levels of the MID and HF bands compared with the LF band
are in the two columns on the right.

Looking at the bottom line. the average of all the genres, we see that in general the MID
crossover band will have similar levels in it to the LF crossover band. This is pretty much
as expected, though it’s always good to have confirmation from hard facts. We also see that
the average HF level is a heartening 11 dB below the other two crossover bands, so it looks
as if we could run the HF channel at an increased level, say 10 dB, and get a corresponding
improvement in signal-to-noise ratio.
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Figure 14.4: Average spectral levels in musical signals from CDs (after Greiner and Eggars).

Table 14.2: Uncorrelated Sums of Levels in the Three Crossover Bands, HF Band= Top Three
Octaves. The Two Columns on the Right Are Levels Relative to the 31.5–250 Hz LF Band

Octave
Centre Hz

LF dB
31.5−250

MID dB
500−2 K

HF dB
4 K−16 K

MID dB 500−2 K
Relative to LF

HF dB 4 K−16 K
Relative to LF

Piano B −27.0 −25.8 −45.7 1.2 −18.7
Organ A −24.3 −25.4 −36.8 −1.1 −12.4

Orchestra B −24.7 −24.9 −38.4 −0.3 −13.8
Orchestra C −21.8 −28.4 −37.1 −6.6 −15.4

Chamber music −38.0 −39.3 −50.8 −1.3 −12.8
Jazz A −28.1 −23.5 −31.1 4.6 −3.1
Rock A −28.3 −26.2 −35.7 2.2 −7.4

Heavy Metal −23.2 −28.3 −28.1 −5.1 −5.0
AVERAGE −26.9 −27.7 −38.0 −0.8 −11.1
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However… look a little deeper than the average. Table 14.2 shows that the HF level is
significantly lower in all cases except for “Heavy Metal” where the MID and HF levels
are the same. This is so unlike all the other data that I am not convinced it is correct. It
looks as though we could indeed run the HF channel a good 10 dB hotter if it were not
for the existence of Heavy Metal—a sobering thought.

If we change our assumptions, moving the upper crossover frequency higher so that the
MID crossover band now includes the middle four octave bands (500 Hz to 4 kHz) and the
HF crossover band includes only the top two octave bands, (8 kHz and 16 kHz) then things
look rather better. Uncorrelated summing now gives us Table 14.3, where the HF levels are
now down by some 20 dB with respect to the LF and MID channels. Now even Heavy
Metal can have the level in the HF path pumped up by 10 dB.

Nevertheless, what we can only call The Heavy Metal Problem is messing up the nice clear
results from this study. The HM track used by Greiner and Eggars is only identified as
“Metallica” but a little detective work revealed it to be the track “Fight Fire with Fire” from
the CD “Ride The Lightning.” I am listening to it as I write this, and I cannot honestly say
that the HF content is obviously greater than that of the normal run of rock music. Are we
justified in regarding this Heavy Metal data as an outlier that can be neglected? Hard to say.

At this point the only conclusion can be that you can run the HF channel hotter, but how
much depends on where the upper crossover point is. If it is around 3 kHz then elevating
the HF channel level by 6 dB looks pretty safe, and this is the value adopted in my
crossover design example in Chapter 19.

Another area where the distribution of amplitude with frequency is important is that of
transformer-balanced input and outputs. Transformers are notorious for generating levels of
third-harmonic distortion that rise rapidly as frequency falls. It is fortunate that Table 14.1
above shows that in almost all cases (church organ music being a notable exception) the signal

Table 14.3: Uncorrelated Sums of Levels in the Three Crossover Bands, HF Band= Top Two
Octaves. The Two Columns on Right Are Levels Relative to the 31.5–250 Hz LF Band

Octave
Centre Hz

LF dB
31.5−250

MID dB
500−4 K

HF dB
8 K−16 K

MID dB 500−4 K
Relative to LF

HF dB 8 K−16 K
Relative to LF

Piano B −27.0 −25.7 −56.8 1.3 −29.8
Organ A −24.3 −25.1 −49.9 −0.8 −25.6

Orchestra B −24.7 −24.8 −47.6 −0.1 −22.9
Orchestra C −21.8 −27.9 −44.5 −6.2 −22.7

Chamber music −38.0 −39.0 −64.8 −1.0 −26.8
Jazz A −28.1 −22.9 −38.6 5.2 −10.5
Rock A −28.3 −25.7 −47.5 2.6 −19.2

Heavy metal −23.2 −25.6 −35.6 −2.4 −12.4
AVERAGE −26.9 −27.1 −48.2 −0.2 −21.2
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levels in the bottom audio octave are roughly 10–12 dB lower than the maximum amplitudes,
which occur in the middle octaves. This reduces the transformer distortion considerably.

14.8 Gain Structures

There are some very basic rules for putting together an effective gain structure in a piece
of audio equipment. Breaking them reduces the dynamic range of the circuitry, either by
raising the noise floor or lowering the headroom. Three simple rules are:

1. DON’T AMPLIFY THEN ATTENUATE. It is all too easy to thoughtlessly add a bit
of gain to make up for a loss later in the signal path, and immediately a few dB of precious
headroom are gone for good. This assumes that each stage has the same power rails and
hence the same clipping point, which is usually the case. Figure 14.5a shows a fragment of
a system with a gain control designed to have +10 dB of gain at maximum. There is
assumed to be no noise at the input. A and B are unity gain buffers and each contributes
−100 dBu of its own noise; Amplifier 1 has a gain of +10 dB and an EIN of −100 dBu.
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Figure 14.5: Gain structures: (a) Amplification then attenuation. Amplifier 1 always clips first,
reducing headroom; (b) Attenuation then amplification. Noise from Amplifier 1 degrades the
S/N ratio at low gain settings. Noise levels along the signal path indicated by arrows; signal

levels are underlined.
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The expectation is that the level control will spend most of its time set somewhere near the
“0 dB” position where it introduces 10 dB of attenuation. To keep the nominal signal level
at 0 dBu we need 10 dB of gain, and Amplifier 1 has been put before the gain control. This
is a bad decision, as this amplifier will clip 10 dB before any other stage before it in the
system, and this introduces what one might call a headroom bottleneck. On the positive
side, the noise output is only ‒96.8 dBu, because the signal level never falls below 0 dBu
and so is relatively robust against the noise introduced by the stages.

2. DON’T ATTENUATE THEN AMPLIFY. Since putting our 10 dB of amplification
before the gain control has disastrous effects on headroom, it is more usual to put it
afterwards, as shown in Figure 14.5b. Now noise performance rather than headroom
suffers; the amount of degradation depends on the control setting, but as a rule it is much
more acceptable than a permanent 10 dB reduction in headroom. The signal-to-noise ratio
is impaired for all gain control settings except maximum; if we dial in 10 dB of attenuation
as shown then the signal reaching Amplifier 1 is 10 dB lower, at −10 dBu. The noise
generated by Amplifier 1 is unchanged, and almost all the noise at its output is its own
EIN amplified by 10 dB. This is slightly degraded by the noise of block B to give a final
noise output of −89.2 dBu, worse than Figure 14.5a by 7.6 dB. If there are options for the
amplifier stages in terms of a noise/cost trade-off and you can only afford one low-noise
stage then it should clearly be Amplifier 1.

3. AMPLIFY AS SOON AS POSSIBLE. Get the signal up to the nominal internal level as
soon as it can be done, preferably in the first stage, to minimise its contamination with
noise from later stages. Consider the signal path in Figure 14.6a, which has a nominal
input level of ‒10 dBu and a nominal internal level of 0 dBu. It has an input amplifier
with 10 dB of gain followed by two unity-gain buffers A and B. As before, all circuit
stages are assumed to have an Equivalent Input Noise level of −100 dBu, and the
incoming signal is assumed to be entirely noise free. The noise output from the first
amplifier is therefore −100 dBu + 10 dB = −90 dBu. The second stage A adds in
another −100 dBu, but this is well below −90 dBu and its contribution is very small,
giving us −89.6 dBu at its output. Block B adds another −100 dBu, and the final noise
output is −89.2 dBu.

Compare that with a second version of the signal path in Figure 14.6b, which has an input
amplifier with 5 dB of gain, followed by block A, a second amplifier with another 5 dB of
gain, then block B. The signal has received exactly the same amount of gain, but the noise
output is now 1.7 dB higher at −87.5 dB, because the signal passed through block A at
−5 dBu rather than 0 dBu. There is also an extra amplifier stage to pay for, and the second
version is clearly an inferior design.

An even worse architecture is shown in Figure 14.6c, where both the two unity-gain blocks,
A and B are now ahead of a +10 dB amplifier. The low-level signal at −10 dBu is now
more vulnerable to the noise from block B, and the output noise is now −85.2 dBu, 4.0 dB
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worse than the optimal arrangement in Figure 14.2a where all the amplification is placed at
the start of the signal path.

In active crossover design the problem is not usually quite so marked as in the examples
above, because any level controls are usually trims rather than full-range volume controls, but
the principles still stand. Let us examine a typical scenario; assume that you want to make a
fourth-order Linkwitz–Riley filter, and you are planning to use two cascaded second-order
Sallen and Key Butterworth filters of the equal-C type to make component procurement
simpler. For a second-order Sallen and Key filter to be equal-C the stage gain has to be 1.586
times (+4 dB) and when you cascade two to make the fourth-order Linkwitz–Riley filter you
have a total gain of 2.5 times (+8 dB) to deal with. There are three possibilities:

Firstly, you can attenuate the signal by 8 dB before the filters, but the low level in the first
filter will almost certainly degrade the noise performance.
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Figure 14.6: Why you should amplify as soon as possible: (a) All amplification in first stage gives best
noise performance of −89.2 dBu; (b) Amplification split over two stages. Noise from Stage A

degrades the S/N ratio; (c) Amplification late in chain. Now both Stages A and B degrade the S/N
ratio. Noise levels indicated by arrows; signal levels are underlined.
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Secondly, you can attenuate the signal by 8 dB after both filters, but now there are higher
signal levels, in particular 8 dB higher at the output of the second filter, and headroom
problems may occur at this point.

Thirdly, and usually best, is some compromise between these two extremes. For example,
putting 4 dB of attenuation after the first filter, and then another 4 dB of attenuation after the
second filter will reduce the headroom problems by 4 dB. Alternatively, putting 4 dB of
attenuation before the first filter, followed by 4 dB of attenuation after it, will reduce the
noise contribution of the first stage.

The aforegoing assumes you do not need to add buffers between the attenuators and the
filters to give the latter a low source impedance. There is some useful information on
avoiding buffers and economically combining attenuators with filters in Chapter 8.

If you are seeking the best possible performance, then probably your best option is to not use
Sallen and Key equal-C filters in the first place, but stick to the more usual unity-gain sort.

14.9 Noise Gain

Before we dig deeper into the details of getting the cleanest possible signal path, we need to
look at the concept of noise gain. Figure 14.7 shows two inverting stages, both with unity
gain. The only difference is the presence of an innocent-looking resistor R3 in the (b) version
of the circuit. Since the inverting input of the opamp is at virtual ground (i.e., it has a
negligible signal voltage on it but is not actually connected to ground) because of the very
high negative feedback factor, the gain will be very nearly exactly equal to ‒1 for both
circuits. So they are functionally identical? No indeed. The (b) version will be 3.5 dB noisier,
simply because R3 is lurking in there.

This is nothing to do with Johnson noise from R3, which I have ignored; even if R3 was
some sort of magical resistor with no Johnson noise (which is not possible in this universe),
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R1 R1
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A1 A1

Out Out

Noise gain 6.0dB

(a)

Noise gain 9.5dB

(b)

1 K 1K
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+ +
− −

Figure 14.7: Demonstration of the concept of noise gain: (a) Unity-gain inverting stage with noise
gain of 6.0 dB; (b) Unity-gain inverting stage with noise gain of 9.5 dB.
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the (b) version would be 3.5 dB noisier. This is because although it has the same signal
gain, it has a higher noise gain.

Opamp voltage noise is accurately modelled by assuming a noiseless opamp and putting a
voltage noise generator between the two inputs. (I am also ignoring current noise as it has
negligible effects with low resistances like those shown.) One side of this generator is
grounded via the non-inverting input, and as far as the opamp is concerned the stage input is
also effectively at ground because it is fed from a low source impedance. Therefore, as far as
noise is concerned, we have not an inverting amplifier, but a non-inverting amplifier, with the
noise generator as the input and R1, R2 in Figure 14.7a as the feedback network. R1 equals
R2 so the gain from noise generator to output is 2 times; (+6 dB) thus Figure 14.7a has unity
gain for signal but 6 dB of gain for its own noise.

For Figure 14.7b the story is different; so far as noise is concerned the upper arm of the
feedback network is unchanged, but the lower arm now consists of two equal resistors so
their combined resistance is half the value, and the gain from noise generator to output is
3 times (+9.5 dB).

When concocting amplifier circuits you should always be aware of the possibility of accidentally
building in R3 or some less obvious equivalent. Noise gain is a really major issue in mixing
consoles where the large number of mix resistors feeding the virtual earth summing bus [6] are
effectively in parallel and represent a very low value for R3; a 32-input console mix system has
a noise gain of +30.4 dB, and you can see why summing amplifiers with the lowest possible
noise are required. In active crossovers noise gain issues are most likely to arise in equaliser
circuits such as the bridged-T and the biquad equaliser; see Chapter 11.

14.10 Active Gain-Controls

So far we have dealt only with combinations of fixed-gain amplifiers and passive attenuation
controls, and we have seen that either noise performance or headroom must be compromised
when a gain-control function is included in the signal path. If, however, we move beyond the
idea of a fixed-gain amplifier this compromise can be to a large extent avoided. If we have an
amplifier stage with variable gain, we can set it to give just the gain we want and no more.
Using less gain when the maximum is not required will reduce the noise generated compared
with a fixed-gain amplifier placed after a level control, because the fixed-gain amplifier has to
have the maximum gain required, and is hissing away all the time with no following level
control to turn it down.

Simply making a stage with variable gain is straightforward; you just vary the amount of
negative feedback. Achieving a given gain law requires a little more thought (see Chapter 16
on line inputs). In a crossover it will not normally be necessary for the gain to be variable
right down to zero, as it would be for a preamplifier volume-control [7].
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Another advantage of active gain controls is that they can give much better channel balance
by eliminating the uncertainties of log pots. The Baxandall active gain configuration gives
excellent channel balance as it depends solely on the mechanical alignment of a dual linear
pot- all mismatches of its electrical characteristics are cancelled out, and there are no quasi-
log dual slopes to cause heartache [8].

To demonstrate the advantages of active gain controls, take a look at Figure 14.8. The
circuit at (a) is a conventional passive level control followed by a +10 dB amplifier
stage. At (b) is an active gain control also giving a maximum of +10 dB gain. In this
case we have a shunt-feedback circuit that can be adjusted all the way down to zero gain
but that is not an essential feature. If we assume both opamps have the same voltage
noise (the actual level does not matter) and neglect current noise and Johnson noise,
which make little contribution with such low impedances, then it is straightforward
to calculate the signal-to-noise (S/N) ratio for each circuit. This is expressed as the
difference between the two circuits in Table 14.4, since this makes the actual signal level
irrelevant. The level control setting is recorded as dB down from fully up, whatever the
maximum gain.

The S/N advantage of the active gain control is greatest at intermediate and low level
settings, and this advantage increases as the maximum gain increases. However, with the
circuits we have selected to look at here, when the control is actually set near or at
maximum gain, the S/N is actually marginally worse. This is because the noise gain of
Figure 14.8b is always one times more than the signal gain, because of its shunt feedback
configuration, whereas for Figure 14.8a the signal gain and noise gain are always equal. The
higher the maximum gain required, the less significant this effect is; for 20 dB max gain
with the control fully up the active version is 0.8 dB noisier, but backing it off by only 1 dB
reverses the situation and the passive version is now 0.1 dB noisier. At lower control
settings the advantage of the active version increases rapidly, being a very useful 7.6 dB at
the −10 dB setting, and asymptotically increasing to 20 dB.
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Figure 14.8: Passive and active gain controls, both with a maximum gain of +10 dB.
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If we compare our active stage not with the “passive control then amplifier” structure of
Figure 14.8a, but with the rather impractical “amplifier first then passive gain control” of
Figure 14.5a, the active noise performance is inferior at low gain settings because the noise
gain of the shunt feedback stage cannot fall below unity, whereas a final passive control can
attenuate the noise fed to it indefinitely. However, as we have seen, “amplifier first then
passive gain control” is rarely if ever a good choice in system design because of the
crippling loss of headroom. There is never any issue of reduction of headroom with the
active gain control as only the amount of gain required is actually in use.

Whenever you need a level control you should carefully consider the possibility of using
active gain control circuitry.

14.11 Filter Order in the Signal Path

The audio performance is affected by the order in which filters and other circuit blocks are
placed. If you have lowpass filters in a signal path then put them last, then they will
attenuate noise from the other circuit blocks ahead of them.

A an example of this, Figure 14.9 shows a typical crossover MID path composed of fourth-order
Linkwitz–Riley lowpass (400Hz) and highpass (3 kHz) filters. Each Linkwitz–Riley filter is made
up of two identical second-order Butterworth filters; note that “2× 47 nF” means two 47 nF
capacitors in parallel. The lowpass filters are here placed before the highpass filters in the signal
path. The noise levels in the signal path were measured and the results are shown in Figure 14.10.

Table 14.4: The S/N Improvement with an Active Gain Control for Various Maximum Gains

S/N Ratio Compared with Passive Circuit in Fig 14.8a

Max Gain= 10 dB 15 dB 20 dB

Level Control
dB dB dB dB

0 −2.4 −1.4 −0.8
−1 −1.6 −0.6 0.1
−2 −0.9 0.2 1.0
−5 1.1 2.6 3.6
−7 2.4 4.1 5.2

−10 4.0 6.1 7.6
−20 7.6 11.1 14.0
−30 9.2 13.6 17.6
−40 9.7 14.5 19.2
−50 9.9 14.8 19.7
−60 10.0 15.0 19.9
−70 10.0 15.0 20.0
−80 10.0 15.0 20.0
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The order of the filters was then reversed so the lowpass filters came at the end of the chain,
and Figure 14.10 shows that we reduce the noise by 1.1 dB by this simple change. I do not
pretend this is a radical improvement, but it has the advantage that it costs absolutely nothing.
If there is more circuitry in the signal path than just the crossover filters, such as frequency/
amplitude equalisers or delay-compensation allpass filters, these should also be placed
upstream of the lowpass filters, and the improvement in noise performance will be greater as
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Figure 14.9: A typical Linkwitz–Riley MID path with the lowpass filters placed before the highpass
filters. Reversing the order reduces the noise output.
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Figure 14.10: How changing the filter order so the lowpass filters come after the highpass filters
reduces the noise output.
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these circuits tend to be noisier than simple highpass filters. Bridged-T equalisers in particular
have a reputation for being noisy due to their high internal noise gain.

You might wonder if the distortion performance is in some way impaired. It isn’t. It is only
possible to make meaningful measurements between about 200 Hz and 5 kHz, as the rapid
fourth-order amplitude roll-offs mean that you are very quickly just measuring noise rather
than distortion, but in this region the distortion is in fact slightly lower with the lowpass
filters at the end of the path. This is because they tend to filter out distortion harmonics
from the preceding highpass filters.

One possibility to consider there might be increased HF intermodulation in the highpass
filters as they are now handling a more extended range of the audio spectrum. Since the
amount of negative feedback is reduced at HF because of limited opamp bandwidth, this
would of greater concern than at LF. I have seen no sign that this could be a significant
problem in practice.

When settling the arrangement of the filter blocks in the crossover, you should be aware of
the amplitude response irregularities that can be caused by filter phase-shift when crossover
frequencies are not widely spaced. This very important issue is dealt with at the end of Chapter 4.

14.12 Output Level Controls

The first question is how much gain control should be available on the output of a crossover.
We are not trying to make a volume control that can be adjusted from full up to zero, firstly
because the place for the volume control is on the preamplifier where you can get at it—the
crossover will usually be tucked away out of sight and possibly hidden in an equipment cabinet.
Secondly, if we did want to put a volume control in this position, a three-way crossover would
require a six-gang pot, which would be expensive, probably have some unsettling channel-
balance errors, and an unpleasant feel.

If we are simply intending to allow for gain variations in a nominally identical set of power
amplifiers then a vernier control of as little as ±1 dB may be sufficient. If in addition the
gain controls must allow for production variations in transducers then a wider range of
±3 dB or ±6 dB may be appropriate, but it is essential to realise that simply altering the
gain of each channel will probably not give anything like enough control; making really
accurate allowances for transducer tolerances will probably require tuning of crossover
frequencies and several equalisation parameters.

This sort of calibration is quite feasible if it is computer-based, and each crossover example
is permanently allocated to its matched loudspeaker. There is no guarantee that loudspeakers
will have identical units in a stereo pair, and so it is essential not to swap left and right
channels as it is unlikely that the crossover settings will be identical.
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As we saw earlier in this chapter, the use of raised internal levels in the crossover circuitry
followed by passive attenuation can give significant improvements in signal-to-noise ratio.
The passive attenuator can be conveniently combined with an output trim network as shown
in Figure 14.11, where the component values are chosen to give a ±6 dB adjustment range.
This is a fragment from one of my active crossover designs where the internal signal path
was running at an elevated level of 3 Vrms, and the nominal output was 880 mV rms.

The design considerations are:

1. That the trim network resistances should be high enough to not excessively load the last
opamp in the signal path, to ensure no excess distortion is generated. The load imposed
by Figure 14.11 is 625Ω, which is about as heavy as you would want to make it.

2. That the network resistances should be low enough to give a suitably low output
impedance to drive reasonable lengths of cable without HF losses. The network in
Figure 14.11 has a maximum output impedance of 156Ω, which occurs when the
control is fully up. The output impedances with the control central, and fully down,
are 130Ω and 66Ω respectively. In the worst case (fully up) this arrangement could
drive up to 53 metres of 150 pF/metre cable before the loss at 20 kHz reached 0.1 dB.

You can of course only have a ±6 dB trim range if the internal signal level is at least 6 dB
above the nominal output level. It is very likely that the preset pot track resistance will have
a wider tolerance than the fixed resistors, and this can cause channel balance errors. Note
that no separate drain resistor is required to remove any charges left on C1 by external DC
voltages.
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Figure 14.11: Low-impedance passive output attenuator with gain trim, mute switch, and
impedance balancing resistor.
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The unbalanced output uses an XLR to allow impedance-balanced operation; R3 is connected
between the cold output pin and ground to balance the impedances seen on the output pins and
so maximise the CMRR when driving a balanced input. The value of 110 Ω is the average of
the maximum and minimum output impedances as the setting of the gain trim is varied. This
variation inevitably compromises the balancing of the impedances, and picking an average
figure for R3 is the best we can do. There is more on impedance balancing in Chapter 17 on
line outputs, and in Chapter 19. Note that C1 is rather big at 1000 uF; this is not to extend the
frequency response, but to make sure it does not generate capacitor distortion as it drives the
relatively low impedance of the attenuator network. It is a non-polarised component so it is
immune to external fault voltages of either polarity.

14.13 Mute Switches

Crossovers intended for sound reinforcement are often fitted with mute switches for each output
to simplify system checking and debugging. The straightforward method shown in Figure 14.11
connects the output to ground and gives very good attenuation indeed, as almost all the crossover
circuitry is disconnected. The “impedance-balanced” feature is retained because R4 = R3.
Slightly lower output noise would be obtained by replacing R4 with a short-circuit, but is more
important to retain the best possible CMRR, even in the test-only mute mode. Illuminated
switches are often used to make operation easier in shadowy backstage areas.

14.14 Phase-Invert Switches

This is another feature which is pretty much restricted to crossovers for sound reinforcement.
The ability to invert the phase of just one output can be useful for checking and for the rapid
correction of a phase error somewhere else in the system. Some crossovers (e.g., Behringer
Super-XPRO CX2310) have separate phase-invert switches on all the main outputs and also
the sub-woofer output.

A phase-invert switch is easy to arrange if you have a balanced output; the outputs are just
swapped over, as shown in Figure 14.12. With an unbalanced output it will be necessary to
switch in a unity-gain inverting stage. If you are doing that then you might as well make
use of the added opamp section all the time, and press it into service to implement a
balanced output. Once again, illuminated switches are useful.

14.15 Distributed Peak Detection

An electronic crossover is not normally fitted with level meters in the way that mixing
consoles or power amplifiers are, it being assumed that it will be carrying out its function in
some out-of-the-way corner where no one will see it. Nevertheless some indication of
grossly wrong signal levels is useful.
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When an audio signal path consists of a series of circuit blocks, each of which may give
either gain or attenuation, it is something of a challenge to make sure that excessive
levels do not occur anywhere along the chain. Simply monitoring the level at the end of
the chain is no use because a circuit block that gives gain, leading to clipping, may be
followed by one that attenuates the clipped signal back to a lower level that does not trip
a final peak-detect circuit. It is not, however, necessary to add a bipolar peak detection
circuit at the output of every opamp to be sure that no clipping is happening anywhere
along the path.

If a stage is followed by another stage with a flat gain, say of +4 dB, then there is of course
no need to monitor the first stage as the one following it will always clip first. If, however,
the gain of the second stage is not flat, as in an electronic crossover it will very often not
be, it may be necessary to monitor both stages. For example, if the second stage is a lowpass
filter with a cutoff frequency of 400 Hz, then a signal at 10 kHz may cause the first stage
to clip heavily without the second stage getting anywhere near its clipping point, even if it
has gain in its passband.

A multi-point or distributed peak detection circuit that I have made extensive use of is
shown in Figure 14.13, where it is shown monitoring a circuit block in each path of a
3-way crossover. It can detect when either a positive or negative threshold is exceeded, at
any number of points desired; to add another stage to its responsibilities you need only add
another pair of diodes, so it is very economical. If a single peak detector is triggered by too
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many points in the signal path, it can be hard to determine at which of them the excessive
level exists, but the basic message is still clear—turn it down a bit.

The operation is as follows. Because R5 is greater than R1, normally the non-inverting input
of the opamp is held below the inverting input and the opamp output is low. If any of the
inputs to the peak system exceed the positive threshold set at the junction of R4, R3, one of
D1, D3, D5 conducts and pulls up the non-inverting input, causing the output to go high.
Similarly, if any of the inputs to the peak system exceed the negative threshold set at the
junction of R2, R6, one of D2, D4, D6 conducts and pulls down the inverting input, once
more causing the opamp output to go high. When this occurs C1 is rapidly charged via D7.
The output-current limiting of the opamp discriminates against very narrow noise pulses.
When C1 charges Q1 turns on, and illuminates D8 with a current set by the value of R7.
R8 ensures that the LED stays off when A4 output is low, as it does not get close enough to
the negative supply rail for Q1 to be completely turned off.

Each input to this circuit has a non-linear input impedance, and so for this system to work
without introducing distortion into the signal path, it is essential that the diodes D1–D6 are
driven directly from the output of an opamp or an equivalently low impedance. Do not try
to drive them through a coupling capacitor as asymmetrical conduction of the diodes can
create unwanted DC-shifts.

The peak-detect opamp A4 must be a FET-input type to avoid errors due to its bias currents
flowing in the relatively high value resistors R1–R6, and a cheap TL072 works very nicely
here; in fact the resistor values could probably be raised significantly without any problems.

You will note all the circuitry operates between the two supply rails, with no connection to
ground, preventing unwanted currents from finding their way into the ground system and
causing distortion.
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14.16 Power Amplif ier Considerations

When selecting the power amplifiers that are to work with active crossovers, the first
consideration is how much power is required in each band. Earlier in this chapter we looked
at the amplitude/frequency distribution of musical signals, and found that while the LF and
MID bands may have roughly the same amplitude, the HF band may be between 5 and
20 dB lower, depending on where the MID/HF crossover frequency is set. Converting this
into Watts (with their square-law relationship with Volts) tells us that if the LF and MID
bands require 100W amplifiers, that for the HF channel need be capable of no more than
31 Watts in the worst case. There is some useful information on amplifier power
requirements in Penkov [4].

Another important factor is the efficiency of the speaker drive units for each band. Getting
good low frequency extension from an enclosure of limited size means low efficiency and
for this reason more power is generally required for LF channels than for MID channels.

In general there is little to be gained by designing different amplifiers for the frequency
bands, apart from the power differences described above. You might be able to cut down on
the size of the power supply reservoir capacitors in the MID amplifier compared with the
LF amplifier, because of the absence of sustained transients, but the cost saving is hardly
worth the trouble.

The exception to that statement is the HF power amplifier. A DC fault in this amplifier can
vaporise a tweeter in the twinkling of a voice-coil, as unlike a tweeter connected to a
passive crossover, it is not protected by a series capacitor. This would seem to demand that
DC-offset protection circuitry for HF amplifiers would need to be especially fast-acting to
be effective; since such protection would inevitably be triggered by large bass signals, we
have created an amplifier that cannot be used for anything other than tweeter-driving duties.
This runs completely counter to the desirability of the user being able to connect up any
amplifiers he feels are the best for the job. The vulnerability of HF drive units is an excellent
reason to not use HF amplifiers that are any more powerful than is necessary to do the job.

The DC offset protection could be much improved by adding a capacitor in series with the
tweeter, but this re-introduces a large and expensive component, of the sort we thought we had
left behind when we adopted an active crossover; there should however be no need for it to
maintain a precise value as would be required if it was part of a passive crossover. The series
capacitor is likely to introduce its own shortcomings in the form of non-linearity, especially if
it is an electrolytic, when it may introduce distortion even in the midband where it is not
implementing any kind of roll-off [9]. There is also the point that in the world of hi-fi, where
almost any technology that can make some sort of noise has its adherents, it seems that no one
is prepared to advocate capacitor-coupled power amplifiers.
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CHAPTER 15

Subwoofer Crossovers

15.1 Subwoofer Applications

A subwoofer loudspeaker is a separate enclosure from the main loudspeakers that is
specifically designed to reproduce low bass. They are normally used singly rather than in
stereo pairs, the assumption being that low frequencies can be regarded as non-directional.
Another justification for mono subwoofers is that bass information is commonly pan-potted to
the centre of the stereo stage. This is essential if the recorded material is likely to be used to
cut vinyl discs, as big differences in low frequency information between left and right
channels creates large up-and-down, as opposed to lateral, contours in the groove that
increase the possibility of mistracking and can in bad cases throw the stylus out of the groove
altogether. Another good reason for centralising the bass is that it needs large amounts of
amplifier power to reproduce it, and it is therefore desirable to make full use of both channels.

In home entertainment the sub-woofer is normally of modest size, and is often installed
under the television screen, in front of the listeners, though other placements are possible,
exploiting the non-directional characteristics of its output. In automotive use subwoofers are
installed in the boot (the trunk, to some of you) or the rear cabin space.

The typical frequency range for subwoofer operation is between 20 and 200 Hz. Sound
reinforcement subwoofers typically operate below 100 Hz, and THX-approved systems in
cinemas operate below 80 Hz.

15.2 Subwoofer Technologies

A wide variety of types of loudspeaker enclosure are used in subwoofers. The relatively
small frequency range that has to be covered allows techniques such as bandpass enclosures
to be used when they would not be usable with LF or MID drive units. The main types are:

Sealed (Infinite baffle)
Reflex (ported)
Transmission line
Bandpass

The Design of Active Crossovers
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Isobaric
Dipole
Horn-loaded

The first two of these are by far the most popular. While I have not done a comprehensive
survey, it seems clear that sealed enclosures are more popular than ported types, which is
perhaps surprising given the greater bass extension possible with ported enclosures. Brief
descriptions of the operation of each type are given below; I have kept them fairly short as
many aspects are covered in Chapter 2 on loudspeakers.

15.2.1 Sealed-Box (Infinite Baffle) Subwoofers

The general characteristics of a sealed subwoofer enclosure, as shown in Figure 15.1a, are
much the same as for normal loudspeakers, as examined in Chapter 2. For subwoofer use
the driver may be mounted on one of the sides of the box, or on the top or bottom;
sometimes there are multiple drivers mounted on different sides of the box. It has a good
transient response, good LF power handling because the drive unit is always loaded by the
box air, and lower sensitivity to parameter misalignment than other approaches. Sealed-box
enclosures have higher low-frequency cutoff points and lower sensitivity than other
subwoofer types for the same box volume. Despite this they appear to be the most popular
configuration for subwoofers.

The efficiency of a drive unit in a sealed box is proportional to the cube of the drive unit
resonance frequency (the Thiele-Small parameter Fs) [1] so quite small improvements to
low-frequency extension with the same drive unit and box volume lead to big reductions in
the efficiency of converting electrical energy into sound energy. Subwoofers of reasonable
size are therefore typically very inefficient by the standards of normal loudspeakers and
require both powerful amplifiers, and drivers with considerable power handling capability.
For this reason enclosures other than a sealed box (e.g., bass reflex designs) are sometimes
used for subwoofers to increase the efficiency of the driver/enclosure system and reduce the
amplifier power requirements.

15.2.2 Reflex (Ported) Subwoofers

Reflex or ported subwoofer enclosures work exactly as described for normal loudspeakers in
Chapter 2. At low frequencies the port output is in phase with the forward radiation of the
driver and allows the bass response to be extended without the lower efficiency that occurs
with a sealed box.

With everything else being equal, a ported subwoofer can have lower drive unit
distortion, higher power handling, and a lower cutoff frequency than a sealed box
system with the same drive unit. Distortion rapidly increases below the cutoff frequency
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however as the driver becomes unloaded and its excursion increases. The transient
response of a ported subwoofer is usually worse than that of a sealed box system using
the same driver. The drivers used in ported subwoofers usually have a Qts value in the
range 0.2 to 0.5.

Because of the low frequencies involved, large amounts of air are in motion, and the port
should have the largest practicable diameter and be flared at both ends to minimise
chuffing noises from turbulent air-flow. It is often recommended that air velocity should
be kept below 25 metre/sec, though maxima between 15 and 34 metre/sec have also been
quoted.

(a) Sealed box (b) Ported box (c) ABR box

ABR

(d) Bandpass (e) Bandpass: ported inner box (f) Isobaric box

(g) Dipole (h) Linkwitz dipole

Cone

Cone

Air

Air

Air

(i) Folded horn

Figure 15.1: The common types of subwoofer enclosure.
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15.2.3 Auxiliary Bass Radiator (ABR) Subwoofers

In auxiliary bass radiator subwoofers (also called passive radiator subwoofers) the mass
of air in a port is replaced by the mass of the ABR cone. The response is therefore very
similar to that of a ported subwoofer using the same driver, but with a notch in the response
corresponding to the resonance frequency of the ABR. The larger the ABR, the more mass
its cone will have, and the lower its resonance frequency will be for the same target Fb, (the
resonance frequency of speaker and box combined) pushing the notch further out of the
subwoofer passband. The large size of suitable ABR subwoofer units means that they are
commonly mounted on a different face of the box from the main drive unit, as shown in
Figure 15.1c, where the ABR is mounted on the top. Two ABR units are sometimes
combined with a single active driver, occupying three sides of the box.

15.2.4 Transmission Line Subwoofers

The transmission line approach is not a very practical technology for subwoofers. To get
worthwhile reinforcement the transmission line needs to be a quarter of a wavelength long
at the frequency of interest, and at subwoofer frequencies that means an impractically long
duct. The wavelength of sound at 25 Hz is 13.8 metres, and a quarter of that is 3.4 metres;
that is obviously impractical as a straight duct, unless you live in a cathedral, and even if
folded, as is usual in transmission line speakers, it will take up a lot of space. This means
that transmission line subwoofers are relatively rare, but it seems that no audio technology
is without its supporters. The Wisdom Audio transmission line subwoofer [2] has a duct
folded once and is 90 inches high (2.3 metres). Drivers used with transmission line
loudspeakers normally have a low Qts in the region of 0.25 to 0.4.

15.2.5 Bandpass Subwoofers

This kind of enclosure is specific to subwoofers because of its very limited bandwidth. The
bandpass enclosure in Figure 15.1d consists of a sealed chamber mounting the drive unit
with a second ported chamber in front of it. This has a second-order lowpass roll-off
(12 dB/octave) at low frequencies and a second-order highpass roll-off at its upper
frequency limit, and is sometimes called a fourth-order bandpass enclosure. I think this
is unnecessarily confusing as there is no actual fourth-order filtering or response, and it
would be far better to call it a second-order + second-order system, or something similar.
Here I will use 2nd + 2nd order to describe it. The second-order lowpass roll-off gives a
more gently falling bass response than that shown by ported or ABR subwoofers, but
gives a lower cutoff frequency for the same driver and volume than the sealed-box
approach; it is often claimed that the low-frequency response can be extended by about
an octave compared with the sealed box alignment. The box volume required for a given
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cutoff frequency can be further reduced by using two drivers in an isobaric configuration.
The bandpass principle is not a new idea; it was first patented in 1934. Variations on the
concept can be made by replacing the ports with auxiliary bass radiators (ABRs).

2nd + 2nd order bandpass subwoofers have good power handling characteristics at low
frequencies because the driver cone never becomes unloaded. It is generally considered that
the transient response is second only to that of sealed box subwoofers. In a bandpass
subwoofer of this sort, all of the output is via the port, which therefore needs to have the
largest practicable diameter to minimise air-flow noise. The port ends are often flared to
reduce turbulence; the larger the flare radius the better the results.

Figure 15.1e shows a 3rd + 3rd order bandpass subwoofer. Now both the front and rear
chambers are tuned by ports. As for a straightforward ported subwoofer, power handling is
poor at frequencies below the passband due to lack of loading on the rear of the drive unit
cone. The transient performance of a 3rd + 3rd order bandpass subwoofer is usually inferior
to either sealed, ported or 2nd + 2nd order bandpass systems, so this type of bandpass
subwoofer is more appropriate to sound reinforcement applications than to hi-fi. Once again
the entire acoustical output is by way of the outer port, which must have the largest
practicable diameter. The inner port also needs to be designed with the issue of port noise
in mind, but it is less critical because its noise output will be attenuated by the lowpass
action of the front chamber.

It is also possible to design a 4th + 4th order bandpass subwoofer, but there seems to be a
consensus that the transient response is so poor that any improvements, such as in bass
extension, are irrelevant.

15.2.6 Isobaric Subwoofers

In an isobaric subwoofer there are two drive units acoustically in series, driven by the same
electrical signal. One version is shown in Figure 15.1f. At low frequencies the two cones move
together, and are equivalent to a single drive unit with twice the cone mass. This reduces the
resonant frequency to about 70% of what it would have been with one drive unit of the same
type working in a sealed box with the same volume. The same cutoff frequency can be
achieved with half the box volume, though the volume of the chamber between the two drive
units must be added; the air volume in this chamber has no acoustic function beyond coupling
the drive units so it is desirable to make it as small as the physical constraints allow.

At higher frequencies cone break-up will occur, and the drive units no longer act as one unit.
Other configurations are possible with the drive units mounted to front-to-front instead of front-
to-back; this requires the phase of one drive unit to be reversed. There seems to be a general
feeling that isobaric loudspeakers are a new idea, but this is not so. Once again, the technique is
older than you might think. It was introduced by Harry F. Olson in the early 1950s.
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15.2.7 Dipole Subwoofers

The concept of the dipole subwoofer is quite different from the other subwoofer
configurations we have looked at. They all aspire to be monopole radiators—ideally a single
point source of sound that has the same polar response in all directions. A large area source,
or a multiple source, causes reinforcements and cancellations in the sound pressure level
that causes major amplitude response irregularities. The rear radiation from the drive unit
must be dealt with in some way, either by suppressing it (sealed boxes) or getting it into
phase with the front radiation to reinforce the output (ported boxes and transmission lines).

A dipole subwoofer does neither of these things; instead the rear radiation is allowed out into
the room without modification. Typically one or more large-diameter drive units are mounted
on a relatively small baffle, as in Figure 15.1g; this means that the bass will begin a 6 dB/
octave roll-off relatively early, because of cancellation around the edges of the baffle. To
counteract this, drivers with a high Qts are sometimes used to give a peaky underdamped
response that lifts the overall response before roll-off; adding dipole equalisation to an active
crossover is a far better approach as it gives complete controllability and eliminates the need
for special drivers that may be hard to get. This usually consists of a low-frequency shelving
characteristic, where the amount of boost plateaus at low frequencies to avoid excessive cone
excursions; more details are given in Chapter 11 on equalisation.

When the path around the baffle edge from front to rear of the drive unit equals a
wavelength, front and back radiation are in phase and will reinforce, giving a 6 dB peak in
the response; the frequency at which this happens can be simply calculated from the baffle
dimensions. However, reinforcement only happens at a single frequency when the baffle is
circular, so all paths are of equal length, and this is not likely to be a practical shape. The
open-backed folded baffle shown in Figure 15.1g gives a more complex response but is far
more compact and structurally rigid.

Figure 15.1h shows a dipole subwoofer design put forward by Siegfried Linkwitz [3] which
gives greater baffle path lengths and is intended for stereo subwoofer operation. It uses two
drive units working in anti-phase, which should offer at least the possibility of cancelling
some even-order distortion products.

Since a dipole subwoofer has effectively two point sources, these interact to give a highly
non-uniform polar response with a “figure of eight” shape. The output is greatest directly in
front and behind the baffle, decreasing to a zero null at each side, where the front and rear
waveforms cancel each other out. The presence of these polar response nulls is held to be
the major advantages of a dipole bass system, it being claimed that the much reduced
sideways radiation excites fewer room modes and so leads to a smoother overall amplitude
response in the room.
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15.2.8 Horn-Loaded Subwoofers

As with horn-loaded loudspeakers for higher frequency ranges, this type of subwoofer uses
a horn as an acoustic transformer to match the impedance of the drive unit cone to that of
the air; it makes the driver cone appear to have a much greater surface area than it actually
does. This increases the efficiency of electric-acoustic considerably; the efficiency of a
sealed-box design may only be 1%, but a well-designed horn loudspeaker can give 10% or
more. Obviously this makes a radical difference to the number of power amplifiers you have
to haul to the gig.

The size of horn required depends on the wavelength of sound being handled, and so
subwoofer horns are very big- impractically so for most home entertainment purposes. The
low-frequency cutoff of a horn depends on both its mouth diameter and the rate at which it
expands along its length, known as the “flare-rate.” A cutoff frequency of 40 Hz requires
something like a mouth diameter of 2.5 metres and a length of some 4 metres. Even for
sound reinforcement applications such a straight horn would be infeasibly huge, and so the
horn is normally folded, as shown in Figure 15.1i (there are many ways to fold a horn and
this is just one example) This can lead to amplitude response irregularites at the upper end
of the operating range due to resonances and reflections as the sound output makes its way
round the corners in the horn.

15.3 Subwoofer Drive Units

As we have noted, subwoofers are typically very inefficient and require driver units with
considerable power handling ability. Driver cone excursion increases at 12 dB/octave with
decreasing frequency for a constant sound pressure (SPL) because four times as much air
has to be moved, so a large Xmax (maximum linear excursion of the cone) and Xmech

(maximum physical excursion before physical damage) are required. The voice coil must
also be designed to withstand considerable thermal stress.

15.4 Hi-fi Subwoofers

When the main format for music delivery was vinyl, the first problem to be overcome in
reproducing loud and deep bass was to get the information off the wretched disc. The
lower the frequency, the greater the amplitude of the groove deviations for a constant
level, and the greater the chance that mistracking of the stylus would occur. From
subsonic up to about 1 kHz, a limit on groove amplitude is the constraint on the
maximum level that can be cut on the disc. The welcome appearance of the CD format
meant that much greater levels of clean, low bass could be accessed, and this gave a great
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stimulus to the development of subwoofers and the pursuit of an extended bass response
in general.

If the subwoofer approach is applied to upscale music-listening rather than an audio-visual
experience, it is normal not to take chances with the possibility of losing low-frequency stereo
information, and two subwoofers are used, for left and right in the usual way. The subwoofers
are often placed under the main speakers, or very close to them, to preserve what stereo cues
can be extracted from their output. They are not placed almost at random in the listening room
in the way that mono subwoofers often appear to be. A classic application of stereo
subwoofers is the extension of the bass response of electrostatic loudspeakers, notably those
by Quad, such as the ESL-57 introduced in 1955 and the later ESL-63.

Since the technology of the hi-fi and the home entertainment subwoofer are similar, they are
dealt with together in the next section.

15.5 Home Entertainment Subwoofers

When the emphasis is watching television rather than listening to music, it is more common
to use a single subwoofer. In multi-channel formats the extra directional information from
rear and centre channels means that any lack of stereo in the deep bass is more likely to go
unnoticed, and a single subwoofer takes up less space and is easier to fit into a room. In
this application the drive units are typically between 4 and 15 inches in diameter.

Table 15.1 below gives the vital statistics of a handful of home entertainment subwoofers
picked pretty much at random from those on the market now (2010). This does not in any
way claim to be a representative selection, but it does give some feel for the basic
subwoofer format. Note that ABR stands for Auxiliary Bass Radiator.

Domestic considerations require the subwoofer to use as small a box as possible, while at the
time being capable of reproducing deep bass. This means that efficiency is inevitably low,
and powerful amplifiers are needed to generate the desired sound levels—considerably more
powerful than those driving the main loudspeakers. It is common for the subwoofer amplifier
to have ten times the power capability in Watts compared with the main amplifiers.

Figure 15.2 shows the block diagram of a typical hi-fi subwoofer with its electronics. The
facilities offered are subject to some variation, but typical features you might expect to find
are:

Low-level inputs (unbalanced)
Low-level inputs (balanced)
High-level inputs
High-level outputs
Mono summing
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LFE input
Level control
Crossover in/out switch (LFE/normal)
Crossover frequency control (lowpass filter)
Highpass subsonic filter
Phase switch (normal/inverted)
Variable phase (delay) control
Signal activation out of standby

15.5.1 Low-Level Inputs (Unbalanced)

The low-level inputs are intended to be driven from a preamplifier or AV processor. In
many cases they are phono (RCA) connectors and so are inherently unbalanced. The input
impedance should not be less than 10 kΩ.

Table 15.1: Specs for Some Current Subwoofer Designs on the Market

Model
Driver

Diameter cm
Driver

Orientation
Box Size

H×W×D cm
Box
Type

Amplifier
Power W rms

Monitor Audio
Vector VW-8

20 Forward 32 × 28 × 28 Ported 100

Velodyne Impact-Mini 16.5 Forward 25 × 25 × 30 Sealed 180
B&W ASW610 25 Forward 31 × 31 × 31 Sealed 200
Wilson Benesch Torus 36 Upward 45 × 90 × 30 Sealed 200
Energy ESW-M6 1 × 16.5 active

2 × 16.5 passive
Forward &
sides

20 × 20 × 20 ABR 200

Audio Pro B1.36 25 Forward 45 × 35 × 38 Ported 200
Wharfedale Diamond
SW250

25 Downward 42 × 42 × 38 Sealed 250

Mordaunt-Short
Mezzo 9

2 × 20 Forward 32 × 34 × 35 Sealed 375

Velodyne SPL-1500R 38 Forward 47 × 46 × 44 Sealed 1000

Low-level In L
Low-level In R

High-level In L

High-level In R

High-level Out L
High-level Out R

LFE In

100R 100R

Summing
amp

Frequency

Lowpass
crossover

filter

Normal / LFE

Frequency

Variable
phase
shift

Highpass
subsonic

filter

High-power
amplifier

Level

Power on/off relay
Signal

activation

Figure 15.2: Block diagram of a typical home-entertainment subwoofer.
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15.5.2 Low-Level Inputs (Balanced)

More upscale subwoofers are likely to have balanced inputs which will reject ground noise
caused by ground loops, etc. This means paying for an XLR connector, but the cost of the
electronics to implement the balanced function is small. Much more information on
balanced inputs can be found in Chapter 16 on line inputs and outputs.

15.5.3 High-Level Inputs

The high-level inputs are designed to be connected directly to the amplifier outputs that
feed the main loudspeakers. They drive a resistive attenuator, usually with high resistor
values to reduce power dissipation, which reduces the incoming level to that of the low-
level inputs. Input protection clamping diodes are often fitted to prevent damage from
excessive input levels. The circuitry is often arranged to sum the low-level and high-level
inputs so that a switch between low-level and high-level inputs is not necessary; this can
be done by the same circuitry that sums the Left and Right halves of the incoming signal.
This approach is made practical by making the input impedance of the high-level inputs
quite low, so they are not liable to pickup external noise. A typical loading resistance
value is 100Ω; the downside is that such a resistor will wastefully dissipate a lot of
power when connected to a powerful amplifier, and it needs to be a substantial wire-
wound component.

An important objection to this method is that the signals reaching the high-level inputs have
passed through the main power amplifiers, and will be degraded by whatever noise, hum
and distortion those power amplifiers introduce. The signal has then to go through the
subwoofer amplifier, so it is degraded twice instead of once. For these reasons, the use of
high-level inputs should be avoided if possible, and manufacturers that provide them state in
their instruction manuals that the use of the low-level inputs is preferred.

15.5.4 High-Level Outputs

High-level outputs are sometimes also provided, so the subwoofer and main loudspeakers can
be daisy-chained via high-level inputs instead of being connected in parallel. This means that
the power amplifier signal has to go first to the subwoofer, and then out again to main
loudspeakers, passing through twice as many connectors and extra lengths of cable. If the
subwoofer is installed away from the rest of the system, then the extra length of speaker cable
may be considerable, and this will increase the impedance seen by the loudspeakers and
reduce the so-called “damping factor” of the system. As is now well established, the actual
effect of speaker cable resistance on loudspeaker damping is very small, because most of
the resistance is in the voice-coils, but a real and more worrying effect is irregularities in the
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frequency response caused by variations in loudspeaker impedance interacting with cable
resistance.

15.5.5 Mono Summing

Both the low-level and high-level inputs are in stereo, and so must be summed to mono
before they are presented to the crossover and power amplifier. As mentioned above, the
same summing circuit is often used to sum the low-level and high-level inputs, to save on a
selector switch.

15.5.6 LFE Input

LFE stands for Low Frequency Effects. There will only be one LFE input connector as the
LFE channel (which is generated by an AV processor) is already in mono. The input is
typically unbalanced; the input impedance should not be less than 10 kΩ. An LFE channel
is already lowpass filtered and does not pass through the subwoofer crossover.

15.5.7 Level Control

This adjusts the volume of the subwoofer relative to the rest of the system.

15.5.8 Crossover In/Out Switch

This is sometimes labelled “Normal/LFE” as when the input is the LFE channel the internal
subwoofer crossover is not used.

15.5.9 Crossover Frequency Control (Lowpass Filter)

The filtering in a subwoofer is not strictly speaking a crossover because instead of splitting
the input between two or more outputs, it simply rejects all high frequencies; it is more
accurate to simply call it a lowpass filter. The cutoff frequency is always adjustable, and a
typical range is 50 Hz–150 Hz. The filter is normally a simple second-order Butterworth
lowpass using the Sallen & Key configuration. See Chapter 8 for more information on
variable-frequency filters.

15.5.10 Highpass Subsonic Filter

Many subwoofers use reflex (ported) enclosures to obtain more bass extension. At very low
frequencies these enclosures put no restraint on cone movement, and when this factor is
combined with the high output capability of subwoofer power amplifiers, you have a recipe
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for disaster; large subsonic signals (oops, dropped the needle) will almost certainly cause
excess cone displacement and serious damage. For this reason most subwoofers—and
especially those of the reflex type—include subsonic filters in the signal path. These are
usually second, third, or fourth order, and usually based on the Sallen & Key configuration.

15.5.11 Phase Switch (Normal/Inverted)

This control puts the subwoofer output in phase or 180 degrees out of phase with the
incoming signal material. The intention is to try to cope with the fact that the difference
between the distance from the main loudspeakers to the listener, and the distance from
the subwoofer to the listener, is unpredictable, and the resulting time delay must be
compensated to give good subwoofer integration. A phase-invert switch can only do this
very crudely, as what is really required is a continuously variable control. A passage like
this appears in most subwoofer user manuals:

“There is no correct or incorrect setting of the phase switch. The proper setting depends on
many variables such as subwoofer placement, room acoustics, and listener position. Set the
phase switch to maximize bass output at the listening position.”

This sort of thing is a bit disingenuous. There certainly will be a correct phase-shift which
gives the flattest and best bass response, but it is unlikely to coincide with either of the two
arbitrary settings provided by a phase-invert switch.

15.5.12 Variable Phase Control

As just explained above, a phase-invert switch is very much a gesture at achieving
correct phase-compensation. What is really required is a variable amount of phase-shift. See
Chapter 10 on variable delays in time-domain filtering to see how this can be accomplished.

15.5.13 Signal Activation Out of Standby

Increasing attention is being paid to economy in the use of energy, and it is now common
for power amplifiers to have a standby mode where the main transformer is disconnected
from the supply when the unit is not in use, but a small transformer remains energised to
power circuitry that will bring the unit out of standby when either an incoming signal is
detected or a +12 V trigger voltage is applied to a control input. This also applies to the
powerful amplifiers found in subwoofers, and they commonly include a signal activation
facility. It is convenient to have the unit wake-up automatically when a signal is applied. It
is now only necessary to pop in a CD or whatever, and start it playing; there is no need to
push a button on the subwoofer. This has particular force as subwoofers are likely to be
hidden away out of sight where they cannot easily be got at.

452 Chapter 15



A full discussion of the technical challenges presented by signal activation, for example the
need to avoid switch-on in response to isolated noise clicks, is given in my book on power
amplifiers [4].

15.6 Home Entertainment Crossovers

So far as the crossover is concerned there are two modes of subwoofer operation. In
5.1 systems there is a dedicated channel for the lowest frequencies called the LFE (Low
Frequency Effects) channel. This is the “0.1” in 5.1 and 7.1 discrete surround systems;
it is important to realise that it contains low frequency bass material not included in
the other channels, and so cannot be derived from the other channels by filtering. AV
receivers and processors therefore have a mono output labelled “Subwoofer Out” or
“LFE Out.” The LFE channel has a digital brickwall lowpass filter at 120 Hz, and
to keep clear of this producers normally use their own gentler lowpass roll-off at
around 80 Hz.

AV processors have so-called “bass management” facilities which can redirect bass from
any channel to a subwoofer output. (This output is not the same as an LFE output, because,
as I said, the LFE channel contains unique information.) This is useful if no LFE channel
exists, as in a normal stereo signal in Format 2.0.

AV processors classify the main loudspeakers into “Large” and “Small” with Large being
considered capable of handling the full audio bandwidth, while Small speakers cannot cope
with the lowest frequencies so their signal is subjected to a highpass rolloff, as part of the
LFE crossover function. The unused low frequencies are mixed and sent to the LFE output;
the phase-shifts between the low frequency signals in the satellite channels are generally
small, so simple summation of the signals is all that is required. Processors differ in the
amount of control they offer over the crossover frequency. The possibilities are Fixed,
Variable, and Multiple Variable, which work as follows.

15.6.1 Fixed Frequency

The only choice is between Large or Small main loudspeakers. When “Small” is selected,
the crossover frequency is fixed, usually in the range 80 to 90 Hz. This restricted approach
is considered obsolescent.

15.6.2 Variable Frequency

There is the choice of Large or Small for the main loudspeakers, plus ability to alter a
single crossover frequency for optimal subwoofer and main loudspeaker integration. This
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facility is available on most modern AV receivers and processors. A typical range of
crossover frequency is 80 to 160 Hz.

15.6.3 Multiple Variable

There is the choice of Large or Small for the main loudspeakers, plus the extra flexibility of
being able to set different crossover frequencies for multiple speakers, such as the front,
centre, and rear channels.

15.7 Power Amplifiers for Home Entertainment Subwoofers

Because of the powerful amplifiers required, more efficient operating modes than Class-B
are commonly used. When quality is the first consideration Class-G is preferred [5]. When
keeping down heatsink size and overall weight are the priorities, Class-D amplifiers are
used. Despite considerable development effort, Class-D amplifiers remain much inferior in
their distortion performance to other types of power amplifier, and it is often stated that they
are only acceptable for subwoofer applications because their high-order distortions are not
reproduced by the drive unit or units. This does overlook the possibility of intermodulation
generating non-linearity products in the lower frequencies.

Class-G amplifiers, on the other hand, are capable of linearity competitive with all but the
very best Class-B power amplifiers, so long as modern design approaches are used minimise
distortion [5].

15.8 Subwoofer Integration

The output of a subwoofer must combine properly with the bass output of the main
loudspeakers. This issue is often ignored simply because it is complex and the problems are not
easy to solve [3]. There are many factors to consider in integrating the LF and MID outputs in a
conventional loudspeaker, where the drive units are in a fixed physical relationship to each
other. Subwoofer integration adds the complications of summing stereo to mono, and the
variable placing of the subwoofer relative to the main loudspeakers. The very presence of a
phase-invert switch, and often a variable-phase control, indicates the uncertainty in the situation.

Subwoofers can integrate with the main loudspeakers in two ways—Augmentation and
Crossover. In Augmentation mode the main loudspeakers handle the full frequency range,
down to the bottom of the bass end, but are limited in their ability to reproduce deep bass at
high levels without distortion. The subwoofer supplements their output, typically below
80 Hz. There is a body of opinion that some rooms can benefit from smoother bass by
getting deep bass from three room locations, that is, the subwoofer plus the main left and
right speakers, rather than from the subwoofer alone.
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In Crossover mode, the subwoofer replaces the deep bass output from the main loudspeakers.
There is a crossover from the main loudspeaker LF drive units to the subwoofer, just as there
is from the MID to the LF drive units within the main loudspeakers. A highpass filter is
therefore applied to the main loudspeaker signal, removing the low bass.

A very important consideration is the choice of the crossover frequency between the main
loudspeakers and the subwoofer. In current variable crossovers the frequencies available
range from 10 Hz to 4.2 kHz, though it is not easy to see how the latter figure counts as
subwoofer territory. It is usually best to make the crossover frequency between the
subwoofer and the main loudspeakers as low as possible; certainly below 90 Hz, and
preferably below 60 Hz if this can be done without overtaxing the main loudspeakers, as
this reduces the chance of the subwoofer becoming audible as a separate sound source.
This is less important if the subwoofer is at the front of the room between the main
loudspeakers, as that is usually where the bass is placed in the stereo stage. Let us
examine the various factors affecting the choice of crossover frequency.

The advantages of higher crossover frequencies for subwoofer integration are:

1. Less output is required from the main loudspeakers, which should give lower distortion,
and less thermal compression where it is more audible in the audio spectrum; this does
of course assume that the subwoofer is itself capable of reproducing low frequencies
cleanly, which it certainly should be.

2. Since a subwoofer has a greater flexibility of placement than the main loudspeakers, it
may be possible to position it so that room standing waves are excited less. The higher
the crossover frequency, the more likely this is to be successful.

3. For a given crossover alignment the group delay of the crossover filters will be inversely
proportional to the crossover frequency. Thus the group delay for a 50 Hz crossover
frequency will be twice that of a 100 Hz crossover frequency. It is however highly
unlikely that this could be audible.

4. When the main channels have speaker size set to “Small” a typical AV processor sums
all these channels with the LFE channel and this combined signal goes through a
lowpass crossover filter. If this crossover frequency is lower than 80 Hz (the practical
upper limit of the LFE channel), then information at the upper end of the LFE
bandwidth will be lost.

5. In the right conditions, the use of a subwoofer can give a more consistent low frequency
response. When the bass from the main loudspeaker channels is routed to a subwoofer,
the frequency response over the subwoofer operating range will be identical between
channels (though not necessarily good in itself). As the frequency range of the subwoofer
becomes wider, this advantage grows in significance. In contrast, the bass signals radiated
by the main loudspeakers will have differing amplitude responses because they are in
different physical locations in the listening space.
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The disadvantages of higher crossover frequencies for subwoofer integration are:

1. As higher frequencies are more audible than lower frequencies, a higher crossover
frequency will place the crossover transitions in a more sensitive part of the audio
spectrum. Any response irregularities induced by the crossover will therefore be more
obvious.

2. It is normal to use a single subwoofer, and so the higher the crossover frequency,
the greater the chance there is that stereo bass information will be lost. Stereo low
frequency information will most probably be in the form of phase differences between
channels as opposed to level differences.

3. It is clearly important not to operate the subwoofer above its intended frequency range. This
will almost certainly lead to increased distortion and greater frequency response anomalies.

4. The crossover needs to have a suitably steep lowpass slope so that the higher bass
frequencies that are easier to localise (say above 100 Hz), are not rendered in mono.
A fourth-order Linkwitz–Riley configuration is recommended.

The greatest problems with subwoofer integration arise when a mono subwoofer is placed
some distance from the main speakers. As we have seen in Chapter 10, time-alignment of
the drivers is crucial for obtaining the desired amplitude/frequency response. It is difficult
enough when all the drivers are mounted in the same enclosure, but separate stereo
subwoofers may be metres away, requiring considerable time-delay compensation, and a
mono subwoofer makes things worse because it may not be symmetrically placed between
the two main speakers and therefore different time compensation delays would have to be
applied to each main channel.

With a metre or more spacing the delays required are much longer, but implementing them
is not too hard because the allpass filters only need to maintain a constant delay up to a
relatively low frequency—that at which the subwoofer output has become negligible
compared with the output of the LF drive units of the main loudspeakers.

15.9 Sound Reinforcement Subwoofers

Subwoofers are now pretty much standard in quality sound reinforcement systems. The
requirements are very different from those for home entertainment; the output levels are
much higher, and the need to have the smallest possible box volume is less pressing
(though not jettisoned altogether) and so they are usually much bigger. Sound reinforcement
subwoofers are usually of the sealed-box, ported-box, or horn-loaded types. The drive units
are typically between 8 and 21 inches in diameter.

It is normal to use multiple subwoofers (up to a hundred at a time have been used) to get
the sound output required, and this multiplicity can be exploited to beam the sound in the
desired direction. This not only increases efficiency but reduces the likelihood of bitter
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complaints from outside the venue. Several techniques for steering the sound energy are
used; most of them require signal delays to do this, and this is where the crossover setup
comes in. For reasons of space only the two most important methods are described here; it
is a big and a most fascinating subject.

15.9.1 Line or Area Arrays

Installing multiple subwoofers in a vertical line array focuses the sound energy into a narrow
beam so that a relatively small amount is sent up into the air or down towards the floor; most
of it is focused at the audience. The reduction in the amount of low frequency sound reflected
from the ceiling (if working indoors) reduces frequency response and feedback problems. The
longer the array, the greater the directional effect; note that this technique is implemented
simply by the physical placement of the subwoofers and signal delays are not required.

Giving the speaker array greater numbers horizontally as well gives an area array, which
also focuses the sound radiation into a beam in the horizontal plane; this effect can become
a problem rather than an advantage if a long line of subwoofers is require to get enough
output, as the beam becomes too narrow to cover the whole audience. If however the
signals to the outer subwoofers are delayed by a few milliseconds prior relative to those at
the centre, considerable control can be exercised over the beam width. This technique is
sometimes called a “delay-shaded array.”

15.9.2 Cardioid Subwoofer Arrays

The various types of cardioid subwoofer array (CSA) are, as the name implies, more concerned
with altering the front/back ratio of output power rather than controlling beam width. The polar
response is very similar to that of a cardioid microphone. One method of creating a cardioid pattern
is applicable to a horizontal subwoofer array across the front of the stage. The polarity of every
third subwoofer is reversed (this can be done simply by turning the cabinet around so it’s firing
backwards) and the signals to these are delayed. The result is that the radiation pattern is no longer
quasi-omnidirectional; instead the sound energy being sent backward to the stage is much reduced,
reducing feedback problems and making the lives of the performers more tolerable. The amount of
delay can be manipulated to maximise the cancellation of the most troublesome frequencies in
stage area. The technique is only effective over a limited frequency range, but the delays can
usually be adjusted to give a significant improvement over slightly more than an octave.

15.9.3 Aux-Fed Subwoofers

Subwoofers are sometimes used in sound reinforcement quite separately from the main
loudspeaker system with its active crossovers. In what is called “aux-fed” operation, the
subwoofer is fed via a lowpass filter (which may or may not be part of the main crossover
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system, but is at any rate handling only the subwoofer signal) from a dedicated auxiliary
send on the mixing console. This send is used to make a mix specifically of those instruments
with the greatest amount of bass output, such as bass guitar, kick drum, and keyboards. Aux-fed
operation is claimed to give a cleaner sound, because microphones tend to pick up bass
information that is not intended for them, with unpredictable phase delays. This low frequency
rubbish goes into a conventional stereo mix and is fed to the subwoofers, producing what is
usually described as a “muddy” effect; the bass-cut filters normally present on mixer channels
are generally not considered effective at controlling this because of their limited slope. (Usually
12 dB/octave) if the subwoofer is aux-fed then the unwanted low frequencies are filtered out by
the main crossover system and never reach the subwoofer.

A disadvantage is that in most mixing consoles, fading down the entire audio system will
require an aux master knob to be turned down to fade the subwoofers at the same time as the
main faders are pulled back. This is obviously undesirable and consoles specially designed for
aux-feeding have an extra fader placed next to the main output faders so easy simultaneous
control is possible.

15.10 Automotive Audio Subwoofers

The loudspeakers fitted as standard to cars have a very limited low-frequency capability
because of their small size; they are installed in car doors or dashboards so very little space
is available. If some serious bass is required, one or more subwoofers are installed in the
boot or back seat space.

Getting decent sound in a car by any means is a serious challenge. The cabin volume is
much smaller than the average listening room, and consequently the effects of resonances
and reflections are much more severe. Vance Dickason [6] describes the listening space as a
“lossy pressure field.” A true pressure field would have perfectly rigid walls, but the thin
metal panels of a car are a long way from rigid and Vance points out that this leads to
unpredictable variation in the low-frequency response of the space over a 3 to 6 dB range.
Simply opening a window (more optional in these days of wide-spread air-conditioning) has
a radical effect on the response of the space.

The resonances and reflections in the listening space can give a considerable lift to low
frequencies; this is sometimes called “cabin gain.” Vance reports one test that yielded a boost
of 7 to 8 dB between 40 and 50 Hz, and a frightening 20 dB boost at 20 Hz. This sort of thing
has obvious implications for crossover design; an unexpected hefty bass note from a CD
could pop your windows out, so some effective subsonic filtering is an extremely good idea.
If you are implementing variable equalisation, bear in mind that while it very often comes
only in the form of bass boost, in this case the ability to cut the bass is very necessary.
Circuitry that can give 20 dB of attenuation at 20 Hz, 8 dB at 40 Hz, and very little at, say,
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60 Hz is going to need at least 12 dB/octave slopes and will need something more
sophisticated than the conventional Baxandall configuration. See Chapter 11 on equalisation.

Automotive subwoofer enclosures are either sealed boxes or ported designs.
Transmission-line and horn-loaded subwoofers are not generally used, mostly because the
physical size required for low-frequency operation is quite impossible to fit into any
normal-sized car.

One of the main problems of car audio is that only a nominal 12 V is available to power
amplifiers. This, even assuming a lossless amplifier, only allows 2.25W into an 8Ω
loudspeaker. Speaker impedances of 4Ω give only 4.5W and lower impedances than this
do not give worthwhile improvements because the losses in amplifiers and wiring
resistances become large. Using a bridged pair of power amplifiers, driving each side of the
speaker in anti-phase, doubles the voltage swing available and so theoretically quadruples
the power, giving 9W into 8Ω and 18W into 4Ω, though because of amplifier losses the
real increase will be significantly less than 4 times. When higher powers than this are
required, the normal practice is to use a switch-mode power supply to convert 12 V into
whatever higher voltage is required.

Many after-market automotive amplifiers are of high power, to drive relatively small
subwoofer enclosures that are inevitably inefficient. A typical model might be in two-
channel format, giving 2 × 350 W into 4Ω and 2 × 700W into 2Ω, with a bridging facility
to give 1 × 1400W into 4Ω. Built-in variable-frequency crossovers are often provided,
providing an HF output to the main loudspeakers as well as the lowpass feed to the
subwoofer. These are usually based on second-order Butterworth filters. Subsonic filters are
usually included for drive unit protection; variable equalisation (invariably usually in the
form of bass boost) is sometimes also provided.

Power amplification of this sort obviously makes heavy demands on a car’s a electrical
system. The alternator fitted as standard will typically be capable of generating 80 Amps
maximum, and this is not adequate for high-power audio systems; it will commonly be
replaced with a special high-output alternator that can give up to 200 Amps. These are
not normally direct physical replacements and some mechanical engineering is required to
fit them. An alternative approach is the “split” system where the original vehicle electrical
system is left alone, and a second alternator of high-output is installed that charges a
separate set of batteries dedicated to the audio system. Split systems are commonly
used on emergency vehicles, though in that case the extra batteries run lighting,
defibrillators, etc.

Capacitor banks, which are large numbers of high value capacitors connected in parallel, are
sometimes wired across the power supply when it is feared that the batteries, with their
associated wiring, will not be able to respond quickly enough to a sudden demand for
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current. The enormous capacitances used are measured in Farads rather than microFarads,
and the values used range from 1 F to at least 50 F.

There is a distinctive genre of competition in car audio, where constructors contend
simply to create the most awesome installations. Car audio competitions started in the
early 1980s, with the first known event in 1981 at Bakersfield in California. While some
competitions focus on sound quality and neat installation, the majority appear to be held
simply to find the highest sound pressure levels; this is sometimes called “dB drag
racing.” In recent years the two aims, sound quality vs SPL, appear to have become
almost mutually exclusive.

Cars built for dB-drag-racing are nearly undriveable as the interior is almost completely
filled with extra batteries, capacitor banks, amplifiers, and loudspeakers; but they must be
driven 20 feet to prove that some movement is possible. Sound pressure levels, with all
cabin openings sealed, of 155 or 160 dB above threshold are commonly reached. The
current world record of 180.5 dB is held by Alan Dante. This was achieved with a single
18-inch subwoofer driven by four amplifiers totalling 26 kW, powered by fifteen 16 Volt
batteries. This equipment was installed in a Volvo that appears to have been weighted down
with concrete. It should perhaps be mentioned that people do not sit in the cars during
testing. It would not be a survivable experience.
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CHAPTER 16

Line Inputs and Outputs

16.1 External Signal Levels

There are several standards for line signal levels. The −10 dBv standard is used for a lot
of semi-professional recording equipment as it gives more headroom with unbalanced
connections—the professional levels of +4 dBu and +6 dBu assume balanced outputs which
inherently give twice the output level for the same supply rails as it is measured between
two pins with signals of opposite phase on them. See Table 16.1.

Signal levels in dBu are expressed with reference to 0 dBu = 775 mV rms; the origin of this
odd value is that it gives a power of 1 mW in a purely historical 600Ω load. Signals in dBv
(or dBV) are expressed with reference to 0 dB = 1.000 V rms.

These standards are well established, but that does not mean that all equipment uses them
as a nominal level. Many power amplifiers require more than 0 dBV for full output; the
Yamaha P7000S power amplifier requires +8 dBu (1.95 Vrms) to give its full output of
750W into 8Ω. The “0 VU” on VU meters is nominally 1.23 Volts.

16.2 Internal Signal Levels

In any audio system it is necessary to select a suitable nominal level for the signal passing
through it. This level is always a compromise—the signal level should be high so it suffers
minimal degradation by the addition of circuit noise as it passes through the system, but not
so high that it is likely to suffer clipping before it reaches a gain control, or generate undue
distortion below the clipping level. (This last constraint is not normally a problem with
modern circuitry, which gives very low distortion right up to the clipping point.)

The choice of internal levels for active crossovers is complicated by the fact that there are two
or three parallel signal paths carrying signals with completely different spectral distributions. It
is well known that signal levels at the upper end of the audio band are much lower than those at
low and middle frequencies, which raises the question of whether an HF signal path will require
more gain so that it can be run at a higher nominal internal level. This would give a better
signal-to-noise ratio, which is important as noise is much more obvious in the HF path. The LF
and MID paths both contain low-pass filters, which if they are appropriately placed late in the
processing chain, discriminate heavily against the most audible part of the noise spectrum.

The Design of Active Crossovers
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This is a complicated issue and is dealt with in much more detail in Chapter 14 on
crossover system design.

If the incoming signal does have to be amplified, this should be done as early as you can
in the signal path, to get the signal well above the noise floor as soon as possible. If the
gain is in the input amplifier, balanced or otherwise, the signal will pass through later stages
at a high level and so their noise contribution will be less. However, if the input stage is
configured with a fixed gain, this must be kept low as it is not possible to turn it down to
avoid clipping. Ideally any input stage should have variable gain. It is not straightforward to
combine this feature with a good balanced input, but several ways of doing it are shown
later in this chapter.

16.3 Input Amplifier Functions

It is important that the very first thing an incoming signal meets is some form of RF filtering,
to prevent RF breakthrough and other EMC problems. It must be done before the incoming
signal encounters any semiconductors where RF demodulation could occur, and can be
regarded as a “roofing filter.” Next, the low-end frequency response is given an early limit
by DC-blocking capacitors, and in some cases overvoltage spikes are clamped by diodes. An
input amplifier should have a reasonably high impedance; certainly not less than 10 kΩ,
and preferably more. It must have a suitable gain—possibly switched or variable—to scale the
incoming signal to the nominal internal level. Balanced input amplifiers also accurately
perform the subtraction process that converts differential signals to single-ended ones, so
noise produced by ground loops and the like is rejected. That’s quite a lot of functionality for
one stage.

16.4 Unbalanced Inputs

The simplest unbalanced input would feed the incoming signal directly to the first stages
of the crossover. This is not practical because these stages will very likely be active
filters that require a low source impedance to give the expected response. In addition, the
input impedance would vary with frequency and could fall to rather low values. Some
sort of input amplifier which can be fed from a significant impedance without ill effect is
needed.

Table 16.1: Nominal Signal Levels

V rms dBu dBv

Semi-professional 0.316 −7.78 −10
Professional 1.228 +4.0 +1.78
German ARD 1.55 +6.0 +3.78
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A typical unbalanced input amplifier is shown in Figure 16.1. The opamp U1:A is a
unity-gain voltage follower; it could be altered to give a fixed gain by adding two series
feedback resistors. A 5532 bipolar opamp is used here for its low distortion and low noise;
with the low source impedances that are likely, an FET-input opamp would be noisier by
10 dB or more. R1 and C1 are a first-order low pass filter to stop incoming RF before
reaches the opamp where it would be likely to be demodulated into the audio band; once
this has happened any further attempts at RF filtering are pointless. R1 and C1 must be as
physically close to the input socket as possible to prevent RF being radiated inside the
equipment enclosure before it is shunted to ground, and this is why they should always be
the first components in the signal path.

Selecting component values for input RF filters of like this is always a compromise, because
the output impedance of the source equipment is not known. If the source is an active
preamplifier, then the output impedance ought to be around 50Ω, but it could be 200Ω or
as high as 1 kΩ. If the source is one of those oxymoronic “passive preamplifiers.” In other
words, just an input selector switch and a volume potentiometer, and an improbably large
price-tag, then the output impedance will be much higher in some circumstances. If you
really must use a piece of equipment that blazons forth its internal contradictions in its very
name, you will find that by far the most popular potentiometer value is 10 kΩ, with a
maximum output impedance (when set for 6 dB of attenuation) of 2.5 kΩ, very much higher
than the 50Ω we might expect from a good active preamplifier. This is in series with R1
and affects the turnover frequency of the RF filter. Effective RF filtering is very desirable,
but it is also important to avoid a frequency response that sags significantly at 20 kHz.
Valve equipment is also likely to have a high output impedance.

Taking 2.5 kΩ as the worst-case source impedance and summing it with R1 we get 2.6 kΩ.
With a 100 pF capacitor we would get −3 dB at 612 kHz; the loss at 20 kHz is a wholly
negligible 0.005 dB, so we might decide that C1 could be usefully increased. If we make it
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Figure 16.1: An unbalanced input amplifier with RF filter, DC drain, and input and output
DC blocking.
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220 pF then the 20 kHz loss is still a tiny 0.022 dB, but the −3 dB point is now 278 kHz,
much improving the rejection of what used to be called The Medium Wave. If we take C1 as
220 pF and assume an active output with a 50Ω impedance in the source equipment, then
together with the 100Ω of R1 we have 150Ω, which in conjunction with 100 pF gives us
−3 dB at 4.82MHz. This is a bit higher than is really desirable, but it is not easy to see what
to do about it. If there was a consensus that the output impedance of a respectable piece of
audio equipment should not exceed 100Ω, then things would be much easier in this area.

Another important consideration is that the series resistance R1 must be kept as low as
practicable to minimise Johnson noise; but lowering this resistance means increasing the
value of shunt capacitor C1, and if it becomes too big then its impedance at high audio
frequencies will become too low. Not only will there be too low a roll-off frequency if the
source has a high output impedance, but there might be an increase in distortion at high
audio frequencies because of excessive loading on the source output stage.

Replacing R1 with a small inductor to make an LC lowpass filter will give much better RF
rejection at increased cost. This is justifiable in professional audio equipment, but it is
much less common in hi-fi, one reason being that the unpredictable source impedance
makes the filter design difficult, as we have just seen. In the professional world one can
assume that the source impedance will be low. Adding more capacitors and inductors allows
a 3 or 4-pole LC filter to be made. If you do use inductors then it is important to check the
frequency response to make sure it is as intended and there is no peaking at the turnover
frequency, as you could have made a filter that does more harm than good.

C2 is a DC-blocking capacitor to prevent voltages from ill-conceived source equipment
getting into the input amplifier. It is a non-polarised type as voltages from outside are of
unpredictable polarity, and it is rated at not less than 35 V so that even if it gets connected
to defective equipment with an opamp output jammed hard against one of its supply rails,
the capacitor will not be damaged. It will give no protection against faulty valve equipment
that may put out a couple of hundred volts. R3 is a DC drain resistor that prevents any
charge put on C2 by external equipment from remaining there for a long time and causing
a thud when connections are replugged; as with all input drain resistors, its value is a
compromise between discharging the capacitor quickly and keeping the input impedance
high. The input impedance here is R3 in parallel with R2, that is, 220 kΩ in parallel with
100 kΩ, giving 68 kΩ. This is a suitably high value and should work well with just about
any source equipment, including that valve-based stuff.

R2 provides the biasing for the opamp input; it must be a high value to keep the input
impedance up, but bipolar input opamps draw significant input bias current. The Fairchild
5532 data sheet quotes 200 nA typical, and 800 nA maximum, and these currents would
cause a voltage drop across R2 of 20 mV and 80 mV respectively. This offset voltage will
be reproduced at the output of the opamp, with the input offset voltage added; this is only
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4 mV maximum, much less than the offset due to the bias current. The 5532 has NPN input
transistors, so the bias current flows into the input pins, and the voltage at Pin 3 and hence
the opamp output may be negative with respect to ground by anything up to 84 mV.

Such offset voltages do not significantly affect the output voltage swing, but they will
generate unpleasant clicks and pops if the input stage is followed by any sort of switching,
and they are big enough to make potentiometers crackly; the DC voltage (you know
perfectly well what I mean) is therefore blocked by C3. R4 is another DC drain to keep
the output at zero volts. It can be made lower in value than the input drain R3 as the
only requirement is that it should not significantly load the opamp output; 22 kΩ or 47 kΩ
resistors are commonly used.

FET-input opamps have much lower input bias currents, so that the offsets they generate as
they flow through biasing resistors are usually negligible, but they still have input offsets of
a few milliVolts, so DC blocking will still be needed if switches downstream are to work
silently.

This input stage, with its input terminated by 50Ω to ground, has a noise output of only
−119.0 dBu over the usual 22–22 kHz bandwidth. This is very quiet indeed, and is a
reflection of the low voltage noise of the 5532, and the fact that R1, the only resistor in
the signal path, has the low value of 100Ω and so generates very little Johnson noise;
−132.6 dBu, to be precise. This noise is wholly swamped by the voltage noise of the
opamp, which is basically all we see; its current noise has negligible effect because of the
low circuit impedances.

16.5 Balanced Interconnections

Balanced inputs are used to prevent noise and crosstalk from affecting the input signal,
especially in applications where long interconnections are used. They are standard on
professional audio equipment, and are quite quickly becoming more common in the world
of hi-fi. Their importance is that they can render ground loops and other connection
imperfections harmless. Since there is no point in making a wonderful piece of equipment
and then feeding it with an impaired signal, making sure you have an effective balanced
input really is of the first importance, and I will go into it in some detail.

The basic principle of balanced interconnection is to get the signal you want by subtraction,
using a three-wire connection. In some cases a balanced input is driven by a balanced
output, with two anti-phase output signals; one signal wire (the hot or in-phase) sensing the
in-phase output of the sending unit, while the other senses the anti-phase output.

In other cases, when a balanced input is driven by an unbalanced output, as shown in
Figure 16.2, one signal wire (the hot or in-phase) senses the single output of the sending unit,
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while the other (the cold or phase-inverted) senses the unit’s output-socket ground, and once
again the difference between them gives the wanted signal. In either of these two cases, any
noise voltages that appear identically on both lines (i.e., common-mode signals) are in theory
completely cancelled by the subtraction. In real life the subtraction falls short of perfection,
as the gains via the hot and cold inputs will not be precisely the same, and the degree of
discrimination actually achieved is called the Common-Mode Rejection Ratio, (CMRR) of
which more later. I should also say of Figure 16.2 that the CMRR is often much improved
by putting a resistance in series with the Cold line, where it goes into the phono plug, of a
value equal to the output impedance of the unbalanced output; more on that later, too.

It is deeply tedious to keep referring to non-inverting and inverting inputs, and so these are
usually abbreviated to “Hot” and “Cold” respectively. This does not necessarily mean that the
hot terminal carries more signal voltage than the cold one. For a true balanced connection, the
voltages will be equal. The “hot” and “cold” terminals are also often referred to as IN+ and
IN‒, and this latter convention has been followed in the diagrams here.

The subject of balanced interconnections is a large one, and a big book could be written on
this topic alone; two of the classic papers on the subject are by Neil Muncy [1] and Bill
Whitlock, [2] both of which are very well worth reading.

To make a start, let us look at the pros and cons of balanced connections.

16.6 The Advantages of Balanced Interconnections

• Balanced interconnections discriminate against noise and crosstalk, whether they result
from ground currents, or electrostatic or magnetic coupling to signal conductors.

• Balanced connections make ground-loops much less intrusive, and usually inaudible,
so people are less tempted to start “lifting the ground” to break the loop, with possibly
fatal consequences. In the absence of a dedicated ground-lift switch that leaves the
external metalwork firmly connected to mains safety earth, the foolhardy and the
optimistic will break the mains earth (not quite so easy now that moulded mains plugs
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Screen bonded to ground
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3
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connected to Pin 1

Figure 16.2: Unbalanced output to balanced input interconnection, with cold joined to ground at
the unbalanced end.
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are standard) and this is highly dangerous, as a short-circuit from mains to the
equipment chassis will then result in live metalwork but dead people.

• A balanced interconnection incorporating a true balanced output gives 6 dB more signal
level on the line, potentially giving 6 dB more dynamic range. This is true not only with
respect to external noise but also the noise generated by a balanced input amplifier at
the receiving end of the link. As is described later in this chapter, a standard balanced
input using 10 KΩ resistors is about 14 dB noisier than the unbalanced input shown in
Figure 16.1 above.

• Balanced connections are usually made with XLR connectors. These are a professional
3-pin format, and are far superior to the phono (RCA) type normally used for unbalanced
connections. More on this below.

16.7 The Disadvantages of Balanced Interconnections

• Balanced inputs are inherently noisier than unbalanced inputs by a large margin, in terms of
the noise generated by the input circuitry itself rather than external noise. This may appear
paradoxical but it is all too true, and the reasons will be fully explained in this chapter.

• More hardware means more cost. Small-signal electronics is relatively cheap; unless you
are using a sophisticated low-noise input stage, of which more later, most of the extra
cost is likely to be in the balanced input connectors.

• Balanced connections do not of themselves provide any greater RF immunity than an
unbalanced input. For this to happen both legs of the balanced input would have to
demodulate the RF in equal measure for common-mode cancellation to occur. The
chances of this happening over any sort of frequency range are effectively zero.
It remains vital to provide the passive RF filtering before the first active electronics.

• There is the possibility of introducing a phase error. It is all too easy to create an
unwanted phase inversion by confusing hot and cold when wiring up a connector, and
this can go undiscovered for some time. The same mistake on an unbalanced system
interrupts the audio completely and leaves little room for doubt that something is amiss.

• Balanced connectors (usually XLRs) are inevitably more expensive. However, their
security of connection and general quality make it money well spent in my view.

16.8 Balanced Cables and Interference

In a balanced interconnection two wires carry the signal, and the third connection is the
ground wire which has two functions.

Firstly it joins the grounds of the interconnected equipment together. This is not always
desirable, and if galvanic isolation is required a transformer balancing system will be
necessary because the large common-mode voltages are likely to exceed the range of an

Line Inputs and Outputs 467



electronic balanced input. A good transformer will also have a very high CMRR, which will
be needed to get a clean signal in the face of large CM voltages.

Secondly, the presence of the ground allows electrostatic screening to shield the two signal
wires, preventing both the emission and pick-up of unwanted signals. In cheap cables this
will mean a “lapped screen,” with wires laid parallel to the central signal conductors. The
screening coverage is not total, and can be badly degraded as the screen tends to open
up on the outside of cable bends. A braided screen around the signal wires gives better
coverage but still not 100%. This is much more expensive, as it is harder to make.

The best solution is an overlapping foil screen, with the ground wire (often called the drain
wire in this context) running down the inside of the foil and in electrical contact with it.
This is usually the most effective as the foil is a solid sheet and cannot open up on bends. It
should give perfect electrostatic screening, and it is much easier to work with than either lap
screen or braided cable.

There are three main ways in which an interconnection is susceptible to hum and noise.

16.8.1 Electrostatic Coupling

An interfering signal at significant voltage couples directly to the inner signal line, through
stray capacitance. The stray capacitance between imperfectly-screened conductors will be a
fraction of a pF in most circumstances, as electrostatic coupling falls off with the square of
distance. This form of coupling can be serious in studio installations with unrelated signals
running down the same ducting.

The three main lines of defense against electrostatic coupling are effective screening, low
impedance drive, and a good CMRR maintained up to the top of the audio spectrum. As
regards screening, an overlapped foil screen provides complete protection.

Driving the line from a low impedance, of the order of 100Ω or less, is also helpful
because the interfering signal, having passed through a very small stray capacitance, is a
very small current and cannot develop much voltage across such a low impedance. This
is convenient because there are other reasons for using a low output impedance, such as
optimising the interconnection CMRR, minimising HF losses due to cable capacitance,
and driving multiple inputs without introducing gain errors. For the best immunity to
crosstalk the output impedance must remain low up to as high a frequency as possible.
This is definitely an issue as opamps invariably have a feedback factor that begins to fall
from a low, and quite possibly sub-audio frequency, and this makes the output impedance
rise with frequency as the negative feedback factor falls, as if an inductor were in series.
Some line outputs have physical series inductors to improve stability or EMC immunity,
and these should not be so large that they significantly increase the output impedance at
20 kHz. From the point of view of electrostatic screening alone, the screen does not need
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to be grounded at both ends, or form part of a circuit [3]. It must of course be grounded
at some point.

If the screening is imperfect, and the line impedance non-zero, some of the interfering signal
will get into the hot and cold conductors, and now the CMRR must be relied upon to make
the immunity acceptable. If it is possible, rearranging the cable-run away from the source of
interference and getting some properly screened cable is more practical and more cost-
effective than relying on very good common-mode rejection.

Stereo hi-fi balanced interconnections almost invariably use XLR connectors. Since an XLR
can only handle one balanced channel, two separate cables are almost invariably used and
interchannel capacitive crosstalk is not an issue. Professional systems, on the other hand,
use multi-way connectors that do not have screening between the pins and there is an
opportunity for capacitive crosstalk here, but the use of low source impedances should
reduce it to below the noise floor.

16.8.2 Magnetic Coupling

If a cable runs through an AC magnetic field, an EMF is induced in both signal conductors
and the screen, and according to some writers, the screen current must be allowed to flow
freely or its magnetic field will not cancel out the field acting on the signal conductors,
and therefore the screen should be grounded at both ends, to form a circuit [4]. In practice
the magnetic field cancellation will be very imperfect and reliance is better placed on the
CMRR of the balanced system to cancel out the hopefully equal voltages induced in the
two signal wires. The need to ground both ends to possibly optimise the magnetic rejection
is not usually a restriction, as it is rare that galvanic isolation is required between two
pieces of audio equipment.

The equality of the induced voltages can be maximised by minimising the loop area
between the hot and cold signal wires, for example by twisting them tightly together in
manufacture. In practice most audio foil-screen cables have parallel rather than twisted
signal conductors, but this seems adequate almost all of the time. Magnetic coupling falls
off with the square of distance, so rearranging the cable-run away from the source of
magnetic field is usually all that is required. It is unusual for it to present serious
difficulties in a hi-fi application.

16.8.3 Ground Voltages

These are the result of current flowing through the ground connection, and is often called
“common-impedance coupling” in the literature [1]. This is the root of most ground-loop
problems. The existence of a loop in itself does no harm, but it is invariably immersed in
a 50 Hz magnetic field that induces mains-frequency currents plus harmonics into it.
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This current produces a voltage drop down non-negligible ground-wire resistances, and this
effectively appears as a voltage source in each of the two signal lines. Since the CMRR is
finite a proportion of this voltage will appear to be a differential signal, and will be
reproduced as such.

16.9 Balanced Connectors

Balanced connections are most commonly made with XLR connectors, though it can be
done with stereo (tip-ring-sleeve) jack plugs. XLRs are a professional 3-pin format, and are
a much better connector in every way than the usual phono (RCA) connectors used for
unbalanced interconnections. Phono connectors have the great disadvantage that if you are
connecting them with the system active (inadvisable, but then people are always doing
inadvisable things) the signal contacts meet before the grounds and thunderous noises result.
The XLR standard has Pin 2 as hot, Pin 3 as cold, and Pin 1 as ground. As described in
Chapter 1, in domestic crossover use there is a good case for using multiway connectors
that carry several 3-wire balanced connections, in order to cut down the amount of visible
cabling.

16.10 Balanced Signal Levels

Many pieces of equipment, including preamplifiers and power amplifiers designed to work
together, have both unbalanced and balanced inputs and outputs. The general consensus
in the hi-fi world is that if the unbalanced output is say 1 Vrms, then the balanced output
will be created by feeding the in-phase output to the hot output pin, and also to a unity-
gain inverting stage, which drives the cold output pin with 1 Vrms phase-inverted. The total
balanced output voltage between hot and cold pins is therefore 2 Vrms, and so the balanced
input must have a gain of ½ or −6 dB relative to the unbalanced input to maintain
consistent internal signal levels.

16.11 Electronic versus Transformer Balanced Inputs

Balanced interconnections can be made using either transformer or electronic balancing.
Electronic balancing has many advantages, such as low cost, low size and weight,
superior frequency and transient response, and no low-frequency linearity problems.
Transformer balancing has advantages of its own, particularly for work in very hostile
RF/EMC environments, but serious drawbacks. The advantages are that transformers are
electrically bullet-proof, (and quite possibly physically bullet-proof) retain their high CMRR
performance forever, and consume no power even at high signal levels. They are essential if
galvanic isolation between ground is required. Unfortunately transformers can generate LF
distortion, particularly if they have been made with minimal core sizes to save weight and cost.
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They are liable to have HF response problems due to leakage reactance and distributed
capacitance, and compensating for this requires a carefully designed Zobel network across
the secondary. Inevitably they are heavy and expensive compared with an opamp and a few
R’s and C’s. Transformer balancing is therefore relatively rare, even in professional audio
applications, and the greater part of this chapter deals with electronically balanced inputs.

16.12 Common Mode Rejection Ratio (CMRR)

Figure 16.3 shows a balanced interconnection reduced to its bare essentials; hot and cold
line outputs with source resistances Rout+, Rout‒ and a standard differential amplifier at the
input end. The output resistances are assumed to be exactly equal, and the balanced input
in the receiving equipment has two exactly equal input resistances to ground R1, R2. The
ideal balanced input amplifier senses the voltage difference between the points marked IN+
(hot) and IN- (cold) and ignores any common-mode voltage which are present on both. The
amount by which it discriminates is called the Common-Mode Rejection Ratio or CMRR,
and is usually measured in dB. Suppose a differential voltage input between IN+ and IN‒
gives an output voltage of 0 dB; now reconnect the input so that IN+ and IN‒ are joined
together and the same voltage is applied between them and ground. Ideally the result would
be zero output, but in this imperfect world it won’t be, and the output could be anywhere
between −20 dB (for a bad balanced interconnection, which probably has something wrong
with it) and −140 dB (for an extremely good one). The CMRR when plotted may have a
flat section at low frequencies, but it very commonly degrades at high audio frequencies,
and may also deteriorate at very low frequencies. More on that later.

In one respect balanced audio connections have it easy. The common-mode signal is normally
well below the level of the wanted signal, and so the common-mode range of the input is not
an issue. In other area of technology, such as electrocardiogram amplifiers, the common-mode
signal may be many times greater than the wanted signal.

Balanced output

Cable

Vcm

In+

In−

Vin Out

Ground 2

Balanced input

R1 10K

R2 10K

Ground 1

100R

Rout+

100R

Rout−
Vout−

Vout+

Out+

Out−

Figure 16.3: A theoretical balanced interconnection showing how the output and input impedances
influence CMRR.
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The simplified conceptual circuit of Figure 16.3, under SPICE simulation, demonstrates the
need to get the resistor values right for a good CMRR, before you even begin to consider
the rest of the circuitry. The differential voltage sources Vout+, Vout− which represent
the actual balanced output are set to zero, and Vcm, which represents the common-mode
voltage drop down the cable ground, is set to 1 Volt to give a convenient result in dBV.
The output resulting from the presence of this voltage source is measured by a mathematical
subtraction of the voltages at IN+ and IN‒ so there is no actual input amplifier to confuse
the results with its non-ideal performance.

Let us begin with Rout+ and Rout‒ set to 100Ω and input resistors R1, R2 set to 10 kΩ.
These are typical real-life values as well as being nice round figures. When all four
resistances are exactly at their nominal value, the CMRR is in theory infinite, but if just
one of the output resistors or one of the input resistors is then altered in value by 1%, then
the CMRR drops sharply to −80 dB. If the deviation is 10%, things are predictably worse
and the CMRR degrades to −60 dB. The CMRR is here flat with frequency because our
simple model has no frequency-dependent components.

Each line of the connection is a potential divider with Rout at the top and R1 at the bottom.
With these values the attenuation on each line is the very small figure of 0.0087 dB. If we can
reduce this attenuation further then the gain on each line will be closer to unity, and minor
changes in resistor values will have less effect. As an example, if we increase the input
resistors R1, R2 to 100 kΩ with Rout+, Rout‒ kept at 100Ω then a 1% resistor deviation only
degrades the CMRR to −100 dB. This change is quite practical, so long as you buffer the inputs
to the actual balanced amplifier—the technique is explained in more detail below. An even
higher value for R1, R2 of 1MΩ, which is still feasible but slightly more difficult, gives −120
dB for a single 1% resistance deviation, and −100 dB for a single 10% deviation.

We could also improve CMRR by reducing the output impedances Rout+, Rout‒. Dropping
them to 10Ω, and using the conventional 10 kΩ input resistors gives −100 dB for a single
1% resistor deviation. The problem is that these resistors are in the source equipment, and
usually outside our control. A 10 Ω output resistor is also too low to prevent HF instability
caused by cable capacitance, and would need to be supplemented by expensive output
chokes. Alternatively, and much more economically, the output stage could be configured as
a “zero-impedance output” as described in the section of the chapter on line outputs; an
output impedance of a fraction of an Ohm at 1 kHz is very easy to achieve.

If as usual, however, we have to take the source equipment as it comes, we cannot assume
the output resistors will be less than 100Ω, and they may be a good deal higher. If the
output is unbalanced then we effectively have one output resistor at, say, 100Ω, while the
other is zero as there is a direct connection between the Cold line and the output ground.
This imbalance messes things up dramatically, and the CMRR collapses to 43 dB.
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Time for a reality check. You will have noticed that the CMRR figures we are dealing with,
of 80 or 100 dB, are much better than we measure in reality. This is because we are only
altering one of four resistances—in real life all four will be subject to a statistical distribution
and the CMRR results likewise come out as a statistical distribution.

There is no point in going into that level of detail here because there are other and more
important influences on CMRR, which we will look at shortly. The lesson to take away
here is that we need the lowest possible output impedances (if we have any say in their
value) and the highest possible input impedances to get the maximum common-mode
rejection. This is highly convenient because low output impedances are already needed to
drive multiple inputs and cable capacitance, and high input impedances are needed to
minimise loading and consequent signal losses. However… it will soon emerge that
influences on CMRR are such that what we should really conclude is that balanced line
impedances should be as high as possible without compromising anything else.

16.13 The Basic Electronic Balanced Input

Figure 16.4 shows the basic balanced input amplifier. To achieve balance R1 must be equal
to R3 and R2 equal to R4. The amplifier in Figure 16.4 has a gain of R2/R1 (=R4/R3). The
standard one-opamp balanced input or differential amplifier is a very familiar circuit block,
but its operation often appears somewhat mysterious. Its input impedances are not equal
when it is driven from a balanced output; this has often been commented on [5]. Some
confusion has resulted.

The source of the confusion is that a simple differential amplifier has interaction between
the two inputs, so that the input impedance seen on the cold input depends on the signal
applied to the hot input. Input impedance is measured by applying a signal and see how
much current flows into the input, so it follows that the apparent input impedance on each
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R4
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Figure 16.4: The basic balanced input amplifier, with standard 10 kΩ resistors.
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leg varies according to how the cold input is driven. If the amplifier is made with four
10 kΩ resistors, then the input impedances on hot and cold are:

Some of these impedances are not exactly what you might expect, and require some
explanation. They are summarised in Table 16.2.

16.13.1 Case 1

The balanced input is being used as an unbalanced input by grounding the cold input and
driving the hot input only. The input impedance is therefore simply R3 + R4. Resistors R3
and R4 reduce the signal by a factor of a half, but this loss is undone as R1 and R2 set the
amplifier gain to two times, and the overall gain is unity. If the cold input is not grounded
then the gain is 0.5 times. The attenuate-then-amplify architecture, plus the Johnson noise
from the resistors, makes this configuration much noisier than the dedicated unbalanced
input of Figure 16.1, which has only a single 100Ω resistor in the signal path.

16.13.2 Case 2

The balanced input is again being used as an unbalanced input, but this time by grounding the
hot input, and driving the cold input only. This gives a phase inversion and it is unlikely you
would want to do it except as an emergency measure to correct a phase error somewhere else.
The important point here is that the input impedance is now only 10 kΩ, the value of R1,
because shunt negative feedback through R2 creates a virtual earth at Pin 2 of the opamp.
Clearly this simple circuit is not as symmetrical as it looks. The gain is unity, whether or not
the hot input is grounded; grounding it is desirable because it not only prevents interference
being picked up on the hot input pin, but also puts R3 and R4 in parallel, reducing the
resistance from opamp Pin 3 to ground and so reducing Johnson noise.

16.13.3 Case 3

This is the standard balanced interconnection. The input is driven from a balanced output with
the same signal levels on hot and cold, as if from a transformer with its centre-tap grounded,
or an electronically balanced output using a simple inverter to drive the cold pin. The input

Table 16.2: The Input Impedances for Different Input Drive Conditions

Case Pins Driven Hot Input Res Ω Cold Input Res Ω

1 Hot only 20 k Grounded
2 Cold only Grounded 10 k
3 Both (balanced) 20 k 6.66 k
4 Both common-mode 20 k 20 k
5 Both floating 10 k 10 k
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impedance on the hot input is what you would expect; R3 + R4 add up to 20 kΩ. However,
on the cold input there is a much lower input impedance of 6.66 kΩ. This at first sounds
impossible as the first thing the signal encounters is a 10 kΩ series resistor, but the crucial
point is that the hot input is being driven simultaneously with a signal of the opposite phase,
so the inverting opamp input is moving in the opposite direction to the cold input due to
negative feedback, and what you might call anti-bootstrapping reduces the effective value of the
10 kΩ resistor to 6.66 kΩ. These are the differential input impedances we are examining, the
impedances seen by the balanced output driving them. Common-mode signals see a common-
mode impedance of 20 kΩ, as in Case 4 below. You will sometimes see the statement that
these unequal differential input impedances “unbalance the line.” From the point of view of
CMRR, this is not the case, as it is the CM input impedance that counts. The line is, however,
unbalanced in the sense that the cold input draws three times the current from the output that
the hot one does. This current imbalance might conceivably lead to inductive crosstalk in some
multi-way cable situations, but I have never encountered it. The differential input impedances
can be made equal by increasing the R1 and R2 resistor values by a factor of three, but this
degrades the noise performance markedly and makes the common-mode impedances to ground
unequal, which is a much worse situation as it compromises the rejection of ground voltages,
and these are almost always the main problem in real life.

16.13.4 Case 4

Here both inputs are driven by the same signal, representing the existence of a common-
mode voltage. Now both inputs shown an impedance of 20 kΩ. It is the symmetry of the
common-mode input impedances that determines how effectively the balanced input rejects
the common-mode signal. This configuration is of course only used for CMRR testing.

16.13.5 Case 5

Now the input is driven as from a floating transformer with the centre-tap (if any)
unconnected, and the impedances can be regarded as equal; they must be, because with a
floating winding the same current must flow into each input. However, in this connection
the line voltages are not equal and opposite: with a true floating transformer winding the hot
input has all the signal voltage on it while the cold has none at all, due to the negative
feedback action of the balanced input amplifier. This seemed very strange when it emerged
in SPICE simulation, but a sanity-check with real components proves it true. The line has
been completely unbalanced as regards crosstalk to other lines, although its own common-
mode rejection remains good.

Even if absolutely accurate resistors are assumed, the CMRR of the stage in Figure 16.4 is
not infinite; with a TL072 it is about −90 dB, degrading from 100 Hz upwards, due to the
limited open-loop gain of the opamp. We will now examine this effect.
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16.14 Common-Mode Rejection Ratio: Opamp Gain

In the earlier section on CMRR we saw that in a theoretical balanced line, choosing low
output impedances and high input impedances would give very good CM rejection even if
the resistors were not perfectly matched. Things are a bit more complex (i.e., worse) if we
replace the mathematical subtraction with a real opamp. We quickly find that even if
perfectly matched resistors everywhere are assumed, the CMRR of the stage is not infinite,
because the two opamp inputs are not at exactly the same voltage. The negative feedback
error-voltage between the inputs depends on the open-loop gain of the opamp, and that is
neither infinite nor flat with frequency into the far ultra-violet. Far from it. There is also the
fact that opamps themselves have a common-mode rejection ratio; it is high, but once more
it is not infinite.

As usual, SPICE simulation is instructive, and Figure 16.5 shows a simple balanced inter-
connection, with the balanced output represented simply by two 100Ω output resistances
connected to the source equipment ground, here called Ground 1, and the usual differential
opamp configuration at the input end, where we have Ground 2.

A common-mode voltage Vcm is now injected between Ground 1 and Ground 2, and the
signal between the opamp output and Ground 2 measured. The balanced input amplifier has
all four of its resistances set to precisely 10 kΩ, and the opamp is represented by a very
simple model that has only two parameters; a low-frequency open-loop gain, and a single
pole frequency that says where that gain begins to roll-off at 6 dB per octave. The opamp
input impedances and the opamp’s own CMRR are assumed infinite, as in the world of
simulation they so easily can be. Its output impedance is set at zero.

Balanced output

Balanced input

R2

10K
Cable

R1 10K

R3 10K
R4
10K

Out

LF open-loop gain =100,000 ×
Pole 1 = 100Hz

Vcm

Rout− Out−

Out+

Rout+
100R

100R

Ground 1 Ground 2

In+

In−

+

−

Figure 16.5: A simple balanced interconnection for SPICE simulation to show the effect that opamp
properties have on the CMRR.
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For the first experiments, even the pole frequency is made infinite, so now the only contact
with harsh reality is that the opamp open-loop gain is finite. That is however enough to give
distinctly non-ideal CMRR figures, as Table 16.3 shows.

With a low-frequency open-loop gain of 100,000, which happens to be the typical figure
for a 5532 opamp, even perfect components everywhere will never yield a better CMRR
than −94 dB. The CMRR is shown as a raw ratio in the third column so you can see that
the CMRR is inversely proportional to the gain, and so we want as much gain as
possible.

16.15 Common-Mode Rejection Ratio: Opamp Frequency Response

To examine these we will set the low-frequency gain to 100,000 which gives a CMRR
“floor” of −94 dB, and then introduce the pole frequency that determines where it rolls-off.
The CMRR now worsens at 6 dB/octave, starting at a frequency set by the interaction of the
low-frequency gain and the pole frequency. The results are summarised in Table 16.4 which
shows that as you might expect, the lower the open-loop bandwidth of the opamp, the lower
the frequency at which the CMRR begins to fall off. Figure 16.6 shows the situation
diagrammatically.

Table 16.5 gives the open-loop gain and pole parameters for a few opamps of interest. Both
parameters, but especially the gain, are subject to considerable variation; the typical values
from the manufacturers’ data sheets are given here.

Some of these opamps have very high open-loop gains, but only at very low frequencies.
This may be good for DC applications, but in audio line input applications, where the lowest
frequency of CMRR interest is 50 Hz, they will be operating above the pole frequency and
so the gain available will be less—possibly considerably so, in the case of opamps like the
OPA2134. This is not however a real limitation, for even if a humble TL072 is used the
perfect-resistor CMRR is about −90 dB, degrading from 100 Hz upwards. This sort of
performance is not attainable in practice. We will shortly see why not.

Table 16.3: The Effect of Finite Opamp Gain on CMRR for the
Circuit of Figure 16.5

Open-Loop Gain CMRR dB CMRR Ratio

10,000 −74.0 19.9 × 10−5

30,000 −83.6 66.4 × 10−6

100,000 −94.0 19.9 × 10−6

300,000 −103.6 6.64 × 10−6

1,000,000 −114.1 1.97 × 10−6
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16.16 Common-Mode Rejection Ratio: Opamp CMRR

Opamps have their own common-mode rejection ratio, and we need to know how much
this will affect the final CMRR of the balanced interconnection. The answer is that if all
resistors are exactly correct, the overall CMRR is equal to the CMRR of the opamp [6].

Table 16.4: The Effect of Opamp Open-Loop Pole Frequency
on CMRR for the Circuit of Figure 16.5

Pole Frequency CMRR Breakpoint Freq

10 kHz 10.2 kHz
1 kHz 1.02 kHz

100 Hz 102 Hz
10 Hz 10.2 Hz

−60dB

−80dB

−100dB

−94dB

CMRR

1Hz 10 100

Frequency

Opamp pole freq: 10Hz 100Hz 1kHz 10kHz

1k 10k 100kHz

Figure 16.6: How the CMRR degrades with frequency for different opamp pole frequencies.
All resistors are assumed to be perfectly matched.

Table 16.5: Typical LF Gain and Open-Loop Pole Frequency for Some
Opamps Commonly Used in Audio

Name
Input Device

Type LF Gain Pole Freq
Opamp LF
CMRR dB

NE5532 Bipolar 100,000 100 Hz 100
LM4562 Bipolar 10,000,000 below 10 Hz 120
LT1028 Bipolar 20,000,000 3 Hz 120
TL072 FET 200,000 20 Hz 86
OP27 FET 1,800,000 3 Hz 120

OPA2134 FET 1,000,000 3 Hz 100
OPA627 FET 1,000,000 20 Hz 116
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Since opamp CMRR is typically very high (see the examples in Table 16.5) it is most
unlikely to be the limiting factor.

The CMRR of an opamp begins to degrade above a certain frequency, typically at 6 dB per
octave. This is (fortunately) at a higher frequency than the open-loop pole, and is frequently
around 1 kHz. For example the OP27 has a pole frequency at about 3 Hz, but the CMRR
remains flat at 120 dB until 2 kHz, and it is still greater than 100 dB at 20 kHz.

16.17 Common-Mode Rejection Ratio: Amplifier Component
Mismatches

We saw earlier in this chapter that when the output and input impedances on a balanced line
have a high ratio between them and are accurately matched we got a very good CMRR; this
was compromised by the imperfections of opamps, but the overall results were still very
good—and much higher than the real CMRRs that we measure in practice. There remains
one place where we are still away in theory-land; we have so far assumed the resistances
around the opamp were all exactly accurate. We must now face reality, admit that these
resistors will not be perfect, and see how much damage to the CMRR they will do.

SPICE simulation gives us Table 16.6. The situation with LF opamp gains of both 100,000
and 1,000,000 is examined, but the effects of finite opamp bandwidth or opamp CMRR are
not included. R1 in Figure 16.5 is varied while R2, R3 and R4 are all kept at precisely
10 kΩ, and the balanced output source impedances are set to exactly 100Ω.

Table 16.6 shows with glaring clarity that our previous investigations, which took only
output and input impedances into account, and determined that 100 Ω output resistors and
10 kΩ input impedances gave a CMRR of −80 dB for a 1% deviation in either, were

Table 16.6: How Resistor Tolerances Affect the CMRR for
Two Realistic Opamp Open-Loop Gains

R1 Ω R1 Deviation Gain x CMRR dB

10 k 0% 100,000 −94.0
10.001 k 0.01% 100,000 −90.6
10.01 k 0.1% 100,000 −66.5
10.1 k 1% 100,000 −46.2
11 k 10% 100,000 −26.6

10 k 0% 1,000,000 −114.1
10.001 k 0.01% 1,000,000 −86.5
10.01 k 0.1% 1,000,000 −66.2
10.1 k 1% 1,000,000 −46.2
11 k 10% 1,000,000 −26.6
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definitely optimistic, and even adding in opamp imperfections left us with implausibly good
results. Looking at component imbalances in the amplifier itself brings us down to earth;
when a 1% tolerance resistor is used for R1 (and nowadays there is no financial incentive to
use anything less accurate), the CMRR plummets to −46 dB; the same figure results from
varying any other one of the four resistances by itself. If you are prepared to shell out for
0.1% tolerance resistors, the CMRR is a rather better −66 dB.

Table 16.6 also shows that there really is no point in getting anxious about the gain of the
opamp you use in balanced inputs; unless you’re planning to use 0.01% resistors (and I’m
sure you’re not) the effect of the opamp gain is negligible.

The results in Table 16.6 give an illustration of how resistor accuracy affects CMRR, but it is
only an illustration, because in real life—a phrase that seems to keep cropping up, showing
how many factors affect a practical balanced interconnection—all four resistors will of course
be subject to a tolerance, and a more realistic calculation would produce a statistical distribution
of CMRR rather than a single figure. One method is to use the Monte Carlo function in SPICE,
which runs multiple simulations with random component variations and collates the results.
However you do it you must know (or assume) how the resistor values are distributed within
their tolerance window. Usually you don’t know, and finding out by measuring hundreds of
resistors is not a task that appeals to all of us.

It is straightforward to assess the worst-case CMRR, which occurs when all resistors are at
the limit of the tolerance in the most unfavourable direction. The CMRR in dB is then:

CMRR = 20 log 1+R2/R1
4T/100

� �
(14.1)

Where R1 and R2 are as in Figure 16.5, and T is the tolerance in %.

This rather pessimistic equation tells us that 1% resistors give a worst-case CMRR of only
34.0 dB, that 0.5% parts give only 40.0 dB and expensive 0.1% parts yield but 54.0 dB.
Things are not however quite that bad in actuality, as the chance of everything being as
wrong as possible is actually very small indeed. I have measured the CMRR of more of
these balanced inputs, built with 1% resistors, than I care to contemplate, but I do not ever
recall that I ever saw one with an LF CMRR worse than 40 dB.

There are 8-pin SIL packages that offer four resistors that ought to have good matching, if
not accurate absolute values; be very, very wary of these as they usually contain thick-film
resistive elements that are not perfectly linear. In a test I did a 10 kΩ SIL resistor with
10 Vrms across it generated 0.0010% distortion. Not a huge amount perhaps, but in the
quest for perfect audio, resistors that do not stick to Ohm’s Law are not a good start.

To conclude this section, it is clear that in practical use it is the errors in the balanced
amplifier resistors that determine the CMRR, though both unbalanced capacitances (C1, C2
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in Figure 16.9 below) and the finite opamp bandwidth are likely to cause further
degradation at high audio frequencies. If you are designing both ends of a balanced
interconnection and you are spending money on a few precision resistors, you should
most definitely put them in the input amplifier, not the balanced output. The LF gain of
the opamp, and opamp CMRR, have virtually no effect.

In fact, balanced input amplifiers like Figure 16.4 and 16.9, built with four ordinary 1%
resistors, are used very extensively in the professional audio business, and almost always
prove to have adequate CMRR for the job; I have spent a lot of time designing mixing
consoles and I do not recall a single occasion when this was not the case. When more
CMRR is wanted, for example in high-end mixing consoles, one of the resistances is
made trimmable with a preset, as shown in Figure 16.7. This can mean a lot of tweaking
in manufacture, as there might easily be three or four of these balanced inputs per
channel, but looking on the bright side, it is a quick set-and-forget adjustment that will
never need to be touched again unless one of the four fixed resistors needs replacing, and
that is extremely unlikely. CMRRs at LF of more than 70 dB can easily be obtained by
this method, but the CMRR at HF will degrade due to the opamp gain roll-off and stray
capacitances.

Figure 16.8 shows the CMRR measurements for a trimmable balanced input amplifier. The
flat line at −50 dB was obtained from standard balanced input using four 1% 10 kΩ resistors
straight out of the box, while the much better (at LF, anyway) trace going down to −85 dB
was obtained from Figure 16.7 by using a multi-turn preset for PR1. Note that R4 is an E96
value so a 1 K preset can swing the total resistance of that arm both above and below the
nominal 10 kΩ.

Ground

In+

In−
R1 10K

R3 10K

PR1
1K

R4
9K53

CMRR
trim

5532

A1
Out

R2

10K

−
+

Figure 16.7: A balanced input amplifier, with preset pot to trim for best LF CMRR.
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The CMRR is dramatically improved by more than 30 dB in the region 50−500 Hz where
ground noise tends to intrude itself, and is significantly better across almost all the audio
spectrum.

The sloping part of the trace in Figure 16.8 is partly due to the finite open-loop bandwidth
of the opamp, and partly due to unbalanced circuit capacitances. The CMRR is actually
worse than 50 dB above 20 kHz, due to the stray capacitances in the multiturn preset, and
the fact that I threw the circuit together on a piece of prototype board. In professional
manufacture the value of PR1 would probably be much smaller, and a small one-turn preset
used with much less stray capacitance. Still, I think you get the point; for relatively small
manufacturing quantities CMRR trimming is both economic and effective.

16.18 A Practical Balanced Input

The simple balanced input circuits shown in Figures 16.4 and 16.7 are not fit to face the
outside world without additional components. Figure 16.9 shows a fully equipped version.
Firstly, and most important, C1 has been added across the feedback resistor R2; this prevents
stray capacitances from Pin 2 to ground causing extra phase-shifts that lead to HF instability.

Standard

Trimmed

Figure 16.8: CMRR results from a standard balanced amplifier as in Figure 16.4, and from
trimmed Figure 16.7. The opamp was a 5532 and all resistors were 1%. The trimmed

version is better than 80 dB up to 500 Hz.
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The value required for stability is small, much less than that which would cause an HF roll-
off anywhere near the top of the audio band. The values here of 10 k and 27 pF give −3 dB
at 589 kHz, and such a roll-off is only down by 0.005 dB at 20 kHz. C2, of equal value, must
be added across R4 to maintain the balance of the amplifier, and hence its CMRR, at high
frequencies.

C1 and C2 must not be relied upon for EMC immunity as C1 is not connected to ground,
and there is every chance that RF will demodulate at the opamp inputs. A passive RF filter
is therefore added to each input, in the shape of R5, C3 and R6, C4, so the capacitors will
shunt incoming RF to ground before it reaches the opamp. Put these as close to the input
socket as possible to minimise radiation inside the enclosure.

I explained earlier in this chapter when looking at unbalanced inputs that it is not easy
to guess what the maximum source impedance will be, given the existence of “passive
preamplifiers” and valve equipment. Neither are likely to have a balanced output, unless
implemented by transformer, but either might be used to feed a balanced input, and so the
matter needs thought.

In the unbalanced input circuit resistances had to be kept as low as practicable to minimise
the generation of Johnson noise that would compromise the inherently low noise of the
stage. The situation with a standard balanced input is however different from the unbalanced
case as there have to be resistances around the opamp, and they must be kept up to a
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Figure 16.9: Balanced input amplifier with the extra components required for DC blocking and
EMC immunity.

Line Inputs and Outputs 483



certain value to give acceptably high input impedances; this is why a balanced input like
this one is much noisier. We could therefore make R5 and R6 much larger without a
measurable noise penalty if we reduce R1 and R3 accordingly to keep unity gain. In
Figure 16.9 R5 and R6 are kept at 100Ω, so if we assume 50Ω output resistances in
both legs of the source equipment, then we have a total of 150Ω, and 150Ω and 100 pF
give −3 dB at 10.6 MHz. Returning to a possible passive preamplifier with a 10 kΩ
potentiometer, its maximum output impedance of 2.5 k plus 100Ω with 100 pF gives
−3 dB at 612 kHz, which remains well clear of the top of the audio band.

As with the unbalanced input, replacing R5 and R6 with small inductors will give much
better RF filtering but at increased cost. Ideally a common-mode choke (two bifilar
windings on a small toroidal core) should be used as this improves performance. Check
the frequency response to make sure the LC circuits are well-damped and not peaking
at the turnover frequency.

C5 and C6 are DC-blocking capacitors. They must be rated at no less than 35 V to protect
the input circuitry, and are the non-polarised type as external voltages are of unpredictable
polarity. The lowest input impedance that can occur with this circuit when using 10 kΩ
resistors, is, as described above, 6.66 kΩ when it is being driven in the balanced mode.
The low-frequency rolloff is therefore −3 dB at 0.51 Hz. This may appear to be undesirably
low, but the important point is not the LF rolloff but the possible loss of CMRR at low
frequencies due to imbalance in the values of C5 and C6; they are electrolytics with a
significant tolerance. Therefore they should be made large so their impedance is a small
part of the total input impedance. 47 uF is shown here but 100 uF or 220 uF can be used
to advantage if there is the space to fit them in. The low-end frequency response must be
defined somewhere in the input system, and the earlier the better, to prevent headroom
or linearity being affected by subsonic disturbances, but this is not a good place to do it.
A suitable time-constant immediately after the input amplifier is the way to go, but
remember that capacitors used as time-constants may distort unless they are NP0 ceramic,
polystyrene, or polypropylene. See the chapter on passive components for more on this.

R7, R8 are DC drain resistors to prevent charges lingering on C5 and C6. These can be
made lower than for the unbalanced input as the input impedances are lower, so a value of
say 100 kΩ rather than 220 kΩ makes relatively little difference to the total input
impedance.

A useful property of this kind of balanced amplifier is that it does not go mad when the inputs
are left open-circuit—in fact it is actually less noisy than with its inputs shorted to ground.
This is the opposite of the “normal” behaviour of a high-impedance unterminated input. This
is because two things happen; open-circuiting the hot input doubles the resistance seen by the
non-inverting input of the opamp, raising its noise contribution by 3 dB. However, opening
the cold input makes the noise gain drop by 6 dB, giving a net drop in noise output of
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approximately 3 dB. This of course refers only to the internal noise of the amplifier stage,
and pickup of external interference is always possible on an unterminated input. The input
impedances here are modest, however, and the problem is less serious than you might think.
Having said that, deliberately leaving inputs unterminated is always bad practice.

If this circuit is built with four 10 kΩ resistors and a 5532 opamp section, the noise output is
−104.8 dBu with the inputs terminated to ground via 50Ω resistors. As noted above, the input
impedance of the cold input is actually lower than the resistor connected to it when working
balanced, and if it is desirable to raise this input impedance to 10 kΩ, it could be done by
raising the four resistors to 16 kΩ; this slightly degrades the noise output to −103.5 dBu.
Table 16.7 gives some examples of how the noise output depends on the resistor value; the
third column gives the noise with the input unterminated, and shows that in each case the
amplifier is about 3 dB quieter when open-circuited. It also shows that a useful improvement
in noise performance is obtained by dropping the resistor values to the lowest that a 5532 can
easily drive (the opamp has to drive the feedback resistor), though this usually gives
unacceptably low input impedances. More on that at the end of the chapter.

16.19 Variations on the Balanced Input Stage

I now give a collection of balanced input circuits that offer advantages or extra features
over the standard balanced input configuration. The circuit diagrams often omit stabilising
capacitors, input filters, and DC blocking capacitors to improve the clarity of the basic
principle. They can easily be added; in particular bear in mind that a stabilising capacitor
like C1 in Figure 16.9 is often needed between the opamp output and the negative input to
guarantee freedom from high-frequency oscillation.

16.20 Combined Unbalanced and Balanced Inputs

If both unbalanced and balanced inputs are required, it is extremely convenient if it can be
arranged so that no switching between them is required. Switches cost money, mean more
holes in the metalwork, and add to assembly time. Figure 16.10 shows an effective way

Table 16.7: Noise Output Measured from Simple Balanced Amps
Using a 5532 Section

R Value
Ω

50Ω Terminated
Inputs

Open-Circuit
Inputs

Terminated/Open
Difference

100 k −95.3 dBu −97.8 dBu 2.5 dBu
10 k −104.8 dBu −107.6 dBu 2.8 dBu
2 k0 −109.2 dBu −112.0 dBu 2.8 dBu

820 −111.7 dBu −114.5 dBu 2.8 dBu
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to implement this. In balanced mode, the source is connected to the balanced input and
the unbalanced input left unterminated. In unbalanced mode, the source is connected to the
unbalanced input and the balanced input left unterminated, and no switching is required. It
might appear that these unterminated inputs would pick up extra noise, but in practice this
is not the case. It works very well and I have used it successfully in high-end equipment for
two prestigious manufacturers.

As described above, in the world of hi-fi, balanced signals are at twice the level of the
equivalent unbalanced signals, and so the balanced input must have a gain of ½ or −6 dB
relative to the unbalanced input to get the same gain by either path. This is done here by
increasing R1 and R3 to 20 kΩ. The balanced gain can be greater or less than unity, but the
gain via the unbalanced input is always one. The differential gain of the amplifier and the
constraints on the component values for balanced operation are shown in Figure 16.10, and
are not repeated in the text to save space. This applies to the rest of the balanced inputs in
this chapter.

There are two minor compromises in this circuit which need to be noted. Firstly, the noise
performance in unbalanced mode is worse than for the dedicated unbalanced input described
earlier in this chapter, because R2 is effectively in the signal path and adds Johnson noise.
Secondly, the input impedance of the unbalanced input cannot be very high because it is set
by R4, and if this is increased in value all the resistances must be increased proportionally
and the noise performance in balanced mode will be markedly worse. It is important that
only one input cable should be connected at a time, because if an unterminated cable is left
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Figure 16.10: Combined balanced and unbalanced input amplifier with no switching required, but
some performance compromises.
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connected to an unused input, the cable capacitance to ground can cause frequency response
anomalies and might in adverse circumstances cause HF oscillation. A prominent warning
on the back panel and in the manual is a very good idea.

16.21 The Superbal Input

This version of the balanced input amplifier, shown in Figure 16.11, has been referred to as
the “Superbal” circuit because it gives equal impedances into the two inputs for differential
signals. It was originated by David Birt of the BBC; see [7]. With the circuit values shown
the differential input impedance is exactly 10 kΩ via both hot and cold inputs. The
common-mode input impedance is 20 kΩ as before.

In the standard balanced input R4 is connected to ground, but here its lower end is actively
driven with an inverted version of the output signal, giving symmetry. The increased
amount of negative feedback reduces the gain with four equal resistors to –6 dB instead of
unity. The gain can be reduced below −6 dB by giving the inverter a gain of more than
one; if R1, R2, R3, and R4 are all equal, the gain is 1/(A+1), where A is the gain of the
inverter stage. This is of limited use as the inverter U1:B will now clip before the forward
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Figure 16.11: The Superbal balanced input requires another amplifier but has equal
input impedances.
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amplifier U1:A, reducing headroom. If the gain of the inverter stage is gradually reduced
from unity to zero, the stage slowly turns back into a standard balanced amplifier with the
gain increasing from −6 dB to unity and the input impedances becoming less and less equal.
If a gain of less than unity is required it should be obtained by increasing R1 and R3.

R5 and R6 should be kept as low in value as possible to minimise Johnson noise; there is
no reason why they have to be equal in value to R1, etc. The only restriction is the ability
of U1:A to drive R6 and U1:B to drive R5, both resistors being effectively grounded at one
end. The capacitor C1 will almost certainly be needed to ensure HF stability; the value in
the figure is only a suggestion. It should be kept as small as possible because reducing the
bandwidth of the inverter stage impairs CMRR at high frequencies.

16.22 Switched-Gain Balanced Inputs

A balanced input stage that can be switched to two different gains while maintaining CMRR is
very useful. Equipment often has to give optimal performance with both semi-pro (‒7.8 dBu)
and professional (+4 dBu) input levels. If the nominal internal level of the system is in the
normal range of −2 to −6 dBu, the input stage must be able to switch between amplifying and
attenuating, while maintaining good CMRR in both modes.

The brute-force way to change gain in a balanced input stage is to switch the values of either
R1 and R3, or R2 and R4, in Figure 16.4, keeping the pairs equal in value to maintain the
CMRR; this needs a double–pole switch for each input channel. A much more elegant
technique is shown in Figure 16.12. Perhaps surprisingly, the gain of a differential amplifier
can be manipulating by changing the drive to the feedback arm (R2 etc.) only, and leaving
the other arm R4 unchanged, without affecting the CMRR. The essential point is to keep the
source resistance of the feedback arm the same, but drive it from a scaled version of the
opamp output. Figure 16.12 does this with the network R5, R6, which has a source resistance

−7.8dBu at high gain

+4.0dBu at low gain
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Figure 16.12: A balanced input amplifier with gain switching that maintains good CMRR.
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made up of 6k8 in parallel with 2k2, which is 1.662 kΩ. This is true whether R6 is switched
to the opamp output (low gain setting) or to ground (high gain setting), for both have
effectively zero impedance. For low gain the negative feedback is not attenuated, but fed
through to R2 and R7 via R5, R6 in parallel. For high gain R5 and R6 become a potential
divider, so the amount of feedback is decreased and the gain increased. The value of R2 + R7
is reduced from 7k5 by 1.662 kΩ to allow for the source impedance of the R5, R6 network;
this requires the distinctly non-standard value of 5.838 kΩ, which is here approximated by R2
and R7 which give 5.6 kΩ + 240Ω = 5.840 kΩ. This value is the best that can be done with
E24 resistors; it is obviously out by 2Ω, but that is much less than a 1% tolerance on R2, and
so will have only a vanishingly small effect on the CMRR.

Note that this stage can attenuate as well as amplify if R1, R3 are set to be greater than R2,
R4, as shown here. The nominal output level of the stage is assumed to be −2 dBu; with the
values shown the two gains are −6.0 and +6.2 dB, so +4 dBu and −7.8 dBu respectively
will give −2 dBu at the output. Other pairs of gains can of course be obtained by changing
the resistor values; the important thing is to stick to the principle that the value of R2 + R7
is reduced from the value of R4 by the source impedance of the R5, R6 network. With the
values shown the differential input impedance is 11.25 kΩ via the cold and 22.5 kΩ via the
hot input. The common-mode input impedance is 22.5 kΩ.

Switched-gain inputs like this one have the merit that there are no issues with balance
between channels because the gain is defined by relatively precise fixed resistors, rather than
ganged pots, as used in the next section. This neat little circuit has the added advantage that
nothing bad happens when the switch is moved with the circuit operating. When the wiper is
between contacts you simply get a gain intermediate between the high and low settings,
which is pretty much the ideal situation. Make sure the switch is a break-before-make type to
avoid shorting the opamp output to ground when the switch is moved.

16.23 Variable-Gain Balanced Inputs

The beauty of a variable-gain balanced input is that it allows you to get the incoming signal
up or down to the nominal internal level as soon as possible, minimising both the risk of
clipping and contamination with circuit noise. The obvious method of making a variable-
gain differential stage is to use dual-gang pots to vary either R1, R3 or R2, R4 together, to
maintain CMRR. This is clumsy, and gives a CMRR that is both bad and highly variable
due to the inevitable mismatches between pot sections. For a stereo input the required
4-gang pot is an unappealing proposition.

There is however a way to get a variable gain with good CMRR, using a single pot section.
The principle is essentially the same as for the switched-gain amplifier above; keep constant
the source impedance driving the feedback arm, but vary the voltage applied. The principle
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is shown in Figure 16.13. To the best of my knowledge I invented this circuit in 1982; any
comments on this point are welcome. The feedback arm R2 is driven by voltage-follower
U1:B. This eliminates the variations in source impedance at the pot wiper, which would
badly degrade the CMRR. R6 limits the gain range and R5 modifies the gain law to give it
a more usable shape. When the pot is fully up (minimum gain) R5 is directly across the
output of U1:A, so do not make it too low in value. If a centre-detent pot is used to give a
default gain setting, this may not be very accurate as it partly depends on the ratio of pot
track (no better than +/−10% tolerance, and sometimes worse) to 1% fixed resistors.

This configuration is very useful as a general line input with an input sensitivity range of −20
to +10 dBu. For a nominal output of 0 dBu, the gain of Figure 16.13 is +20 to −10 dB, with
R5 chosen for 0 dB gain at the central wiper position. An opamp in a feedback path may
appear a dubious proposition for HF stability, because of the extra phase-shift it introduces,
but here it is working as a voltage-follower, so its bandwidth is maximised and in practice the
circuit is dependably stable.

Circuitry like this is ideal for single-channel applications, but can create difficulties when
used in stereo or other multi-channel formats, because of matching problems in ganged
potentiometers. This version of the circuit has a fairly wide gain range, and it is necessary
to use an RD (anti-log 10%) law pot to get a reasonable linear-in-dB control law. This
introduces gain errors between nominal identical channels because firstly, the value of the
pot track is not controlled anything like as closely as that of a 1% resistor and so the effect
of R5 on the pot law will vary, which leads to gain differences between the channels.
Secondly, any log or anti-log pot law is made up of dual resistance sections and this
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Figure 16.13: Variable gain balanced input amplifier.
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introduces more errors. If a more restricted gain range is being used then it may be possible
to use a linear pot and rely on the loading effect of R5 to give an acceptable control law.
The whole problem of multi-channel gain control with potentiometers of limited accuracy is
examined in detail in [8].

16.24 High Input Impedance Balanced Inputs

We saw earlier that high input impedances are required to maximise CMRR of a balanced
interconnection, but the input impedances offered by the standard balanced circuit are
limited by the need to keep the resistor values down to control Johnson noise. High-
impedance balanced inputs are also useful for interfacing to valve equipment in the strange
world of retro hi-fi. Adding output cathode-followers to valve circuitry is expensive and
consumes a lot of extra power, and so the output is often taken directly from the anode of a
gain-stage, and even a so-called bridging load of 10 kΩ may seriously compromise the
distortion performance and output capability of the source equipment.

Figure 16.14 shows a configuration where the input impedances are determined only by
the bias resistances R1 and R2. They are shown here as 100 kΩ, but may be considerably
higher if opamp bias currents permit. A useful property of this circuit is that adding a
single resistor Rg increases the gain, but preserves the circuit balance and CMRR. This
configuration cannot be set to attenuate because the gain of an opamp with series feedback
cannot be reduced below unity.
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It is of course always possible to give a basic balanced input a high input impedance by
putting unity-gain buffers in front of each input, but that uses three opamp sections rather
than two. Sometimes, however, it is appropriate. Much more on that later.

We saw earlier that the simple balanced input is surprisingly quiet and well-behaved when
its input are unterminated. This is not the case with this configuration, which because of its
high input impedances will be both noisy and susceptible to picking-up external interference
if either input is left open-circuit.

16.25 The Instrumentation Amplifier

Almost every book on balanced or differential inputs includes the three-opamp circuit of
Figure 16.15 and praises it as the highest expression of the differential amplifier. It is called
the instrumentation amplifier configuration because of its undoubted superiority for data-
acquisition. (Specialised ICs exist that are sometimes also called instrumentation amplifiers or
in-amps; these are designed for very high CMRR data-acquisition. They are expensive and in
general not optimised for audio work.)

Like the low-noise balanced amplifiers described later, the instrumentation amplifier is split
into a first and second stage. The differential input stage buffers the balanced line from the
input impedances of the final differential stage; the four resistances around the latter can
therefore be made much lower in value, reducing Johnson noise and the effects of current
noise significantly, while keeping the CMRR benefits of presenting high input impedances to
the balanced line. The other feature, which is usually much more emphasised because of its
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unquestionable elegance, is that the dual input stage, with its shared feedback network R3,
R4, R5, can be set to have a high differential gain by giving R4 a low value, but its common-
mode gain is always unity; this property is not affected by mismatches in R3 and R5. The
final amplifier then does its usual job of common-mode rejection, and the combined CMRR
can be very good indeed if the first-stage gain is high.

Unfortunately a high first-stage gain is not very often useful for audio balanced line inputs.
A data-acquisition application like ECG monitoring may need a gain of thousands of times,
which will allow a stunning CMRR without using precision resistors, but the cruel fact is
that in audio use gain in the input amplifier is often simply not wanted. In a typical opamp
signal path, the nominal internal level is usually between −6 and 0 dBu, and if the level of
the incoming balanced signal is at the professional level of +4 dBu, then what you need is
6 dB of attenuation rather than any gain. Gain now and attenuation later must introduce
what can only be called a headroom bottleneck. If the incoming level was the semi-pro
−7.8 dBu then a small amount of gain could be introduced, but then the CMRR advantage
would be equally small, and certainly not worth the cost of the extra circuitry.

However, active crossovers are a special case. Chapter 14 shows how running active crossover
circuitry at a much higher internal level than is usual in audio equipment is entirely practical.
Chapter 19 demonstrates that the real-life noise benefits of a balanced input amplifier with a
gain of four times (12 dB) and an internal level of 3 Vrms are impressive. If the balanced input
is an instrumentation amplifier with all the four times gain in its first stage, there is a measured
CMRR improvement of a very real 12 dB, and there is also a most useful 4.5 dB reduction in
the noise output of the balanced amplifier compared with conventional methods. This is
because the first stage works under better noise conditions than the second stage. This can be
taken further by giving the first stage a gain of 8 times and the second stage 0.5 times without
headroom penalty; CMRR is now improved by 18 dB and noise out reduced by 5.3 dB.

16.26 Transformer Balanced Inputs

When it is essential that there is no galvanic connection (i.e., no electrical conductor)
between two pieces of equipment, transformer inputs are indispensable. They are also
useful if EMC conditions are severe. Figure 16.16 shows a typical transformer input. The
transformer usually has a 1:1 ratio, and should have an inter-winding screen, which must
be earthed to optimise the high-frequency CMRR, and minimise noise pickup and EMC
troubles. If the transformer is in a metal shielding can this needs to be grounded to reduce
noise pickup; round cans can be held in a metal capacitor clip connected to ground.

The transformer secondary must see a high impedance as this is reflected to the primary
and represents the input impedance; here it is set by R2, and a buffer drives the circuitry
downstream. In addition, if the secondary loading is too heavy there will be increased
transformer distortion at low frequencies. Line input transformers are built with small cores
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and are only intended to deliver very small amounts of power; they are not interchangeable
with line output transformers. A most ingenious approach to dealing with this distortion
problem by operating the input transformer core at near-zero flux was published by Paul
Zwicky in 1986 [9]; unfortunately two transformers are required.

There is a bit more to correctly loading the transformer secondary. If it is simply loaded
with a high-value resistor there will be peaking of the frequency response due to resonance
between the transformer leakage inductance and the winding capacitance [10]. This is
shown in Figure 16.17, where a Sowter 3276 line input transformer (a high-quality

Figure 16.17: Optimising the frequency response of a transformer balanced input by placing a
Zobel network across the secondary winding.
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Figure 16.16: A transformer balanced input. R1 and C1 are the Zobel network that damps the
transformer secondary resonance.
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component) was given a basic resistive loading of 100 kΩ. The result was Trace A, which
has a 10 dB peak around 60 kHz. This is bad not only because it accentuates the effect of
out-of-band noise, but because it intrudes on the audio frequency response, giving a lift of
1 dB at 20 kHz. Reducing the resistive load R2 would damp the resonance, but it would
also reduce the input impedance. The answer is to add a Zobel network, that is, a resistor
and capacitor in series, across the secondary; this has no effect except at high frequencies.
The first attempt used R1 = 2k7 and C1 = 1 nF, giving Trace B, where the peaking has been
reduced to 4 dB around 40 kHz, but the 20 kHz lift is actually slightly greater. R1 = 2k7 and
C1 = 2 nF gave Trace C, which is a bit better in that it only has a 2 dB peak. A bit more
experimentation ended up with R1 = 3k3 and C1 = 4.3 nF (3n3 + 1 nF) and yielded Trace D,
which is pretty flat, though there is a small droop around 10 kHz. The Zobel values are
fairly critical for the flattest possible response, and must certainly be adjusted if the
transformer type is changed.

No discussion on transformer coupling is complete without pointing out that transformers
have poor linearity at low frequencies- orders of magnitude worse than any electronic
circuitry. A line input transformer is lightly loaded (by 22 kΩ in Figure 16.16) but this does
not reduce the LF distortion, which comes as the inharmonious third harmonic. What does
affect it is the source impedance feeding it—50Ω can easily double the distortion compared
with a negligible source impedance, and you’re not likely to see lower than 50Ω unless the
source equipment has been deliberately designed with so-called “zero-impedance” output
stages; these are described in Chapter 17 on line outputs. Fortunately, the signal levels in
the bottom octave of the audio band are usually something like 10–12 dB lower than the
maximum amplitudes, which occur in the middle frequencies, and this helps to ease the
situation a bit; see Chapter 14 on system design for more on the amplitude/frequency
distribution of musical signals.

Transformers also have the traditional disadvantages of size, weight, and cost. With these issues
to grapple with, you can see why people don’t design in transformers unless they really have to.

16.27 Input Overvoltage Protection

Input overvoltage protection is not common in hi-fi applications, but is regarded as essential in
most professional equipment. The normal method is to use clamping diodes, as shown in Figure
16.18, that prevent certain points in the input circuitry from moving outside the supply rails.

This is straightforward, but there are two points to watch. Firstly, the ability of this circuit
to withstand excessive input levels is not without limit. Sustained overvoltages may burn
out R5 and R6, or pump unwanted amounts of current into the supply rails; this sort of
protection is mainly aimed at transients. Secondly, diodes have a non-linear junction
capacitance when they are reverse biased, so if the source impedance is significant the
diodes will cause distortion at high frequencies. To quantify this problem here are the
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results of a few tests. If Figure 16.18 is fed from the low impedance of the usual kind of
line output stage, the impedance at the diodes will be about 1 kΩ and the distortion induced
into an 11 Vrms 20 kHz input will be below the noise floor. However, if the source impedance
is high so the impedance at the diodes is increased to 10 kΩ, with the same input level, the
THD at 20 kHz was degraded from 0.0030% to 0.0044% by adding the diodes. I have thought
up a rather elegant way to eliminate this effect completely, but being a mercenary fellow
I hope to sell it to someone.

16.28 Noise and Balanced Inputs

So far we have not said much about the noise performance of balanced inputs, though on our
way through the chapter we have noted that standard balanced input amplifier constructed with
four 10 kΩ resistors and a 5532 section has the relatively high noise output of −104.8 dBu with
both its inputs terminated by 50Ω to ground. That value of 50Ω is in no way critical because
its value is so much lower than that of the 10 kΩ resistors.

When evaluating some sorts of input amplifier which have a well-defined input load, such as
microphone preamplifiers or moving-magnet RIAA preamplifiers, it is useful to state the
Noise Figure (NF). This is the difference in dB between what the Johnson noise from the
input load would be if it was amplified by a theoretical noiseless amplifier, and the real noise
output with the real amplifier. It is a powerful tool as it indicates at once how far short of
perfection a design falls. Evaluating the NF of a microphone preamplifier is straightforward as
the input load is usually treated as a pure resistance of 200Ω; NFs of 1 or 2 dB can be
obtained easily using a combination of discrete BJTs as input devices, though usually only
at high gains because otherwise the Johnson noise from the gain pot resistance degrades
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Figure 16.18: Input overvoltage protection for a balanced input amplifier.
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things [12]. The situation with a moving-magnet RIAA preamplifier is more complex as the
input load has a high value of inductance as well as series resistance, and this has powerful
effects on the noise generated both by the amplifier and the input loading resistance [13].
Nonetheless, NFs of 3 dB or so are possible using 5532 or 5534 opamps for the input stage.

The situation is rather different if we try to apply this to a balanced input amplifier. Take
the standard balanced input with its four 10 kΩ resistors, 5532 section, and both inputs
terminated by 50Ω to ground. The Johnson noise from each 50Ω resistor is −135.2 dBu
over a 22 kHz bandwidth at 25°C; the noise from both together is 3 dB more because the
two noise sources are uncorrelated. This means that the noise voltage at the input is
−132.2 dBu, a very low level in anyone’s terms. Unfortunately, the noise output from the
stage is −104.8 dBu, giving us a Noise Figure of 27.4 dB. In most fields of electronic
endeavour this would be regarded as truly appalling, and fit only for the dustbin. However,
simple balanced input amplifiers of this type are widely used in the professional audio
industry, so clearly Noise Figures are in this case not that useful a figure of merit.

What NFs do is to show us what room there is for improvement in our design. 27.4 dB is a
lot of room, and in the next section we will attempt to cut the NF down to size.

16.29 Low-Noise Balanced Inputs

I have remarked several times that the standard balanced input amplifier with four 10 kΩ
resistors shown in Figure 16.19a is markedly noisier than an unbalanced input like that in
Figure 16.1. The unbalanced input stage, with its input terminated by 50Ω to ground, has a
noise output of −119.0 dBu over the usual 22–22 kHz bandwidth. If the balanced circuit is
built with 10 kΩ resistors and a 5532 section, the noise output is −104.8 dBu with the
inputs similarly terminated. This is a big difference of 14.2 dB.

In the hi-fi world in particular, where an amplifier may have both unbalanced and balanced
inputs, most people feel that this is the wrong way round. Surely the balanced input, with
its professional XLR connector and its much-vaunted rejection of ground noise, should
show a better performance in all departments? Well, it does—except as regards internal
noise, and a 14 dB discrepancy is both clearly audible and hard to explain away. This
section explains how to design it away instead.

We know that the source of the extra noise is the relatively high resistor values around the
opamp (see Table 16.7 earlier in the chapter), but these cannot be reduced in the simple
balanced input amplifier without reducing the input impedances below what is acceptable.
The answer is to lower the resistor values but buffer them from the input with a pair of
voltage-followers; this arrangement is shown in Figure 16.19b. 5532s are a good choice for
this as they combine low voltage noise with low distortion and good load-driving capability.
Since the input buffers are voltage-followers with 100% feedback, their gain is very

Line Inputs and Outputs 497



accurately defined at unity and the CMRR is therefore not degraded; CMRR is still defined
by the resistor tolerances, and by the bandwidth of the differential opamp. In fact, the
overall CMRR for the balanced link is likely to be improved, as we now have equal hot and
cold input impedances in all circumstances, and we can make them much higher than the
usual balanced input impedances. Figures 16.19b to 16.19d show 47 kΩ input resistors, but
these could easily be raised to 100 kΩ. The offset created by the input bias current flowing
through this resistance needs to be watched, but it should cause no external troubles if the
usual blocking capacitors are used.

There is a limit to how far the four resistors can be reduced, as the differential stage has to be
driven by the input buffers, and it also has to drive its own feedback arm. If 5532s are used a
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safe value that gives no measurable deterioration of the distortion performance is about
820Ω, and an 5532 differential stage alone (without the buffers) and 4 × 820Ω resistors gives
a noise output of −111.7 dBu, which is 6.6 dB lower than the standard 4 × 10 kΩ version.
Adding the two input buffers degrades this only slightly to −110.2 dB, because we are adding
only the voltage noise component of the two new opamps, and we are still 5.4 dB quieter than
the original 4 × 10 kΩ version. It is interesting point that we now have three opamps in the
signal path instead of one, but we still get a significantly lower noise level.

This might appear to be all we can do; it is not possible to reduce the value of the four
resistors around the differential amplifier any further without compromising linearity.
However, there is almost always some way to go further in the great game that is electronics,
and here are three possibilities. A step-up transformer could be used to exploit the low source
impedance (remember we are still assuming the source impedances are 50Ω) and it might
well work superbly in terms of noise alone, but transformers are always heavy, expensive,
susceptible to magnetic fields, and of doubtful low-frequency linearity. We would also very
quickly run into headroom problems; balanced line input amplifiers are normally required to
attenuate rather than amplify.

We could design a discrete-opamp hybrid stage with discrete input transistors, which are
quieter than those integrated into IC opamps, coupled to an opamp to provide raw loop
gain; this can be quite effective but you need to be very careful about high-frequency
stability, and it is difficult to get an improvement of more than 6 dB. Thirdly, we could
design our own opamp using all discrete parts; this approach tends to have less stability
problems as all circuit parameters are accessible, but it definitely requires rather specialised
skills, and the result takes up a lot of PCB area.

Since none of those three approaches are appealing, now what? One of the most useful
techniques in low-noise electronics is to use two identical amplifiers so that the gains add
arithmetically, but the noise from the two separate amplifiers, being uncorrelated, partially
cancels. Thus we get a 3 dB noise advantage each time the number of amplifiers used is
doubled. This technique works very well with multiple opamps; let us apply it and see how
far it may be usefully taken.

Since the noise of a single 5532-section unity-gain buffer is only −119.0 dBu, and the noise
from the 4 × 820Ω differential stage (without buffers) is a much higher −111.7 dBu, the
differential stage is clearly the place to start work. We will begin by using two identical
4 × 820Ω differential amplifiers as shown in the top section of Figure 16.19c, both driven
from the existing pair of input buffers. This will give partial cancellation of both resistor
and opamp noise from the two differential stages if their outputs are summed. The main
question is how to sum the two amplifier outputs; any active solution would introduce another
opamp, and hence more noise, and we would almost certainly wind up worse off than when we
started. The answer is however, beautifully simple. We just connect the two amplifier outputs
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together with 10 Ω resistors; the gain does not change but the noise output drops. The signal
output of both amplifiers is nominally the same, so no current should flow from one opamp
output to the other. In practice there will be slight gain differences due to resistor tolerances,
but with 1% resistors I have never experienced any hint of a problem. The combining resistor
values are so low at 10Ω that their Johnson noise contribution is negligible.

The use of multiple differential amplifiers has another advantage—the CMRR errors are also
reduced in the same way that this the noise is reduced. This is also similar to the use of multiple
resistors or capacitors to improve the accuracy of the total value, as explained in Chapter 12.

We therefore have the arrangement of Figure 16.19c, with single input buffers, (i.e., one
per input) and two differential amplifiers, and this reduces the noise output by 2.3 dB to
−112.5 dBu, which is quieter than the original 4 × 10 kΩ version by an encouraging 7.4 dB.
We do not get a full 3 dB noise improvement because both differential amplifiers are
handling the noise from the input buffers, which is correlated and so is not reduced by
partial cancellation. The contribution of the input buffer noise is further brought out if we
take the next step of using four differential amplifiers. There is of course nothing special
about using amplifiers in powers of two. It is perfectly possible to use three or five
differential amplifiers in the array, which will give intermediate amounts of noise reduction.
If you have a spare opamp section, then put it to work!

So, leaving the input buffers unchanged, we use them to drive an array of four differential
amplifiers. These are added on at the dotted lines in the lower half of Figure 16.19c. We get a
further improvement, but only by 1.5 dB this time. The output noise is down to −114.0 dBu,
quieter than the original 4 × 10 kΩ version by 8.9 dB. You can see that at this point we are
proceeding by decreasing steps, as the input buffer noise is starting to dominate, and there
seems little point in doubling up the differential amplifiers again; the amount of hardware
could be regarded as a bit excessive, and so would the PCB area occupied. The increased
loading on the input buffers is also a bit of a worry.

A more fruitful approach is to tackle the noise from the input buffers, by doubling them up
as in Figure 16.19d, so that each buffer drives only two of the four differential amplifiers.
This means that the buffer noise will also undergo partial cancellation, and will be reduced
by 3 dB. There is however still the contribution from the differential amplifier noise, and so
the actual improvement on the previous version is 2.2 dB, bringing the output noise down to
−116.2 dBu, which is quieter than the original 4 × 10 kΩ version by a thumping 11.1 dB.
Remember that there are two inputs, and “double buffers” means two buffers per hot and
cold input, giving a total of four in the complete circuit.

Since doubling up the input buffers gave us a useful improvement, it’s worth trying again,
so we have a structure with quad buffers and four differential amplifiers, as shown in
Figure 16.20, where each differential amplifier now has its very own buffer. This improves
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on the previous version by a rather less satisfying 0.8 dB, giving an output noise level of
−117.0 dBu, quieter than the original 4 × 10 kΩ version by 11.9 dB. The small improvement
we have gained indicates that the focus of noise reduction needs to be returned to the
differential amplifier array, but the next step there would seem to be using eight amplifiers,
which is not very appealing. Thoughts about ears of corn on chessboards tend to intrude at
this point.

This is a good moment to pause and see what we have achieved. We have built a
balanced input stage that is quieter than the standard balanced input by 11.9 dB, using
standard components of low cost. We have used increasing numbers of them, but the total
cost is still small compared with enclosures, power supplies, etc. On the other hand, the
power consumption is naturally several times greater. The technology is highly
predictable and the noise reduction reliable; in fact it is bullet-proof. The linearity is as
good as that of a single opamp of the same type, and in the same way there are no HF
stability problems.

What we have not done is build a balanced input that is quieter than the unbalanced one—we
are still 2.0 dB short of that target, but at least we have reached a point where the balanced
input is not obviously noisier. Earlier we evaluated the Noise Figure of the standard 4 × 10 kΩ
balanced input and found it was a startling 27.4 dB; our new circuit here has a Noise Figure
of 15.2 dB, which looks a good deal more respectable.

The noise results, including Noise Figures, are all summarised in Table 16.9 at the end of
this chapter.

16.30 Low-Noise Balanced Inputs in Real Life

Please don’t think that this examination of low-noise input options is merely a voyage
off into pure theory. It has real uses and has been applied in practice. The Cambridge
Audio 840W power amplifier, a design of mine which, I might modestly mention in
passing, won a CES Innovation Award in January 2008. This unit has both unbalanced
and balanced inputs, and conventional technology would have meant that the balanced
inputs would have been significantly the noisier of the two. Since the balanced input is
the “premium” input, many people would think there was something amiss with this state
of affairs. We therefore decided the balanced input had to be quieter than the unbalanced
input. Using 5532s in an architecture similar to those outlined above, this requirement
proved straightforwardly attainable, and the final balanced input design was both
economical and quieter than its unbalanced neighbour by a dependable 0.9 dB. Two other
versions were evaluated that made the balanced input quieter than the unbalanced one by
2.8 dB, and by 4.7 dB, at somewhat greater cost and complexity. These were put away
for possible future upgrades.
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The Signal Transfer Company [11] manufactures a low-noise balanced input card based on these
principles which has 47 kΩ input impedances, unity gain, and a noise output of only −115 dBu.

16.31 Ultra-Low-Noise Balanced Inputs

In the section on low-noise balanced inputs above. we reclined briefly on our laurels, having
achieved an economical balanced input stage with output noise at the extremely low level of
−117.0 dBu. Regrettably this is still 2 dB noisier than a simple unbalanced input. It would be
wrong to conclude from this that the resources of electronic design are exhausted. At the end
of the noise-reduction sequence we were aware that the dominant noise source was currently
the differential amplifier array, and we shrank from doubling up again to use eight amplifiers
because of issues of cost and the PCB area occupied. We will take things another step by
taking a much more relaxed view of cost (as one does at the “high-end”), and see how that
changes the game. We will, however, retain some concern about PCB area.

An alternative way to make the differential amplifier array quieter is simply to use opamps
that are quieter. These will inevitably be more expensive—much more expensive—than the
ubiquitous 5532. Because of the low resistor values around the opamps we need to focus on
low voltage-noise rather than low current noise, and there are several that are significantly
better than the 5532, as shown by the typical noise density figures in Table 16.8.

Clearly moving to the 5534A will give a significant noise reduction, but since there is only a
single opamp per package, and external compensation is needed, the board area used will
be much greater. The new chip on the block is the LM4562, a bipolar opamp which has finally
surpassed the 5532 in performance. The input voltage noise density is typically 2.7 nV/√Hz,
substantially lower than the 5 nV/√Hz of the 5532. For applications with low source impedances,
this implies a handy noise advantage of 5 dB or more. The LM4562 is a dual opamp will not take
up more space. At the time of writing it is something like 10 times more expensive than the 5532.

Step One—we replace all four opamps in the differential amplifiers with LM4562s. They are
a drop-in replacement with no circuit adjustments required at all. We leave the quad 5532

Table 16.8: Voltage and Noise Densities for Low-Noise
Balanced-Input Opamp Candidates

Opamp
Voltage Noise Density

nV√Hz
Current Noise Density

pA√Hz

5532 5 0.7
5534A 3.5 0.4
LM4562 2.7 1.6
AD797 0.9 2
LT1028 0.85 1
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input buffers in place. The noise output drops by an impressive 1.9 dB, giving an output noise
level of −118.9 dBu, quieter than the original 4 × 10 kΩ version by 14.1 dB, and only 0.1 dB
noisier than the unbalanced stage.

Step Two—replace the quad 5532 buffers with quad LM4562 buffers. Noise falls by only
0.6 dB, the output being −119.5 dBu, but at last we have a balanced stage that is quieter
than the unbalanced stage, by a small but solid 0.5 dB.

One of the pre-eminent low-noise-with-low-source-resistance opamps is the AD797 from
Analog Devices, which has a remarkably low voltage noise at 0.9 nV/√Hz (typical at 1 kHz)
but it is a very expensive part, costing between 20 and 25 times more than a 5532 at the
time of writing. The AD797 has is a single opamp, while the 5532 is a dual, so the cost per
opamp is actually 40 to 50 times greater, and more PCB area is required, but the potential
improvement is so great we will overlook that.

Step Three—we replace all four opamps in the differential amplifiers with AD797s, putting
the 5532s back into the input buffers in the hope that we might be able to save money
somewhere. The noise output drops by a rather disappointing 0.4 dB, giving an output noise
level of −119.9 dBu, quieter than the original 4 × 10 kΩ version by 15.1 dB.

Perhaps putting those 5532s back in the buffers was a mistake? Our fourth and final move in
this game of electronic chess is to replace all the quad 5532 input buffers with dual (not quad)
AD797 buffers. This requires another four AD797s (two per input) and is once more not a
cheap strategy. We retain the four AD797s in the differential amplifiers. The noise drops by
another 0.7 dB yielding an output noise level of −120.6 dBu, quieter than the original 4× 10 kΩ
version by 15.8 dB, and quieter than the unbalanced stage by a satisfying 1.6 dB. You can do
pretty much anything in electronics with a bit of thought and a bit of money.

If however, we look at the Noise Figure for this final design, we feel a bit less happy.
Despite deploying some ingenious circuitry and a lot of premium opamps, we still have an
NF of 11.6 dB. We have not even managed to get the NF down to single figures, and so
there is plenty of scope yet for some creative design. The relatively high NF is essentially
because the reference input loads we are using are 50Ω resistors, which naturally generate a
very low level of Johnson noise (−136.2 dBu each). If we want to make more progress in
this direction we might start thinking about moving-coil preamp circuitry, which can achieve
NFs of less than 7 dB with an input load as low as 3.3Ω [14]. This can be achieved by
using special low-Rb discrete transistors as input devices, with an opamp to provide open-
loop gain. This sort of hybrid circuitry must be carefully designed to avoid HF stability
problems, whereas simply plugging in more opamps always works.

You are probably wondering what happened to the LT1028 lurking at the bottom of Table 16.8.
It is true that its voltage noise density is slightly better than that of the AD797, but there is a
subtle snag. As described in Chapter 13, the LT1028 has bias-current cancellation circuitry
which injects correlated noise currents into the two inputs. These will cancel if the impedances
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seen by the two inputs are the same, but in moving-magnet amplifier use the impedances differ
radically and the LT1028 is not useful in this application. The input conditions here are more
benign, but the extra complication is unwelcome and I have never used the LT1028 in audio
work. In addition, it is a single opamp with no dual version.

This is not of course the end of the road. The small noise improvement in the last step we
made tells us that the differential amplifier array is still the dominant noise source, and further
development would have to focus on this. A first step would be to see if the relatively high
current-noise of the AD797s is significant with respect to the surrounding resistor values. If
so, we need to see if the resistor values can be reduced without degrading linearity at full
output. We should also check the Johnson noise contribution of all those 820Ω resistors; they
are generating −123.5 dBu each at room temperature, but of course the partial cancellation
effect applies to them as well.

All these noise results are also summarised in Table 16.9 below.

Table 16.9: A Summary of the Noise Improvements Made to the Balanced Input Stage

Buffer
Type Amplifier

Noise
Output
dBu

Improvement
on Previous
Version dB

Improvement
Over 4 × 10 kΩ
Diff Amp dB

Noisier Than
Unbal Input

by: dB

Noise Figure
Ref 2 × 50Ω

dB

5532 voltage-
follower

−119.0 0 dB ref

None Standard diff
amp 10 K 5532

−104.8 0 0.0 dB ref 14.2 27.4

None Single diff amp
820 R 5532

−111.7 6.9 6.9 7.3 20.5

Single 5532 Single diff amp
820 R 5532

−110.2 5.4 5.4 8.8 22.0

Single 5532 Dual diff amp
820 R 5532

−112.5 2.3 7.4 6.5 19.7

Single 5532 Quad diff amp
820 R 5532

−114.0 1.5 9.2 5.0 18.2

Dual 5532 Quad diff amp
820 R 5532

−116.2 2.2 11.4 2.8 16.0

Quad 5532 Quad diff amp
820 R 5532

−117.0 0.8 12.2 2.0 15.2

Quad 5532 Quad diff amp
820 R LM4562

−118.9 1.9 14.1 0.1 13.3

Quad
LM4562

Quad diff amp
820 R LM4562

−119.5 0.6 14.7 −0.5 12.7

Quad 5532 Quad diff amp
820 R AD797

−119.9 0.4 15.1 −0.9 12.3

Dual AD797 Quad diff amp
820 R AD797

−120.6 0.7 15.8 −1.6 11.6
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CHAPTER 17

Line Outputs

17.1 Unbalanced Outputs

There are only two electrical output terminals for an unbalanced output—signal and ground.
However, the unbalanced output stage in Figure 17.1a is fitted with a three-pin XLR connector,
to emphasise that it is always possible to connect the cold wire in a balanced cable to the
ground at the output end and still get all the benefits of common-mode rejection if you have a
balanced input. If a two-terminal connector is fitted, the link between the cold wire and ground
has to be made inside the connector, as shown in Figure 16.2 in the chapter on line inputs.

The output amplifier in Figure 17.1a is configured as a unity-gain buffer, though in some
cases it will be connected as a series feedback amplifier to give gain. A non-polarised DC
blocking capacitor C1 is included; 100 uF gives a −3 dB point of 2.6 Hz with one of those
notional 600Ω loads. The opamp is isolated from the line shunt-capacitance by a resistor
R2, in the range 47–100Ω, to ensure HF stability, and this unbalances the hot and cold line
impedances. A drain resistor R1 ensures that no charge can be left on the output side of
C1; it is placed before R2, so it causes no attenuation. In this case the loss would only be
0.03 dB, but such minor errors can build up to an irritating level in a large system and it
costs nothing to avoid them.

If the cold line is simply grounded as in Figure 17.1a, then the presence of R2 degrades the
CMRR of the interconnection to an uninspiring −43 dB even if the balanced input at the
other end of the cable has infinite CMRR in itself and perfectly matched 10 kΩ input
impedances.

To fix this problem, Figure 17.1b shows what is called an impedance-balanced output. The
cold terminal is neither an input nor an output, but a resistive termination R3 with the same
resistance as the hot terminal output impedance R2. If an unbalanced input is being driven,
this cold terminal is ignored. The use of the word “balanced” is perhaps unfortunate as
when taken together with an XLR output connector it implies a true balanced output with
anti-phase outputs, which is not what you are getting. The impedance-balanced approach is
not particularly cost-effective, as it requires significant extra money to be spent on an XLR
connector. Adding an opamp inverter to make it a proper balanced output costs little more,
especially if there happens to be a spare opamp half available, and it sounds much better in
the specification.

The Design of Active Crossovers
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There is an example of the use of impedance-balancing in the active crossover design
example in Chapter 19; here the outputs come directly from low-impedance level-trim
controls, with output impedances that vary somewhat with the level settings, so compromise
values for the impedance-balancing resistances must be used.

Active crossover output stages may also incorporate level trim controls, mute switches, and
phase-invert switches. These features are covered in Chapter 14 on crossover system design.

17.2 Zero-Impedance Outputs

Both the unbalanced outputs shown in Figure 17.1 have series output resistors to ensure
stability when driving cable capacitance. This increases the output impedance and can lead
to increased crosstalk in some situations, notably when different signals are being passed
down the same signal cable. This is a particular problem when two or more layers of ribbon
cable are laid together in a “lasagne” format for neatness or to save space. In some cases
layers of grounded screening foil are interleaved with the cables, but this is rather expensive
and awkward to do, and does not greatly reduce crosstalk between conductors in the same
piece of ribbon. The only way to do this is to reduce the output impedance.

A simple but very effective way to do this is the so-called “zero-impedance” output
configuration. Figure 17.2a shows how the technique is applied to an unbalanced output
stage with 10 dB of gain. Feedback at audio frequencies is taken from outside isolating
resistor R3 via R2, while the HF feedback is taken from inside R3 via C2 so it is not
affected by load capacitance and stability is unimpaired. Using a 5532 opamp, the output
impedance is reduced from 68 Ohms to 0.24 Ohms at 1 kHz—a dramatic reduction that will
reduce purely capacitive crosstalk by an impressive 49 dB. The output impedance increases
to 2.4 Ohms at 10 kHz and 4.8 Ohms at 20 kHz as opamp open-loop gain falls with
frequency. The impedance-balancing resistor on the cold pin has been replaced by a link to
match the near-zero output impedance at the hot pin.
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Figure 17.1: Unbalanced outputs, (a) simple output, and (b) impedance-balanced output for
improved CMRR when driving balanced inputs.
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Figure 17.2b shows a refinement of this scheme with three feedback paths. Electrolytic coupling
capacitors can introduce distortion if they have more than a few tens of milliVolts of signal
across them, even if the time-constant is long enough to give a virtually flat LF response.
(This is looked at in detail in the chapter on passive components.) In Figure 17.2b most of the
feedback is now taken from outside C1, via R5, so it can correct capacitor distortion. The DC
feedback goes via R2, now much higher in value, and the HF feedback goes through C2 as
before to maintain stability with capacitive loads. R2 and R5 in parallel come to 10 kΩ so the
gain is the same. Any circuit with separate DC and AC feedback paths must be checked
carefully for frequency response irregularities, which may happen well below 10 Hz.

17.3 Ground-Cancelling Outputs

This technique, also called a ground-compensated output, appeared in the early 1980s in
mixing consoles. It allows ground voltages to be cancelled out even if the receiving equipment
has an unbalanced input; it prevents any possibility of creating a phase error by mis-wiring;
and it costs virtually nothing in itself though it does require a three-pin output connector.

Ground-cancelling (GC) separates the wanted signal from the unwanted ground voltage by
addition at the output end of the link, rather than by subtraction at the input end. If the
receiving equipment ground differs in voltage from the sending ground, then this difference
is added to the output signal so that the signal reaching the receiving equipment has the
same ground voltage superimposed upon it. Input and ground therefore move together and
the ground voltage has no effect, subject to the usual effects of component tolerances. The
connecting lead is wired differently from the more common unbalanced-out, balanced-in
situation, as now the cold line is be joined to ground at the input or receiving end.

An inverting unity-gain ground-cancel output stage is shown in Figure 17.3a. The cold pin
of the output socket is now an input, and has a unity-gain path summing into the main
signal going to the hot output pin to add the ground voltage. This path R3, R4 has a
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Figure 17.2: (a) Zero-impedance output; (b) zero-impedance output with NFB around
output capacitor.
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very low input impedance equal to the hot terminal output impedance so if it is used with a
balanced input, then the line impedances will be balanced, and the combination will still
work effectively. The 6 dB of attenuation in the R3-R4 divider is undone by the gain of two
set by R5, R6. It is unfamiliar to most people to have the cold pin of an output socket as a
low impedance input, and its very low input impedance minimises the problems caused by
mis-wiring. Shorting it locally to ground merely converts the output to a standard
unbalanced type. On the other hand, if the cold input is left unconnected then there will be
a negligible increase in noise due to the very low input resistance of R3.

This is the most economical GC output, but obviously a phase-inversion is not always
convenient. Figure 17.3b shows a non-inverting GC output stage with a gain of 6.6 dB. R5
and R6 set up a gain of 9.9 dB for the amplifier, but the overall gain is reduced by 3.3 dB
by attenuator R3, R4. The cold line is now terminated by R7, and any signal coming in
via the cold pin is attenuated by R3, R4 and summed at unity gain with the input signal.
A non-inverting GC stage must be fed from a very low impedance such as an opamp output
to work properly. There is a slight compromise on noise performance here because
attenuation is followed by amplification.

Ground-cancelling outputs are an economical way of making ground-loops innocuous when there
is no balanced input, and it is rather surprising they are not more popular; perhaps people find the
notion of an input pin on an output connector unsettling. In particular, GC outputs would appear
to offer the possibility of a quieter interconnection than the standard balanced interconnection
because a relatively noisy balanced input is not required; see Chapter 16 on line inputs. Ground-
cancelling outputs can also be made zero-impedance using the techniques described earlier.

17.4 Balanced Outputs

Figure 17.3c shows a balanced output, where the cold terminal carries the same signal as
the hot terminal but phase-inverted. This can be arranged simply by using an opamp stage
to invert the normal in-phase output. The resistors R3, R4 around the inverter should be

C2 47pF

R6 10K

In
R5

10K

R3
27R

R4
27R

C1
100U 35V NP

R1
22K

R2

56R5532

−
+

−
+

2

1

3

CN1

Output
Male XLR

−
+

2
1

3

C2 47 pF

R6 10K

R3
In

4K7

R5
4K7

5532

+
−

R4
10K

C1
100U 35V NP

R1
22K

R2

56R

Output
Male XLR

CN1

R7
56R

+

2
1

3

In

−
+

5532

C1
100U 35V NP

R2

R3

1 K
−
+

5532

R4

C3 100pF

1 K

C2
100U 35V NP

R5
22K

R6

68R

R1
22K

68R

Output
Male XLR

CN1

(a) (b) (c)

−

G
ro

un
d

G
ro

un
d

G
ro

un
d

Figure 17.3: (a) Inverting ground-canceling output; (b) non-inverting ground-canceling output;
(c) a true balanced output.
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as low in value as possible to minimise Johnson noise, because this stage is working at a
noise-gain of two, but bear in mind that R3 is effectively grounded at one end and its
loading, as well as the external load, must be driven by the first opamp. A unity-gain
follower is shown for the first amplifier, but this can be any other shunt or series feedback
stage as convenient. The inverting output if not required can be ignored; it must not be
grounded, because the inverting opamp will then spend most of its time clipping in current-
limiting, almost certainly injecting unpleasantly crunching distortion into the crossover
grounding system. Both hot and cold outputs must have the same output impedances
(R2, R6) to keep the line impedances balanced and the interconnection CMRR maximised.

It is vital to realise that this sort of balanced output, unlike transformer balanced outputs, by
itself gives no common mode rejection at all. It must be connected to a balanced input that
can subtract one output from another if ground noise is to be cancelled.

The advantage that this kind of balanced output has over an unbalanced output is that the total
signal level on the interconnection is increased by 6 dB, which if correctly handled can improve
the signal-to-noise ratio, especially if the balanced input amplifier is relatively noisy, which the
standard version certainly is. The extra noise from the inverting output amplifier is negligible
compared with this. It is less likely to crosstalk to other lines even if they are unbalanced, as the
currents injected via the stray capacitance from each line will tend to cancel; how well this
works depends on the physical layout of the conductors. All balanced outputs give the facility
of correcting phase errors by swapping hot and cold outputs. This is, however, a two-edged
sword, because it is probably how the phase got wrong in the first place.

There is no need to worry about the exact symmetry of level for the two output signals;
ordinary 1% tolerance resistors are fine. Slight gain differences between the two outputs
only affect the signal-handling capacity of the interconnection by a very small amount. This
simple form of balanced output is the norm in hi-fi balanced interconnection, but is less
common in professional audio, where the quasi-floating output, which emulates a
transformer winding, gives both common mode rejection and more flexibility in situations
where temporary connections are frequently being made.

17.5 Transformer Balanced Outputs

If true galvanic isolation between equipment grounds is required, this can only be achieved
with a line transformer, sometimes called a line-isolating transformer; don’t confuse them
with mains-isolating transformers. You don’t, as a rule, use line transformers unless you
really have to because the much-discussed cost, weight, and performance problems are very
real, as you will see shortly. However, they are sometimes found in big sound reinforcement
systems and in any environment where high RF field strengths are encountered. They are
unlikely to be used in active crossovers for domestic hi-fi. A basic transformer balanced
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output is shown in Figure 17.4a; in practice A1 would probably also have some other
function, such as providing gain or filtering. In good-quality line transformers there will be an
inter-winding screen, which must be earthed to minimise noise pickup and general EMC
problems. In most cases, this does not ground the external can and you have to arrange this
yourself, possibly by mounting the can in a metal capacitor clip. Make sure the can is earthed
as this definitely does reduce noise pickup.

Be aware that the output impedance will be higher than usual because of the ohmic
resistance of the transformer windings. With a 1:1 transformer, as normally used, both the
primary and secondary winding resistances are effectively in series with the output. A small
line transformer can easily have 60Ω per winding, so the output impedance is 120Ω plus
the value of the series resistance R1 added to the primary circuit to prevent HF instability
due to transformer winding capacitances and line capacitances. The total can easily be
160Ω or more, compared with, say, 47Ω for non-transformer output stages. This will mean
a higher output impedance and greater voltage losses when driving heavy loads.

DC flowing through the primary winding of a transformer is bad for linearity, and if your
opamp output has anything more than the usual small offset voltages on it, DC current flow
should be stopped by a blocking capacitor.

17.6 Output Transformer Frequency Response

If you have looked at the section in Chapter 16 on the frequency response of line input
transformers, you will recall that they give a nastily peaking frequency response if the
secondary is not loaded properly, due to resonance between the leakage inductance and the
stray winding capacitances. Exactly the same problem afflicts output transformers, as shown
in Figure 17.5; with no output loading there is a frightening 14 dB peak at 127 kHz. This is
high enough in frequency to have very little effect on the response at 20 kHz, but this high-Q
resonance isn’t the sort of lurking horror you want in your circuitry. It could easily cause
some nasty EMC problems.
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Figure 17.4: Transformer balanced outputs; (a) standard circuit; (b) zero-impedance drive to
reduce LF distortion, with Zobel network across secondary.
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The transformer measured was a Sowter 3292 1:1 line isolating transformer. Sowter are a
highly respected company, and this is a quality part with a mumetal core and housed in a
mumetal can for magnetic shielding. When used as the manufacturer intended, with a 600Ω
load on the secondary, the results are predictably quite different, with a well-controlled roll-
off that I measured as −0.5 dB at 20 kHz.

The difficulty is that there are very few if any genuine 600Ω loads left in the world, and
most output transformers are going to be driving much higher impedances. If we are driving
a 10 kΩ load, the secondary resonance is not much damped and we still get a thoroughly
unwelcome 7 dB peak above 100 kHz, as shown in Figure 17.5. We could of course put a
permanent 600Ω load across the secondary, but that will heavily load the output opamp,
impairing its linearity, and will give us unwelcome signal loss due in the winding
resistances. It is also profoundly inelegant.

A better answer, as in the case of the line-input transformer, is to put a Zobel network, that is,
a series combination of resistor and capacitor, across the secondary, as in Figure 17.4b. The
capacitor required is quite small and will cause very little loading except at high frequencies
where signal amplitudes are low. A little experimentation yielded the values of 1 kΩ in series

Figure 17.5: Frequency response of a Sowter 3292 output transformer with various loads on the
secondary. Zero-impedance drive as in Figure 17.4b.
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with 15 nF, which gives the much improved response shown in Figure 17.5. The response is
almost exactly 0.0 dB at 20 kHz, at the cost of a very gentle 0.1 dB rise around 10 kHz; this
could probably be improved by a little more tweaking of the Zobel values. Be aware that a
different transformer type will require different Zobel values.

17.7 Transformer Distortion

Transformers have well-known problems with linearity at low frequencies. This is because
the voltage induced into the secondary winding depends on the rate of change of the
magnetic field in the core, and so the lower the frequency, the greater the change in
magnitude must be for transformer action [1]. The current drawn by the primary winding to
establish this field is non-linear, because of the well-known non-linearity of iron cores. If
the primary had zero resistance, and was fed from a zero source impedance, as much
distorted current as was needed would be drawn and no one would ever know there was a
problem. But… there is always some primary resistance, and this alters the primary current
drawn so that third-harmonic distortion is introduced into the magnetic field established, and
so into the secondary output voltage. Very often there is a series resistance R1 deliberately
inserted into the primary circuit, with the intention of avoiding HF instability; this makes
the LF distortion problem worse. An important point is that this distortion does not appear
only with heavy loading—it is there all the time, even with no load at all on the secondary;
it is not analogous to loading the output of a solid-state power amplifier, which invariably
increases the distortion. In fact, in my experience transformer LF distortion is slightly better
when the secondary is connected to its rated load resistance. With no secondary load, the
transformer appears as a big inductance, so as frequency falls the current drawn increases,
until with circuits like Figure 17.4a, there is a sudden steep increase in distortion around
10–20 Hz as the opamp hits its output current limits. Before this happens the distortion from
the transformer itself will be gross.

To demonstrate this I did some distortion tests on the same Sowter 3292 transformer. The winding
resistance for both primary and secondary is about 59Ω. It is, however, quite a small component,
34mm in diameter and 24mm high and weighing 45 gm, and is obviously not intended for
transferring large amounts of power at low frequencies. Figure 17.6 shows the LF distortion with
no series resistance, driven directly from a 5532 output, (there were no HF stability problems in
this case, but it might be different with cables connected to the secondary) and with 47 and
100Ω added in series with the primary. The flat part to the right is the noise floor.

Taking 200 Hz as an example, adding 47Ω in series increases the THD from 0.0045% to
0.0080%, figures which are in exactly the same ratio as the total resistances in the primary
circuit in the two cases. It’s very satisfying when a piece of theory slots right home like
that. Predictably, a 100Ω series resistor gives even more distortion, namely 0.013% at
200 Hz, and once more proportional to the total primary resistance.
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If you’re used to the near-zero LF distortion of opamps, you may not be too impressed
with Figure 17.6, but this is the reality of output transformers. The results are well within
the manufacturer’s specifications for a high-quality part. Note that the distortion rises
rapidly towards the LF end, roughly tripling as frequency halves. It also increases fast
with level, roughly quadrupling as level doubles. Having gone to some pains to make
electronics with very low distortion, this non-linearity at the very end of the signal chain
is distinctly irritating.

The situation is somewhat eased in actual use as signal levels in the bottom octave of audio
are normally about 10–12 dB lower than the maximum amplitudes at somewhat higher
frequencies; see Chapter 14 for more on this.

17.8 Reducing Transformer Distortion

In electronics, as in so many other areas of life, there is often a choice between using brains
or brawn to tackle a problem. In this case “brawn” means a bigger transformer, such as the
Sowter 3991, which is still 34 mm in diameter but 37 mm high, weighing in at 80 gm. The
extra mumetal core material improves the LF performance, but you still get a distortion plot

Figure 17.6: The LF distortion rise for a 3292 Sowter transformer, without (0R) and with (47Ω
and 100Ω) extra series resistance. Signal level 1 Vrms.
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very much like Figure 17.6 (with the same increase of THD with series resistance), except
now it occurs at 2 Vrms instead of 1 Vrms. Twice the metal, twice the level—I suppose it
makes sense. You can take this approach a good deal further with the Sowter 4231, a much
bigger open-frame design tipping the scales at a hefty 350 gm. The winding resistance for
the primary is 12Ω and for the secondary 13.3Ω, both a good deal lower than the previous
figures.

Figure 17.7 shows the LF distortion for the 4231 with no series resistance, and with 47
and 100Ω added in series with the primary. The flat part to the right is the noise floor.
Comparing it with Figure 17.5 the basic distortion at 30 Hz is now 0.015% compared
with about 0.10% for the 3292 transformer. While this is a useful improvement it is
gained at considerable expense. Now adding 47Ω of series resistance has dreadful results-
distortion increases by about 5 times. This is because the lower winding resistances of
the 4231 mean that the added 47Ω has increased the total resistance in the primary circuit
to five times what it was. Predictably, adding a 100Ω series resistance approximately
doubles the distortion again. In general, bigger transformers have thicker wire in the
windings, and this in itself reduces the effect of the basic core non-linearity, quite apart

100R

47R

0R

Figure 17.7: The LF distortion rise for a much larger 4231 Sowter transformer, without and with
extra series resistance. Signal level 2 Vrms.
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from the improvement due to more core material. A lower winding resistance also means a
lower output impedance.

The LF non-linearity in Figure 17.7 is still most unsatisfactory compared with that of the
electronics. Since the “My policy is copper and iron!” [2] approach does not solve the
problem, we’d better put brawn to one side and try what brains we can muster.

We have seen that adding series resistance to ensure HF stability makes things definitely
worse, and a better means of isolation is a low value inductor of say 4 uH paralleled with
a low-value damping resistor of around 47Ω. However inductors cost money, and a more
economic solution is to use a zero-impedance output as shown in Figure 17.4b above. This
gives the same results as no series resistance at all, but with dependable HF stability.
However, the basic transformer distortion remains because the primary winding resistance is
still there, and its level is still too high. What can be done?

The LF distortion can be reduced by applying negative feedback via a tertiary transformer
winding, but this usually means an expensive custom transformer, and there may be some
interesting HF stability problems because of the extra phase-shift introduced into the
feedback by the tertiary winding; this approach is discussed in [3]. However, what we really
want is a technique that will work with off-the-shelf transformers.

A better way is to cancel out the transformer primary resistance by putting in series an
electronically generated negative resistance; the principle is shown in Figure 17.8,
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Figure 17.8: Reducing LF distortion by canceling out the primary winding resistance with a
negative resistance generated by current-sensing resistance R4. Values for Sowter 3292

transformer.

Line Outputs 517



where a zero-impedance output is used to eliminate the effect of the series stability resistor.
The 56Ω resistor R4 senses the current through the primary, and provides positive feedback
to A1, proportioned so that a negative output resistance of twice the value of R4 is
produced, which will cancel out both R4 itself and the primary winding resistance. As we
saw earlier, the primary winding resistance of the 3292 transformer is approx 59Ω, so if R4
was 59Ω we should get complete cancellation. But…

…it is always necessary to use positive feedback with caution. Typically it works, as here,
in conjunction with good old-fashioned negative feedback, but if the positive exceeds the
negative (this is one time you do not want to accentuate the positive) then the circuit
will typically latch up solid, with the output jammed up against one of the supply rails.
R4 = 56Ω in Figure 17.8 worked reliably in all my tests, but increasing R4 to 68Ω caused
immediate problems, which is precisely what you would expect. No input blocking
capacitor is shown in Figure 17.8 but it can be added ahead of R1 without increasing the
potential latch-up problems.

This circuit is only a basic demonstration of the principle of cancelling primary resistance,
but as Figure 17.9 shows it is still highly effective. The distortion at 100 Hz is reduced by a

Figure 17.9: The LF distortion rise for a 3292 Sowter transformer, without and with winding
resistance cancellation as in Figure 17.7. Signal level 1 Vrms.
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factor of five, and at 200 Hz by a factor of four. Since this is achieved by adding one
resistor, I think this counts as a triumph of brains over brawn, and indeed confirmation of
the old adage that size is less important than technique.

The method is sometimes called “mixed feedback” as it can be looked at as a mixture of
voltage and current feedback. The principle can also be applied when a balanced drive to
the output transformer is used. Since the primary resistance is cancelled, there is a second
advantage as the output impedance of the stage is reduced. The secondary winding
resistance is however still in circuit, and so the output impedance is usually only halved.

If you want better performance than this—and it is possible to make transformer non-
linearity effectively invisible down to 15 Vrms at 10 Hz—there are several deeper issues to
consider. The definitive reference is Bruce Hofer’s patent, which covers the transformer
output of the Audio Precision measurement systems [4]. There is also more information in
the Analog Devices Opamp Applications Handbook [5].
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CHAPTER 18

Power Supply Design

“We thought, because we had power, we had wisdom.” Stephen Vincent Benet: Litany
for Dictatorships, 1935

18.1 Opamp Supply Rail Voltages

Running opamps at ±17 V rather than ±15 V gives an increase in headroom and dynamic
range of 1.1 dB for virtually no cost and with no reliability penalty. This assumes that the
opamps concerned have a maximum supply voltage rating of ±18 V, which is the case for
the old Texas TL072, the new LM4562, and many other types.

The 5532 is (as usual) in a class of its own. Both the Texas and Fairchild versions of the
NE5532 have an Absolute Maximum power supply voltage rating of ±22 V (though Texas
also gives a “recommended supply voltage” of ±15 V), but I have never met any attempt to
make use of this capability. The 5532 runs pretty warm on ±17 V when it is simply
quiescent, and my view is that running it at any higher voltage is pushing the envelope.
Moving from ±17 V rails to ±18 V rails only gives 0.5 dB more headroom, while stretching
things to ±20 V would give a further 1.4 dB. Running at the full ±22 V would yield a more
significant 2.2 dB improvement over the ±17 V case, but that is just asking for trouble.
Anything above ±17 V is also going to cause difficulties if you want to run opamps with
maximum supply ratings of ±18 V on the same supply rails.

We will therefore concentrate here on ±17 V supplies. They can be conveniently built with
TO-220 regulators; this usually means an output current capability that does not exceed
1.5 Amps, but that is plenty for even complicated active crossovers.

An important question is: how low does the noise and ripple on the supply output rails need
to be? Opamps in general have very good Power Supply Rejection Ratios (PSRR) and some
manufacturer’s specs are given in Table 18.1.

The PSRR performance is actually rather more complex than the bare figures given in the
table imply; PSRR is typically frequency-dependent (deteriorating as frequency rises) and
different for the +V and −V supply pins. It is however rarely necessary to get involved in this
degree of detail. Fortunately even the cheapest IC regulators like the classic 78xx/79xx series
have low enough noise and ripple outputs that opamp PSRR performance is rarely an issue.
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There is however another point to ponder; if you have a number of electrolytic-sized
decoupling capacitors between rail and ground, enough noise and ripple can be coupled
into the non-zero ground resistance to degrade the noise floor. Intelligent placing of the
decouplers can help—putting them near where the ground and supply rails come onto the
PCB means that ripple will go straight back to the power supply without flowing through
the ground tracks on the rest of the PCB.

Apart from the opamp supply rails, audio electronics may require additional supplies, as
shown in Table 18.2.

It is often convenient to power relays from a +9 V unregulated supply that also feeds the
+5 V microcontroller regulator.

18.2 Designing a ±15 V Supply

Making a straightforward ±15 V 1 Amp supply for an opamp-based system is very simple,
and has been ever since the LM7815/7915 IC regulators were introduced (which was a
long time ago). They are robust and inexpensive parts with both overcurrent and over-
temperature protection, and give low enough output noise for most purposes. We will look
quickly at the basic circuit because it brings out a few design points which apply equally to
more complex variations on the theme. Figure 18.1 shows the schematic, with typical
component values; a centre-tapped transformer, a bridge rectifier, and two reservoir
capacitors C1, C2 provide the unregulated rails that feed the IC regulators. The secondary
fuses must be of the slow-blow type. The small capacitors C7-C9 across the input to
the bridge reduce RF emissions from the rectifier diodes; they are shown as X-cap
types not because they have to withstand 230 Vrms, but to underline the need for them
to be rated to withstand continuous AC stress. The capacitors C3, C4 are to ensure HF

Table 18.1: PSRR Specs for Common Opamps

Opamp Type PSRR Minimum dB PSRR Typical dB

5532 80 100
LM4562 110 120
TL072 70 100

Table 18.2: Typical Additional Supply Rails for Opamp Based Systems

Supply Voltage Function

+5 V Housekeeping microcontroller
+9 V Relays

+24 V LED bar-graph metering systems,
discrete audio circuitry, relays
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stability of the regulators, which like a low AC impedance at their input pins, but these are
only required if the reservoir capacitors are not adjacent to the regulators, ie more than
10 cm away. C5, C6 are not required for regulator stability with the 78/79 series—they are
there simply to reduce the supply output impedance at high audio frequencies.

There are really only two electrical design decisions to be made; the AC voltage of the
transformer secondary and the size of the reservoir capacitors. As to the first, you must
make sure that the unregulated supply is high enough to prevent the rails dropping out (i.e.,
letting hum through) when a low mains voltage is encountered, but not so high that either
the maximum input voltage of the regulator is exceeded, or it suffers excessive heat
dissipation. How low a mains voltage it is prudent to cater for depends somewhat on where
you think your equipment is going to be used, as some parts of the world are more subject
to brown-outs than others. You must consider both the minimum voltage-drop across the
regulators (typically 2 V) and the ripple amplitude on the reservoirs, as it is in the ripple
troughs that the regulator will first “drop out” and let through unpleasantness at 100 Hz.

In general, the RMS value of the transformer secondary will be roughly equal to the DC
output voltage.

The size of reservoir capacitor required depends on the amount of current that will be drawn
from the supply. The peak-to-peak ripple amplitude is normally to be in the region of 1 to
2 Volts; more ripple than this reduces efficiency as the unregulated voltage has to be
increased to allow for unduly low ripple troughs, and less ripple is usually unnecessary and
gives excessive reservoir capacitor size and cost. The amount of ripple can estimated with
adequate accuracy by using Equation 18.1

Vpk− pk = I .Δt . 1000
C

(18.1)
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Figure 18.1: A straightforward ±15 V power supply using IC regulators.
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where:

Vpk-pk is the peak-to-peak ripple voltage on the reservoir capacitor
I is the maximum current drawn from that supply rail in Amps
Δt is the length of the capacitor discharge time, taken as 7 milliseconds
C is the size of the reservoir capacitor in microFarads
The “1000” factor simply gets the decimal point in the right place

Note that the discharge time is strictly a rough estimate, and assumes that the reservoir is
being charged via the bridge for 3 msec, and then discharged by the load for 7 msec. Rough
estimate it may be, but I have always found it works very well.

The regulators must be given adequate heatsinking. The maximum voltage drop across each
regulator (assuming 10% high mains) is multiplied by the maximum output current to get
the regulator dissipation in Watts, and a heat sink selected with a suitable thermal resistance
to ambient (in °C per Watt) to ensure that the regulator package temperature does not
exceed, say, 90 °C. Remember to include the temperature drop across the thermal washer
between regulator and heatsink.

Under some circumstances it is wise to add protective diodes to the regulator circuitry, as
shown in Figure 18.2. The diodes D1, D3 across the regulators are reverse-biased in normal
operation, but if the power supply is driving a load with a large amount of rail decoupling
capacitance, it is possible for the output to remain higher in voltage than the regulator input
as the reservoir voltage decays. D1, D3 prevent this effect from putting a reverse voltage
across the regulators.
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Figure 18.2: Adding protection diodes to a ±15 V power supply. The load has decoupling
capacitors to both ground (C7, C8) and between the rails (C9); the latter can cause start-up

problems.
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The shunt protection diodes D2, D4 are once again reverse-biased in normal operation.
D2 prevents the +15 V supply rail from being dragged below 0 V if the −15 V rail starts up
slightly faster, and likewise D4 protects the −15 V regulator from having its output pulled
above 0 V. This can be an important issue if rail-to-rail decoupling such as C9 is in use;
such decoupling can be useful because it establishes a low AC impedance across the supply
rails without coupling supply rail noise into the ground, as C7, C8 are prone to do.
However, it also makes a low-impedance connection between the two regulators. D2, D4
will prevent damage in this case, but leave the power supply vulnerable to start-up
problems; if its output is being pulled down by the −15 V regulator, the +15 V regulator
may refuse to start. This is actually a very dangerous situation, because it is quite easy to
come up with a circuit where start-up will only fail one time in twenty or more, the
incidence being apparently completely random, but presumably controlled by the exact point
in the AC mains cycle where the supply is switched on, and other variables such as
temperature, the residual charge left on the reservoir capacitors, and the phase of the moon.
If even one start-up failure event is overlooked or dismissed as unimportant, then there is
likely to be serious grief further down the line. Every power supply start-up failure must be
taken seriously.

18.3 Designing a ±17 V Supply

There are 15 V IC regulators, (7815, 7915) and there are 18 V IC regulators, (7818, 7918)
but there are no 17 V IC regulators. This problem can be effectively solved by using 15 V
regulators and adding 2 Volts to their output by manipulating the voltage at the REF pin.
The simplest way to do this is with a pair of resistors that divide down the regulated output
voltage and apply it to the REF pin as shown in Figure 18.3a. (The transformer and AC
input components have been omitted in this and the following diagrams, except where they
differ from those shown above.) Since the regulator maintains 15 V between the OUT and
REF pin, with suitable resistor values the actual output with respect to 0 V is 17 V.

The snag with this arrangement is that the quiescent current that flows out of the REF pin
to ground is not well controlled; it can vary between 5 and 8 mA, depending on both the
input voltage and the device temperature. This means that R1 and R2 have to be fairly low
in value so that this variable current does not cause excessive variation of the output
voltage, and therefore power is wasted.

If a transistor is added to the circuit as in Figure 18.3b, then the impedance seen by the
REF pin is much lower. This means that the values of R1 and R2 can be increased by an
order of magnitude, reducing the waste of regulator output current and reducing the heat
liberated. This sort of manoeuvre is also very useful if you find that you have a hundred
thousand 15 V regulators in store, but what you actually need for the next project is an 18 V
regulator, of which you have none.
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Figure 18.3: Making a ±17 V power supply with 15 V IC regulators. (a) Using resistors is inefficient
and inaccurate; (b) adding transistors to the voltage-determining resistor network makes the output

voltage more predictable and reduces the power consumed in the resistors.
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What about the output ripple with this approach? I have just measured a power supply using
the exact circuit of Figure 18.3b, with 2200 uF reservoirs, and I found −79 dBu (87 uV rms)
on the +17 V output rail, and −74 dBu (155 uV rms) on the 17 V rail, which is satisfyingly
low for inexpensive regulators, and should be adequate for almost all purposes; note that
these figures include regulator noise as well as ripple. The load current was 110 mA. If you
are plagued by ripple troubles, the usual reason is a rail decoupling capacitor that is belying
its name by coupling rail ripple into a sensitive part of the ground system, and the cure is to
correct the grounding rather than design an expensive ultra-low ripple PSU. Note that
doubling the reservoir capacitance to 4400 uF only improved the figures to −80 dBu and
−76 dBu respectively; just increasing reservoir size is not a cost-effective way to reduce the
output ripple.

18.4 Using Variable-Voltage Regulators

It is of course also possible to make a ±17 V supply by using variable output voltage IC
regulators such as the LM317/337. These maintain a small voltage (usually 1.2 V) between
the OUTPUT and ADJ (shown in figures as GND) pins, and are used with a resistor
divider to set the output voltage. The quiescent current flowing out of the ADJ pin is a
couple of orders of magnitude lower than for the 78/79 series, at around 55 uA, and so a
simple resistor divider gives adequate accuracy of the output voltage, and transistors are no
longer needed to absorb the quiescent current. A disadvantage is that this more
sophisticated kind of regulator is somewhat more expensive than the 78/79 series; at the
time of writing they cost something like 50% more. The 78/79 series with transistor
voltage-setting remains the most cost-effective way to make a non-standard-voltage power
supply at the time of writing.

It is clear from Figure 18.4 that the 1.2 V reference voltage between ADJ and out is
amplified by many times in the process of making a 17 V or 18 V supply; this not only
increases output ripple, but also output noise as the noise from the internal reference is
being amplified. The noise and ripple can be considerably reduced by putting a capacitor C7
between the ADJ pin and ground. This makes a dramatic difference; in a test PSU with a
650 mA load the output noise and ripple was reduced from −63 dBu (worse than the 78xx
series) to −86 dBu (better than the 78xx series), and so such a capacitor is usually fitted as
standard. If it is fitted, it is then essential to add a protective diode D1 to discharge C7, C8
safely if the output is short-circuited, as shown in Figure 18.5.

The ripple performance of the aforementioned test PSU, with a 6800 uF reservoir capacitor
and a 650 mA load, is summarised for both types of regulator in Table 18.3. Note that the
exact ripple figures are subject to some variation between regulator specimens.
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Table 18.3: Comparing the Noise and Ripple Output of Various Regulator Options

7815 + Transistor LM317

No C on LM317 ADJ pin −73 dBu (all ripple) −63 dBu (ripple & noise)
47 uF on LM317 ADJ pin −73 dBu (all ripple) −86 dBu (ripple & noise)

Input filter 2.2Ω & 2200 uF −78 dBu (ripple & noise) −89 dBu (mostly noise)
Input filter 2.2Ω & 4400 uF −79 dBu (mostly noise) −90 dBu (all noise)
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18.5 Improving Ripple Performance

Table 18.3 shows that the best noise and ripple performance that can be expected from a
simple LM317 regulator circuit is about −86 dBu (39 uV rms) and this still contains a
substantial ripple component. The reservoir capacitors are already quite large at 4700 uF, so
what is to be done if lower ripple levels are needed? The options are:

1. Look for a higher-performance IC regulator. They will cost more and there are likely to
be issues with single sourcing.

2. Design your own high-performance regulator using discrete transistors or opamps. This
is not a straightforward business, especially if all the protection that IC regulators have
is to be included. There can be distressing issues with HF stability.

3. Add an RC input filter between the reservoir capacitor and the regulator. This is simple
and pretty much bullet-proof, and preserves all the protection features of the IC
regulator, though the extra components are a bit bulky and not that cheap. There is
some loss of efficiency due to the voltage drop across the series resistor; this has to be
kept low in value so the capacitance is correspondingly large.

The lower two rows of Table 18.3 show what happens. In the first case the filter values
were 2.2Ω and 2200 uF. This has a −3 dB frequency of 33 Hz and attenuates the 100 Hz
ripple component by 10 dB. This has a fairly dramatic effect on the visible output ripple,
but the dB figures do not change that much as the input filter does not affect the noise
generated inside the regulator. Increasing the capacitance to 4400 uF sinks the ripple below
the noise level for both types of regulator.

18.6 Dual Supplies from a Single Winding

It is very convenient to use third-party “wall-wart” power supplies for small pieces of
equipment, as they come with all the safety and EMC approvals already done for you,
though admittedly they do not look appropriate with high-end equipment.

The vast majority of these supplies give a single AC voltage on a two-pole connector, so a
little thought is required to derive two supply rails. Figure 18.6 shows how it is done in a
±18 V power supply; note that these voltages are suitable only for a system that uses 5532s
throughout. Two voltage-doublers of opposite polarity are used to generate the two
unregulated voltages. When the incoming voltage goes negative, D3 conducts and the
positive end of C1 takes up approximately 0 V. When the incoming voltage swings positive,
D1 conducts instead and the charge on C1 is transferred to C3. Thus the whole peak-to-
peak voltage of the AC supply appears across reservoir capacitor C3. In the same way, the
peak-to-peak voltage, but with the opposite polarity, appears across reservoir C4.

Since voltage-doublers use half-wave rectification, they are not suitable for high current
supplies. When choosing the value of the reservoir capacitor values, bear in mind that the
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discharge time in Equation 18.1 above must be changed from 7msec to 17 msec. The input
capacitors C1, C2 should be the same size as the reservoirs.

18.7 Mutual Shutdown Circuitry

The 5532 opamp is in general a tough item but it has an awkward quirk. If one supply rail
is lost and collapses to 0 V, while the other rail remains at the normal voltage, a 5532 can
under some circumstances get into an anomalous mode of operation that draws large supply
currents and it ultimately destroys itself by overheating. Other opamps may suffer the same
problem but I am not currently aware of any. To prevent damage from this cause opamp
supplies should be fitted with a mutual shutdown system. This ensures that if one supply
rail collapses, because of overcurrent, over-temperature or any other cause, the other rail
will be promptly switched off. A simple way to implement this is shown in Figure 18.7,
which also demonstrates how to make a ± supply using only positive regulators. The use of
a second positive regulator to produce the negative output rail looks a little strange at first
sight but I can promise you it works. The regulators in this case are the high-current Linear
Tech LT1083, which can handle 7.5 Amps, but is not available in a negative version. That
should be more than enough current for even the most complex active crossover…

The extra circuitry to implement mutual-shutdown is very simple; R5, D3, R6, and Q1 and
Q2. Because R5 is equal to R6, D3 normally sits at around 0 V in normal operation. If the
+17 V rail collapses, Q2 is turned on by R6, and the REF pin of U2 is pulled down to the
bottom rail, reducing the output to the reference voltage (1.25 V). This is not completely
off, but it is low enough to prevent any damage to opamps.

If the −17 V rail collapses, Q1 is turned on by R5, pulling down the REF pin of U1 in the same
way. Q1 and Q2 do not operate exactly symmetrically, but it is close enough for our purposes.

Note that this circuit can only be used with variable output voltage regulators, because it
relies on their low reference voltages to achieve what is effectively switch-off.
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Figure 18.6: A ±18 V power supply powered by a single transformer winding.
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18.8 Power Supplies for Discrete Circuitry

One of the main reasons for using discrete audio electronics is the possibility of handling
larger signals than can be coped with by opamps running off ±17 V rails. The use of ±24 V
rails allows a 3 dB increase in headroom, which is probably about the minimum that
justifies the extra complications of discrete circuitry. A ±24 V supply can be easily
implemented with 7824/7924 IC regulators.

A slightly different approach was used in my first published preamplifier design [1]. This
preamp in fact used two LM7824 +24 V positive regulators as shown in Figure 18.8
because at the time the LM7924 −24 V regulator had not yet reached the market. This
configuration can be very useful in the sort of situation where you have a hundred thousand
positive regulators in store, but no negative regulators.

Note that this configuration does however require two separate transformer secondary
windings; it cannot be used with a single centre-tapped secondary.

Reference

[1] D.R.G. Self, An Advanced Preamplifier Design, Wireless World, London, 1976.
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CHAPTER 19

An Active Crossover Design

Here I present an active crossover design that will illustrate a good number of the principles
and techniques put forward in this book. A design that demonstrated all of them would be a
cumbersome beast, so I have aimed instead to show the most important of them while also
providing a practical and adaptable design which will be of use in the real world.

The design is a generic crossover that can be adapted to a wide range of applications by changing
its parameters and its configuration. The crossover frequencies can be changed simply by altering
component values, and circuit blocks for equalisation or time delay can be added or removed, with
due care to preserve absolute phase, of course. Since widely varying drive units may be used I have
made no attempt to add equalisation or integrate the driver response into the filter operation.

The crossover design is primarily aimed at hi-fi applications rather than sound
reinforcement. It does not, for example, in its basic form have variable crossover
frequencies or balanced outputs, though instructions are given for adding the latter.

19.1 Design Principles

The aim of this chapter is not just to provide a complete design, but to demonstrate the use
of various design principles expounded in the body of this book.

• Low impedance design for low noise, Chapter 14
• Elevated internal levels, Chapter 12
• Further elevated internal level for the HF path, Chapter 14
• Low-noise balanced inputs, Chapter 16
• Optimised filter order for best noise, Chapter 14
• Mixed capacitor types in filters, Chapter 8
• Use of multiple resistors to improve accuracy, Chapter 12
• Delay compensation using third-order allpass filters, Chapter 10

19.2 Example Crossover Specification

This is the basic specification for an active crossover that we will use as an example. (As
noted in Chapter 10, the path lengths to be compensated for were carefully chosen to give
nice round figures for the delay times required.)

The Design of Active Crossovers
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The crossover has balanced inputs, but in its basic form the outputs are unbalanced, the
assumption being that if a balanced interconnection is required, this will be provided at the
power amplifier inputs. The possibility of adding balanced output stages is examined at the
end of the chapter. If the overall audio system can be satisfactorily designed with balanced
crossover inputs but unbalanced crossover outputs, as opposed to unbalanced crossover
inputs but balanced crossover outputs, then the former is clearly more economical as for a
stereo crossover it requires two balanced input stages rather than six balanced output stages.

Low-impedance design is used throughout; the circuit impedances are designed to be as low as
possible without causing extra distortion by overloading opamp outputs. This reduces the effect
of opamp current noise and resistor Johnson noise but has no effect on opamp voltage noise.

The design assumes that there is no level control between the crossover and power amplifier,
or if there is, it is set to maximum and left there; this allows us to use elevated internal levels
in the crossover to improve the noise performance, as described in Chapter 14.

No equalisation stages are included in the signal paths.

19.3 The Gain Structure

In Chapter 14, I explained how with suitable system design the internal levels of an active
crossover could be significantly raised to reduce the effect of circuit noise. Here I have
decided to go for an internal level of 3 Vrms, 12 dB higher than the assumed input voltage
of 775 mV rms (0 dBu.) This retains 10 dB of headroom to accommodate maladjusted input
levels. We also saw in Chapter 14 that the distribution of amplitude with frequency in music
is such that the levels in the top few octaves are much lower than in the rest of the audio
spectrum. We decided conservatively that with an upper crossover point around 3 kHz, it
was safe to raise the HF channel level by a further 6 dB.

It is therefore necessary to have an input amplifier with a gain of close to four times (+11.9 dB)
to raise the internal level to a nominal 3 Vrms as soon as possible, and another +6 dB of
amplification will be required as early as possible in the HF path.

The bandwidth definition filter is shown in Figure 19.1 as having unity gain for simplicity
at this point. In fact, as we shall shortly see, it has a small loss of 0.3 dB, which has to be
recovered elsewhere in the circuitry to keep the levels spot-on.

No of bands: Three
Type Linkwitz–Riley fourth order
Mid/HF crossover frequency: 3 kHz
LF/Mid crossover frequency: 400 Hz
HF path time delay compensation 80 usec, tolerance +/−5% (path length 27 mm)
Mid path time delay compensation 400 usec, tolerance +/−5% (path length 137 mm)

Gain: 0dBu in for 1 Vrms out
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19.4 Resistor Selection

The basic policy for component selection is that followed throughout this book—to use as few
capacitor values as possible, which means sticking to the sparse E3 or E6 series, and let the
resistor values come out as they may. I decided that no more than two resistors from the E24
series would be used in series or parallel to get as close as possible to the desired value. Where
it could be done the resistors would be of near-equal value to get the best possible improvement
in accuracy by using multiple resistors, as explained in Chapter 12. An error window for the
nominal value (excluding tolerances) is set at ±0.5%. 1% tolerance resistors are assumed.

Resistors in parallel rather than in series are generally to be preferred as it makes the PCB
layout easier; assuming they are lying side by side you just have to join the adjacent pads
with very short tracks. It could also be argued that the parallel connection makes for better
reliability, as a dry solder-joint that fails completely, or a resistor that goes open-circuit,
is less likely to cause oscillation or stop the signal altogether. Film resistors do not
normally fail short-circuit; open-circuit is at least 10 times more likely. In some sound-
reinforcement circumstances any sound is better than none at all.

19.5 Capacitor Selection

I decided to use polypropylene capacitors wherever they would have a measurable effect on the
distortion performance. They get bulky and expensive quickly as their value increases, and so
I further concluded that 220 nF should be the largest value employed. It is assumed that only
the E3 series (10, 22, 47) values are available. The number of different capacitor values (not
counting small ceramics) has been kept down to four—2n2, 10 nF, 47 nF, and 220 nF. It
makes sense to put some effort into this as they are probably the most expensive electronic
components in the crossover, and so you want to gain as much cost advantage from purchasing
in quantity as possible. No particular assumptions are made about capacitor tolerance.

19.6 The Balanced Line Input Stage

It was explained in Chapter 16 that the conventional unity-gain balanced input stage made with
four 10 kΩ resistors is relatively noisy, especially when compared with an unbalanced input using
a simple voltage-follower; the balanced stage noise output is about ‒104.8 dBu. This problem
can be addressed by reducing the value of the 10 kΩ resistors around the balanced stage, and
driving the balanced stage with 5532 unity-gain buffers to keep the input impedance up. In the
unity-gain case this reduces the noise output to ‒110.2 dBu, a very useful 5.4 dB quieter.

For our crossover design we do not want a unity-gain stage, but one that gives a gain of
four times, (+11.9 dB) so that a nominal input of 775 mV rms is raised to 3 Vrms. We use
the same strategy of input buffers and a balanced amplifier working at low impedances, but
the required gain is obtained by altering the ratio of the resistors R7, R8 to R9, R10 in
Figure 19.2. The output noise from this stage with the inputs terminated by 50Ω resistors
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is ‒100.9 dBu, so its Equivalent Input Noise (EIN) is ‒100.9 ‒ 11.9 = ‒112.8 dBu. For
what it’s worth, this is the same as the Johnson noise from a 9.6 kΩ resistor. The usual
EMC filter and DC-blocking networks are placed at the input.

This is a rare case where a significant amount of gain is required in a balanced input
amplifier, so the instrumentation amplifier configuration is an interesting alternative, giving
a CMRR improved by 11.9 dB, the gain of the stage. I made some tests just before going to
press, and this really does work.

19.7 The Bandwidth Definition Filter

The bandwidth definition stage consists of a third-order Butterworth high-pass filter with a
cutoff frequency of 20 Hz to remove subsonic signals and protect loudspeakers, and a second-
order Butterworth low-pass filter with a cutoff frequency of 50 kHz. Unlike the example in
Chapter 8, E24 resistor values have been used in the subsonic section to get the cutoff
frequency exactly at 20Hz. The physically large 220 nF capacitors in the filter are susceptible to
electrostatic hum pickup and this must be considered in the physical layout of the crossover.

The bandwidth definition filters are placed as early as possible in the signal path,
immediately after the balanced input amplifier, to prevent headroom being eaten up by large
subsonic signals. This should also minimise the generation of intermodulation distortion by
large ultrasonic signals.

The combined filter has a small midband loss of ‒0.29 dB when designed with 220 nF
capacitors. Redesigning it to use 470 nF capacitors (keeping the capacitors in the lowpass
section the same) would reduce this to an even more negligible loss of ‒0.15 dB, but it’s
hard to argue that the result is worth the significant extra cost of the capacitors. The only
real problem with the 0.29 dB loss is that when tracking a test signal through the HF path,
you will encounter 2.90 Vrms at the combined filter output, instead of a nice round
3.0 Vrms. Rather than propagate this inelegance through the rest of the HF path, the signal
is restored to 3.0 Vrms in the first HF filter. This attenuate-then-amplify process inevitably
incurs a noise penalty, but in this case it is very small indeed. If an extra stage was used to
recover the loss this would be inelegant and uneconomical, but since the next stage in the
HF path is already configured to give gain, there is no cost penalty at all.

19.8 The HF Path: 3 kHz Linkwitz–Riley Highpass Filter

The HF signal path in Figure 19.3 includes two second-order Butterworth filters that make
a fourth-order Linkwitz–Riley filter. Both are of the Sallen & Key type. The first filter is
configured for a gain of +6.3 dB, to raise the nominal level and make the signal less
vulnerable to circuit noise, and also to recover that 0.3 dB loss in the combined filter.
The nominal level in the block diagram of Figure 19.1 is shown as “6 Vrms” which if was a
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real level would be too high, but the relatively low amount of HF energy in musical signals
gives a level of more like 3 Vrms in practical use. A level of 6 Vrms will however be
obtained if you apply a test signal at 775 mV rms to the input.

The design of this stage is straightforward—see Chapter 8 for more information on designing
Sallen & Key filters with whatever gain you want. The value of R20 comes very
conveniently as the E24 preferred value of 1K3, but the value of the second resistance in the
filter comes out as 970.7Ω, well away from either 910Ω or 1 kΩ. R2 is therefore made up
of a parallel pair R21 and R22. The optimal method for selecting these was described in
Chapter 12. If the two resistors are approximately equal in value, the accuracy of their
combined resistance is improved by a factor of √2 as the errors tend to cancel. Thus a 1%
tolerance becomes a 0.707% tolerance. As the values become more unequal the combined
tolerance increases until it is effectively 1% as the tolerance is decided by only one resistor.
The procedure is therefore to start with near-equal values and pick a resistor pair to give a
result just above the target value, and then pick a resistor pair to give a result just below. If
neither result is within the desired error window, one of the resistors is incremented and we
try again. As this algorithm proceeds the resistor values become more and more unequal, and
the improvement in tolerance diminishes, so the sooner we find a satisfactory answer the
better. In some respects you have to balance the improvement in tolerance against the
accuracy of the combined resistance value obtained. The process is mechanical and tedious,
but once set up on a spreadsheet it is fairly quick to do. I have written a Javascript program
that does it instantly.

In this case our target value is 970.7Ω and the error window is ±0.5%. Our progress is set
out in Table 19.1.

Step 1: We start with 1800Ω (R21) in parallel with 2000Ω, (R22) the combined
resistance of which is 2.4% low. The next value for R22 above 2000Ω is 2200Ω, which

Table 19.1: Selecting the Best Parallel Combination of R21 and R22 to Get the
Target Value of 970.7Ω

Step R21 Ohms R22 Ohms Combined Ohms Error %

1 1800 2000 947.368 −2.40%
1800 2200 990.000 1.99%

2 1600 2400 960.000 −1.10%
1600 2700 1004.651 3.50%

3 1500 2700 964.286 −0.66%
1500 3000 1000.000 3.02%

4 1300 3600 955.102 −1.61%
1300 3900 975.000 0.44%

5 1200 4700 955.932 −1.52%
1200 5100 971.429 0.08%
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with 1800Ω gives a combined resistance 1.99% high. Our target value is therefore
irritatingly about halfway between these two resistor combinations. In each step we find
the two resistor values that ‘bracket’ the target, in other words one value gives a
combined resistance that is too low, and the other a combined resistance that is too high,
Step 2: We reduce the 1800Ω resistor to 1600Ω and try again. Putting 2400Ω in
parallel gives a combined resistance that is only 1.1% low, our best shot so far, but
nowhere near good enough. Putting 2700Ω in parallel gives a result 3.5% high. Are we
downhearted? Yes, but a faint heart never built a fair crossover so we will persist.
Step 3: We reduce the 1600Ω resistor to 1500Ω, and find that 2700Ω in parallel is only
0.66% low, which is temptingly close to 0.5%, but there is no point in setting error
windows if you’re not going to stick to them. We proceed, but with the nagging
awareness that each step is reducing the accuracy improvement we will get from using
multiple resistors.
Step 4: We reduce the 1500Ω resistor to 1300Ω, and with 3600Ω in parallel the result is
1.61% low. However, with 3900Ω in parallel, bingo! The combined value is only 0.44%
high, inside our ±0.5% error window, but not, it must be said, a very long way inside it.
Our work here is done. Or is it? There is always the nagging doubt that you might get a much
better result if you go just a step or two further. In this case that doubt is very much justified.
Step 5: We reduce the 1300Ω resistor to 1200Ω, and with 4700Ω in parallel the result is
1.52% low. But with 5100Ω in parallel—cracked it! The result is only 0.08% high, and
more than good enough, considering the tolerances of the components. The accuracy
improvement is much impaired, as one resistor is more than four times the other,
(see Table 12.7) but the 1300Ω and 3900Ω resistor combination in Step 4 is not much
better in that respect.

We therefore select R21 as 1200Ω and R22 as 5100Ω. I realise that this process sounds a
bit long-winded when every step is described, but a spreadsheet version is reasonably quick.
(I should warn you at this point that the Goalseek function in Excel apparently can’t cope with
the mathematical expression for the value of parallel resistors, and tends to unhelpfully offer
“solutions” up in the PetaOhm regions.) The custom Javascript solution is of course the best.

The next step is to check by calculation or simulation (not measurement because the
tolerances of the real components used will confuse things) that the filter cutoff frequency
falls within the required error window.

In the Case of the Second Filter (Quick, Watson, the game’s afoot!), we are much luckier.
Using the process just described, we find that taking the value of the first resistor as 800Ω
gives an error of ‒0.23% in the filter cutoff frequency which is less than the resistor tolerance
(even after the full √2 accuracy improvement, which we get in this case) and probably much
less than the capacitor tolerances. Thus, R26 and R27 are 1K6, and R28 is also 1K6. It happens
to work out very nicely, though in terms of component count we only save one resistor.
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In each filter, only the first capacitor (C20, C22) is a polypropylene type, while the second
(C21, C23) is polyester. Only one capacitor needs to be polypropylene to avoid capacitor
distortion, but it must be the first one in the filter. This intriguing state of things is
described more fully in Chapter 8.

19.9 The HF Path: Time Delay Compensation

When we looked at the question of time delay compensation in Chapter 10, we noted that
mercifully it is not necessary to maintain an absolutely accurate delay over the whole audio
spectrum. Instead the delay only has to be constant over each crossover region. The HF
delay only needs to be maintained around the 3 kHz crossover point for so long as both
drive units are radiating significantly, and likewise the MID delay needs only to be constant
around the 400 Hz crossover. One of the many advantages of the Linkwitz–Riley crossover
configuration is that the slopes are steep at 24 dB/octave, and so these regions of overlap are
relatively narrow, simplifying the problem.

When allpass filters are used as delay elements they give a constant group delay at low
frequencies but it begins to fall off at high frequencies. This makes the design of the HF delay
more complicated than that of the MID delay. A first-order allpass filter designed for a delay
of 80 usec unfortunately starts to roll-off quite early; as frequency rises the delay is down by
10% at 2.4 kHz, before we even reach the 3 kHz crossover point, and sinks to 50% at 9.3 kHz,
slowly approaching zero above 100 kHz. A first-order allpass filter clearly won’t do the job.

One solution is to cascade three first-order filters in series. The delay is now spread out over three
sections, with each one set to a 80 usec/3 = 26.7 usec delay. The total 80 usec delay is now
sustained up to three times the frequency, being 10% down at 7.5 kHz, and not down 50% until
28 kHz, well outside the audio spectrum. So, is this good enough? The MID and HF drivers will
be contributing equally at 3 kHz, both of them being 6 dB down. 7.5 kHz is only 1.3 octaves away
from the 3 kHz MID-HF crossover frequency, but the high slope of the Linkwitz-Riley crossover
means that the signal to the MID drive unit will be 32 dB down, though its acoustical contribution
is less certain as it depends on the drive unit frequency response outside its intended band.

Another solution would be a second-order allpass filter; the delay of an 80 usec version falls
by 10% at 4.79 kHz, better than the first-order filter, (10% down at 2.4 kHz) but worse than
the triple first-order filter (10% down at 7.5 kHz). The second-order filter as described in
Chapter 10 has the disadvantage of phase-inverting in the low-frequency range where its
delay is constant. It is also 3.2 dB noisier than the third-order solution we are about to look
at. All in all, a second-order allpass filter does not look promising.

The last delay filter examined in detail in Chapter 10 is the third-order allpass filter, which
is made up of a second-order allpass cascaded with a first order allpass. When designed for
an 80 usec delay it is 10% down at 12.7 kHz, giving almost twice the flat delay frequency
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range of the three cascaded first-order filters, at a fractionally lower cost, as it actually uses
one less resistor. It uses the same number of potentially expensive capacitors. The ‒10%
point for the delay is now 2.1 octaves above our 3 kHz crossover frequency, and the signal
sent to the MID driver will be down by 50 dB, so whatever the response of the driver itself
we can be pretty sure that the fall-off in time delay will have no audible consequences.
When designed for 80 usec it is 3.2 dB quieter than the equivalent second-order filter, and it
does not inconveniently phase-invert in the low-frequency range. The third-order filter is
clearly the better solution, and so it is chosen for the HF path delay.

The 80 usec third-order allpass filter is studied in detail in Chapter 10, with full consideration
of its quite subtle noise and distortion characteristics, so I will not repeat that here. Suffice it
to say that the circuit of Figure 10.22 is cut and pasted into our schematic of Figure 19.3. In
the MFB filter, both capacitors are polypropylene, though the mixed capacitor phenomenon
applies to MFB filters as well as Sallen & Key filters, as described in Chapter 8.

The parallel resistor combinations for the awkward resistance values in the HF allpass filter
are given in Table 19.2. We will get a good improvement in precision with R32 and R32,
as the values are near-equal, not much for R29 and R30, and virtually none for R37 and
R38, where our luck was right out.

The schematic of the complete HF path is shown in Figure 19.3. Note that the component
numbering starts at 20 for resistors and capacitors, and 10 for opamps; this is to allow
additions to other parts of the schematic without renumbering everything. The signal and
noise levels are given for the output of each stage.

The allpass stage can of course be omitted if time delay compensation is done by other
means, such as the physical cabinet construction.

19.10 The MID Path: Topology

The MID path contains a 400 Hz fourth-order Linkwitz–Riley highpass filter and a 3 kHz
fourth-order Linkwitz–Riley lowpass filter. In this situation the order of the filters in the
signal path needs to be considered. In Chapter 14 I demonstrated that a noise advantage
can be gained by putting the lowpass filter second in the path, as it removes some of the

Table 19.2: The Best Parallel Combinations for Non-Preferred Resistance Values
in the HF Allpass Filter

Resistor Target Ohms Ra Ohms Rb Ohms Combined Ohms Error %

R29 & R30 1126 1800 3000 1125.0 −0.09%
R31 & R32 2251 4700 4300 2245.6 −0.24%
R37 & R38 1746 1800 56000 1743.9 −0.12%
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noise from the previous highpass filter. With the filter frequencies we are using here the
noise advantage is 1.1 dB; not an enormous amount, but achieved at no cost whatsoever.
Let’s do it.

You will recall that in the HF path the first filter was configured to give +6.3 dB of gain,
recovering the loss in the bandwidth definition filter. While it would be possible to
configure the first MID filter to give +0.3 dB of gain (we do not want the +6.0 dB in this
path) it does not seem worth the extra complication as +0.3 dB represents only a very small
change in the position of the output level control.

19.11 The MID Path: 400 Hz Linkwitz–Riley Highpass Filter

The MID path begins with two 400 Hz second-order Butterworth highpass filters that make
a fourth-order Linkwitz–Riley highpass filter. Both are of the unity-gain Sallen & Key type,
since there is no need for gain, and in fact they are identical.

We might have been lucky with the resistor values of the second filter in the HF path, but
things pan out differently here. The target value for the exact 400 Hz cutoff frequency is
1278.9Ω. That is temptingly close to 1300Ω, but shoving that value in alone gives a cutoff
frequency error of ‒1.6%; clearly we could simply add quite a high value in parallel to
tweak the resistance just a little, but there will be effectively no improvement in accuracy.
Perhaps there are two more nearly equal values that will give the combined value we want?
Regrettably not. Playing the combinations, we find that the first pair of values that puts the
cutoff frequency within the ±0.5%. error window is R50 = 1300Ω in parallel with R51 =
82 kΩ, so that’s what we have to use. The error in the cutoff frequency is only ‒0.07%.

The second resistance in the filter has a target value of 1278.9Ω times two, which is
2557.7Ω. Our first attempt at a parallel combination is R52 = 5100Ω in parallel with R53 =
5100Ω, which gives 2550Ω, which is only 0.30% low. Looks like there’s no need to need to
look any further. And yet there is the nagging doubt that there might be a better solution …
and there is. The very next step is 5600Ω in parallel with 4700Ω, giving 2555.3Ω, which is
only 0.09% low, and gives us almost all the accuracy improvement possible. In this case there
is not much point in looking further still. The same resistor values are used in both filters.

As for the filters in the HF path, only the first capacitors (C50, C52) needs to be
polypropylene for low distortion; the second capacitors (C51, C53) can be polyester.

19.12 The MID Path: 3 kHz Linkwitz–Riley Lowpass Filter

After the 400 Hz highpass filter come the two second-order Butterworth lowpass filters that
make up a fourth-order Linkwitz–Riley lowpass filter. Both are of the unity-gain Sallen &
Key type. Using 47 nF capacitors, the target value for the two resistors is 798.15Ω. We can
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see at once that two 1600Ω resistors in parallel is going to be very close, and the combined
resistance of 800Ω is in fact only 0.23% low. We also get the maximum possible
improvement in accuracy, so we look no further.

19.13 The MID Path: Time Delay Compensation

The time delay required in the MID path is five times longer at 400 usec, but on the other
hand it covers the 400 Hz crossover point so the delay does not need to be constant up to
such a high frequency as in the HF path. Let’s see if that makes thing any easier.

Since a first-order allpass filter designed for a delay of 80 usec has the delay down by 10%
at 2.4 kHz, we would expect the same filter designed for a 400 usec delay to be down by
10% at 480 Hz, and simulation confirms that this is so; the relationship is just simple
proportion. 480 Hz is much too close to the 400 Hz crossover point so once more we are
going to have to look at a more sophisticated solution. We will aim for 10% down at two
octaves above crossover, in other words at 1.6 kHz, because this gave pretty convincing
results in the HF path.

Looking at the options, we can say that:

Three first-order filters in series will be 10% down at 7.5 kHz/5 = 1.5 kHz. This is
1.9 octaves away from crossover and is very close to our target, but this configuration
uses a relatively large number of components. Four cascaded first-order filters would
certainly do the job, but the component count is looking excessive compared with the
other options, because four capacitors and four opamp sections are required, while the
third-order allpass filter only uses three of each.

A second-order allpass filter designed for 400 usec will be down 10% at 4.79 kHz/5 = 958 Hz.
This is not even close to our two-octave target, and as we have seen the second-order allpass
filter has performance issues compared with the third-order, and an unwanted phase-inversion.
We can rule this approach out.

A third-order allpass filter designed for 400 usec, will be 10% down at 12.7 kHz/5 = 2.54 kHz,
and simulation conforms this figure is correct. It is 2.7 octaves away from crossover and gives
us a healthy safety margin—in fact it looks almost a bit too healthy, as all the evidence is that
a two octave spacing is ample. However, it is the only alternative that meets our requirements,
and there is no obvious way to save a few parts by cutting the spacing down a bit. It is
therefore once more selected for our design.

The 400 usec third-order allpass filter is very similar to that of the 80 usec version in the HF
path, the main difference being that the capacitors have increased from 10 nF to 47 nF,
and the resistor values adjusted accordingly to get the desired delay time. The schematic of
the complete MID path is shown in Figure 19.4. Note that the component numbering starts at
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Figure 19.4: Schematic diagram of the MID path, with Linkwitz–Riley highpass and lowpass filters, followed by the third-order time
delay compensator. Noise levels shown at each stage.
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50 for resistors and capacitors, and 20 for opamps; this permits additions to other parts of the
schematic without global renumbering. The signal and noise levels are given for the output of
each stage.

The parallel resistor combinations for the three non-preferred resistance values in the MID
allpass filter are given in Table 19.3. We will get a reasonable improvement in precision
with R67 and R68, as the values are near-equal, not much for R75 and R76, and virtually
none for R69 and R70.

The allpass stage can be omitted if time delay compensation is implemented by alternative
means such as the physical construction of the enclosure.

19.14 The LF Path: 400 Hz Linkwitz–Riley Lowpass Filter

The LF path is the simplest of the three paths in the crossover. It consists of two 400 Hz
second-order Butterworth lowpass filters that make a fourth-order Linkwitz–Riley lowpass
filter; both are of the unity-gain Sallen & Key type. There is no delay compensation. The
target resistance value for the two resistors is 1278.9Ω, which not surprisingly is the same
value as the first resistor in the MID highpass filter, as both use a capacitance value of 220
nF. As before, the first pair of values that puts the cutoff frequency within the ±0.5% error
window is 1300Ω in parallel with 82 kΩ. The error in the cutoff frequency is only ‒0.07%.

19.15 The LF Path: No Time Delay Compensation

No time delay compensation is required in the LF path because the physical distance
between the acoustic centres of the LF and MID drive units is compensated for by the delay
in the MID path. In fact, if the delay compensation was in the LF path, it would have to
have a negative delay; in other words the output would emerge before the input arrived.
Such circuits, though they would be extremely useful for predicting lottery numbers if you
wired enough of them in series, are notoriously hard to design.

The schematic of the complete LF path is shown in Figure 19.5. The component numbering
starts at 80 for resistors and capacitors, and 40 for opamps to allow additions to other parts

Table 19.3: The Best Parallel Combinations for Non-Preferred Resistance Values
in the HF Allpass Filter

Resistor Target Ohms Ra Ohms Rb Ohms Combined Ohms Error %

R67, R68 1189 1600 4700 1193.7 0.39%
R69,R70 2378 2700 20000 2378.9 0.04%
R75,R76 1868 3300 4300 1867.1 −0.05%
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of the schematic without renumbering. The signal and noise levels are given for the output
of each stage.

19.16 Output Attenuators and Level Trim Controls

The output level controls used here have a deliberately limited range because they are not
intended to be used as volume controls. The range about the nominal 1 Vrms output is
+3.5 dB to ‒6.0 dB, and this should be more than enough to allow for power amplifier gain
tolerances (assuming a nominally identical set of power amplifiers) or drive unit sensitivity
variations. If, however, if the crossover is intended to work with a wide range of power
amplifiers of varying sensitivities the range may need to be extended by reducing the end-
stop resistors at the top and bottom of the preset control.

The values chosen give the nominal output with the preset wiper central in its track,
so the system can be lined up pretty well just by eye; this won’t of course work
with multi-turn preset pots. The exactness of this unfortunately depends on the track
resistance of the preset in relation to the fixed end-stop resistors above and below
it, and its tolerance is unlikely to be better than 10%; it may be 20%. These
tolerances are horribly wide compared with the 1% of fixed resistors. If really
precise levels are required the output will have to be measured during the trimming
operation.

The output networks are configured with the lowest possible resistances that will not load
the opamp upstream excessively, to keep the final output impedance low enough to drive a
reasonable amount of cable without HF losses. The assumption in this design is that the
power amplifiers will not be too far away and their inputs will be driven directly. Putting a
unity-gain buffer after the level trim network would allow a lower output impedance,
especially if the “zero-impedance” type of buffer is used, but this is likely to compromise
the noise performance.

An alternative approach would be to reduce the resistor values in the output networks so
the maximal output impedance is as low as desired, and then drive this with a suitable
number of 5532 unity-gain buffers connected in parallel via 10Ω current-sharing
resistors. The effect on the noise performance will in this case be negligible, especially
since the noise contributions of the added buffers will partially cancel as they are
uncorrelated. You might need to keep an eye on the power dissipation in the output
network resistors.

An unbalanced output will give better common-mode rejection if it is configured as
impedance-balanced, by using a three-pin output connector with the cold (‒) pin connected
to ground through an impedance that approximates as closely as possible to the output
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impedance driving the hot (+) output pin. This improves the balance of the interconnection,
as fully described in Chapter 16. In our circumstances here the output impedance of
the level-trim network varies as the wiper of the preset is moved from one end of its
travel to the other, and so the impedance from the cold pin to ground is inevitably a
compromise.

In the case of the HF path, the output impedance varies from 248Ω with the trimmer at
maximum and 101Ω with the trimmer at minimum. The middle setting, which gives the
nominal output level, gives an output impedance of 184Ω. An impedance-balance resistor
of 180Ω will give negligible common-mode error.

The MID path output impedance varies from 165Ω at maximum to 92Ω at minimum,
with a middle value of 147Ω, so an impedance-balance resistor of 150Ω will give a very
small error.

The LF path has no output level trim and its output impedance is fixed at 120Ω, so here
the impedance-balancing can be made exact.

The impedance-balanced outputs for the three paths are shown in Figure 19.6.

19.17 Balanced Outputs

Adding balanced output stages is not wholly straightforward. If placed after the output
attenuator and trim networks, as in Figure 19.7a, they are likely to compromise the
noise performance, while if placed before the output networks, as in Figure 19.7b, a
dual-gang trim preset is required; good luck with sourcing that. A solution to this
dilemma is to separate the gain trim and output attenuation functions as shown in
Figure 19.7c.
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Figure 19.6: Reconfiguring the output networks for impedance-balanced operation with power
amplifiers fitted with balanced inputs.
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If the prospective power amplifiers have unbalanced inputs, consideration should be given
to the possibility of using ground-cancelling outputs, as described in Chapter 17.

19.18 Crossover Programming

Many of the resistors in the schematics if this chapter have the letter “P” next to their
resistance value. These are the components that need to be altered to change the
characteristics of the crossover. The idea is that these resistor positions on a prototype PCB
can be fitted with single-way turned-pin sockets like those that ICs are plugged into. It is
then possible to very easily plug resistors in and out during development. This is much
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Figure 19.7: Options for balanced outputs for crossovers with elevated internal levels and
output attenuators. a) balanced output stage after gain trim; b) balanced output stage before dual

gain trim; c) gain trim and attenuator functions separated.
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quicker than pulling the PCB out of the case, desoldering one resistor and then re-soldering
another one in, and PCBs will only take so much of this before the pads are damaged.
When the design is finalised the PCBs will have resistors soldered into the same positions
in the usual way.

Single-pin sockets can be obtained by cutting up a strip of sockets. Make sure you use the
kind of socket strip intended for this sort of thing—deconstructing IC sockets does not
usually work well as the plastic is more brittle and tends to shatter.

19.19 Noise Analysis: Input Circuitry

The schematics of the input circuitry, the HF path, the MID path, and the LF path all have the
measured noise levels at the output of each stage indicated by rectangular boxes with arrows.
This information is essential for performing a noise analysis, in which the noise contribution of
each stage is assessed to see if it is what we expect, and how it relates to the noise generated
by the other stages in the path we are examining. Because of the way that uncorrelated noise
sources add in a RMS fashion, the largest noise source tends to dominate the final result—the
noise at the end of the path—and so we want to identify that source and see if it is worthwhile
to make it quieter and so improve the overall noise performance.

As throughout this book, all the noise measurements given are unweighted and in a 22 kHz
bandwidth.

The measured noise output from the balanced input stage with its +11.9 dB of gain is
‒100.9 dBu. We terminate both input pins with 50Ω to ground, and the Johnson noise from
each termination resistor is ‒135.2 dBu (22 kHz bandwidth at 25°C). The noise from both
together is 3 dB more, not 6 dB, because the two noise sources are uncorrelated. The noise
voltage at the input is thus a very very low ‒132.2 dBu. When amplified by +11.9 dBu this
becomes ‒120.3 dBu, which is almost 20 dB below the stage output noise and is therefore
making a negligible contribution to the total. Despite its special low-noise design, virtually
all of its output noise is generated by the balanced input amplifier itself.

The Equivalent Input Noise (EIN) of the balanced input stage is −100.9 dBu− 11.9 dB =
−112.8 dBu, giving us a Noise Figure of 22.4 dB. This would usually be considered pretty
poor, but as is discussed in Chapter 16 on line inputs, Noise Figures are not a very useful
figure of merit for balanced inputs. What is unquestionably true is that ‒100.9 dBu is a very
low value of noise to find in audio circuitry, so we seem to have made a good start.

The noise level at the output of the bandwidth definition filter might be expected to be a bit
higher, because of its noise contribution, but it is actually a tad lower at ‒101.0 dBu. This is
because of the lowpass action of the filter. If the 22 kHz measurement filter in the testgear
was a brick-wall job this would not happen, but it has in fact only a 18 dB/octave roll-off so
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the bandwidth definition filtering above 22 kHz does have enough effect to outweigh the
noise contribution of the stage.

At this point we cannot say that either stage is in urgent need of improvement, though we
thoughtfully note that effectively all the noise from the input circuitry is generated internally
by the balanced input amplifier.

19.20 Noise Analysis: HF Path

The measured noise output from the first 3 kHz highpass filter is ‒95.1 dBu. This filter has a
gain of +6.3 dB, and the noise level at its input is ‒101.0 dBu, so if the stage was noiseless
we might expect a noise output of ‒101.0 dBu + 6.3 dB = ‒94.6 dBu; in fact the measured
noise output is less than this, at ‒95.1 dBu. This is of course because we are dealing with a
3 kHz highpass filter which is rejecting a substantial chunk of the audio spectrum. Calculating
the noise contribution from this stage is therefore quite complicated. For the moment we will
simply note that this stage does not appear to be excessively noisy.

The measured noise output from the second 3 kHz highpass filter is ‒95.2 dBu. This filter
has a gain of 0 dB, but again the output noise level is fractionally less than the input noise,
due to the filtering action.

The final stage in the HF path is the 80 usec third-order allpass filter time delay compensator,
which we might expect to be relatively noisy compared with the filters because of its
greater complexity. However, the noise at its output is only 0.2 dB higher than at its input,
measuring ‒95.0 dBu. If we subtract the input noise from the output noise we get an
estimate for the stage contribution of ‒108.5 dBu; unfortunately we are subtracting two
figures with only a small difference between them. That difference is fairly near the limit
of measurement, and so the result will be very inaccurate. If you want to know the noise
from a stage, then the correct method is to measure the noise output of the stage by itself.
We did this for the third-order allpass filter back in Chapter 10, and the actual output noise
was ‒102.8 dBu, which shows you how dangerous it is to use the subtraction method
inappropriately. If we add the internal noise of ‒102.8 dBu to the input noise of ‒95.2 dBu,
in theory we get an output noise of ‒94.5 dBu, an increase of 0.7 dB. (The small discrepancy
is almost probably due to minor frequency response irregularities in the allpass filter, caused
by capacitor tolerances.) We make a note that the noise contribution of the third-order allpass
filter is small, but not negligible. More importantly, we can only conclude that the noise
performance of the HF path is dominated by the noise being fed to it from the input
circuitry.

The final part of the HF path is the output attenuator and level trim network, which at its
nominal setting has a 15.6 dB loss to undo the doubly-elevated level in the HF path.
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Since it is just a resistive attenuator, I expected no problems here. But, the noise level
measured at the network output was ‒105.1 dBu, when it should have been ‒95.0 dBu ‒
15.6 dBu = ‒110.6 dBu. A 5 dB discrepancy cannot be ignored; investigation showed that
the problem was the output impedance of the network, which at 184Ω is somewhat higher
than usual. The Audio Precision SYS-2702 is designed to be fed from low-impedance
sources, and its input amplifiers appear to have high current noise as a consequence of
attaining very low voltage noise; this is never a problem in normal use, but here the
source impedance is higher than usual. Driving the AP input via a 5532 unity-gain buffer
(which has its own noise) and the usual 47Ω cable-isolating resistor gave a more realistic
output noise reading of ‒109.4 dBu. That is quiet.

19.21 Noise Analysis: MID Path

The measured noise output from the first unity-gain 400 Hz highpass filter is ‒101.2 dBu.
This is again less than the input noise because of the filtering action. The measured noise
output from the second unity-gain 400 Hz highpass filter is ‒101.1 dBu, a tiny increase at
the limit of measurement. We conclude that neither filter is making a significant contribution
to the noise in the MID path.

After the two highpass filters come the two 3 kHz lowpass filters, fed with ‒101.1 dBu of
noise from the second 400 Hz highpass filter. The noise output from the first lowpass filter
is ‒108.6 dBu, and from the second lowpass filter ‒109.4 dBu. Both these figures are much
lower than the input noise of ‒101.1 dBu as a consequence of the lowpass filtering which
cuts the bandwidth from 22 kHz to 3 kHz.

The final stage in the MID path, as in the HF path, is a third-order allpass filter time delay
compensator, this time designed for a 400 usec delay. We saw when we looked at the HF
allpass filter in isolation that it was relatively noisy, with a measured output noise of
‒102.8 dBu; in this case the different circuit values for 400 usec give us a slightly lower
allpass-filter-only noise output of ‒104.1 dBu. (The second-order allpass filter that makes up
the first section of the complete third-order filter has a noise output of ‒104.9 dBu, so that is
clearly where most of the noise comes from.) When the third-order allpass filter is placed in
the MID path, the measured noise output is ‒102.9 dBu. Since this is more than 6 dB greater
than the ‒109.4 dBu noise level going in, it is clear that by far the greater part of the noise is
generated internally by the third-order allpass filter. This is because the nominal level in the
MID path is 6 dB lower than that in the HF path. This time we make a note that the noise
contribution of the third-order allpass filter is dominant, and might repay some attention.

The final part of the MID path is the output attenuator and level trim network, which at
its nominal setting has a 9.5 dB loss to undo the elevated level in the MID path. The noise
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level measured directly at its output was initially ‒107.9 dBu, but as we saw at the end of
the HF path, that reading is exaggerated by the AP input current noise. Driving the AP
input via a 5532 unity-gain buffer and 47Ω cable-isolating resistor reduced the output noise
reading to ‒110.4 dBu. That too, is rather quiet; the noise level is lower than that at the HF
path output because of the presence of the 3 kHz lowpass filters.

19.22 Noise Analysis: LF Path

This path consists only of the two 400 Hz lowpass filters and the fixed output attenuator.
Given the 400 Hz cutoff frequency of the lowpass filters we expect a good noise performance,
and we get it. The noise at the input of the LF path is the ‒101.0 dBu coming from the input
circuitry. This is reduced to ‒111.0 dBu at the output of the first lowpass filter, and further to
‒112.2 dBu at the output of the second lowpass filter.

The final part of the LF path is the fixed output attenuator network, which has a 9.5 dB
loss to undo the elevated level in the MID path. This in theory gives an output noise
of ‒121.7 dBu. This is going to be hard to measure as it is below the noise floor of the
AP measuring equipment, which is, on my example, ‒119.6 dBu with the input short-
circuited. Once more we have to drive the AP input via a 5532 unity-gain buffer and 47Ω
cable-isolating resistor to avoid misleadingly high readings due to current noise, and that
5532 will add its own voltage noise. The reading we get is ‒113.8 dBu. This is reduced
to ‒115.1 dBu, after we subtract the known AP noise floor. We then calculate the noise
added by the 5532 buffer, as it is too low to measure accurately, using its typical input
noise density of 5 nV/√Hz and a 22 kHz bandwidth (the effect of the 5532 current noise
in the attenuator output impedance is negligible). The answer is that the 5532 buffer
contributes ‒120.38 dBu. If we subtract that from our figure of ‒115.1 dBu, we get a
stunningly low ‒116.6 dBu. This may not be the most accurate reading in the history of
audio but it is good evidence that everything is working properly, and that we have a
very low noise output from the LF path.

19.23 Improving the Noise Performance: The MID Path

On our journey down the MID path, we noted that the third-order allpass filter time delay
compensator was generating internally most of the noise that was measured at its output.
It is the dominant noise generator in the MID path, so let’s see if we can do something
about that.

There is a very simple fix, which you may have already seen coming. The third-order
allpass filter is at the end of the MID path, so all its noise heads for the output unmolested.
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If, however, it is moved so it is after the 400 Hz highpass filters but before the 3 kHz
lowpass filters, the latter will have a dramatic effect on the noise level. Making the change,
the noise output of the third-order allpass filter is now ‒99.6 dBu as it adds its own noise to
the ‒101.1 dBu reaching it from the highpass filters upstream. The noise output of the first
lowpass filter is pleasingly lower at ‒107.3 dBu, and the noise output of the second lowpass
filter is even lower at ‒108.2 dBu.

After the output attenuator network, the noise at the final output is reduced from ‒110.4 dBu
to ‒113.3 dBu, an improvement of 2.9 dB that costs us nothing more than a moment’s
thought.

The true noise output must be ‒108.2 ‒ 9.5 dBu = ‒117.7 dBu, because of the effect of the
9.6 dB output attenuator, but we have already described the difficulties of measuring noise
at such low levels. The revised schematic is shown in Figure 19.8.

In case you’re wondering why the MID path wasn’t configured in this way from the
start, the answer is that until I built the prototype circuit I didn’t know how the noise
contributions of the stages were going to work out. It could have been predicted by a
lot of calculation, but that gets complicated when you’re dealing with stages like
filters that have a non-flat-frequency response. Sometimes it’s quicker to just get out
the prototype board and start plugging bits in. You’re going to be doing it sooner
or later.

19.24 Improving the Noise Performance: The Input Circuitry

The other major point we noted in our noise analysis of the crossover was that the noise
performance of the HF path was dominated by the noise being fed to it from the input
circuitry, the incoming level being ‒101.0 dBu. Almost all of this is coming from the
balanced input amplifier, the contribution of the bandwidth definition filter being very small.
Therefore the only way to improve things is to take a hard look at the balanced input
amplifier; clearly our original design decision to make it a special low-noise type was
sound, but what are the options for making it even quieter? Improvements to this stage are
going to be value for money as they will reduce the noise level being fed to all three signal
paths.

Now, you might be questioning whether it is worth spending any more money at all on
noise reduction, because the circuitry is already rather quiet, and you might expect the
equipment upstream, the preamplifier, mixing console or whatever, to generate a higher
noise level than the crossover. This to my mind is a matter of design philosophy rather than
dogged pragmatism. We may suspect that the source equipment will be noisier than our
circuitry, but that is the responsibility of whoever designed it. If we make our device as
good as we can without making obviously uneconomic decisions, then we not only get a
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virtuous warm glow, but we can be sure we are relatively future-proof in terms of
improvements that may be brought about in the source equipment. There is also the point
that we will get some excellent numbers for our specifications, and they may impress
prospective customers.

In Chapter 16 we looked at a series of improvements that could be made to unity-gain
balanced input amplifiers to improve their noise performance, all of which, regrettably but
perhaps inevitably, required more numerous or more costly opamps. Here we are dealing
with a gain of +11.9 dB so the optimal path of improvement may be somewhat different.
The original balanced input stage consists of two unity-gain buffers and a low-impedance
balanced (differential) amplifier. From here on I shall just refer to them as “the buffers” and
“the balanced amplifier.” Given the difficulty of measuring the very low noise levels at the
outputs of the attenuator network, the noise was measured just before the attenuator and the
output noise calculated. In each case the input noise of the AP measuring system has been
subtracted in an attempt to obtain accurate numbers.

We proceed as follows:

Step 1: Replace the 5532 opamp A3 in the balanced amplifier with the expensive but
quiet LM4562. This gives a rather disappointing reduction in the noise from the
balanced stage of 1.1 dB, which feeds through to even smaller improvements in the path
outputs
Step 2: We deduce that the input buffers A1, A2 must be generating more of the noise
than we thought, so we put the 5532 back in the A3 position, and replace both input
buffers with a LM4562; since the LM4562 is a dual opamp this makes layout simple.
The noise from the balanced stage is now 1.9 dB better than the original design, which
is more encouraging, and two of the paths have a 2.2 dB improvement. This sounds
impossible, but actually results from the three crossover paths dealing with different
parts of the audio spectrum. At any rate there is no doubt that the modification of
Step 2 is more effective than Step 1.
Step 3: We enhance the balanced amplifier by putting two identical 5532 stages in
parallel and averaging their outputs by connecting them together with 10Ω resistors.
The LM4562 input buffers are retained as their superior load-driving capability is useful
for feeding two balanced stages in parallel. This drops the balanced input stage noise to
3.9 dB below the original design. The improvement at the output of the bandwidth
definition filter is less at 3.1 dB. The filter makes its own noise contribution and this is
now more significant. Once more there are useful reductions in the noise out from the
three paths.
Step 4: LM4562s are not cheap, but we decide to splurge on two of them. We return to
a single balanced amplifier using an LM4562, and the LM4562 input buffers are
retained. This is very little better than Step 3, and significantly more expensive.
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Step 5: It appears that abandoning the double balanced amplifier was not a good
move, so we bring it back, this time with both of its sections employing an LM4562.
We retain the LM4562 buffers. This gives a very definite improvement, with the
balanced input stage noise now 5.8 dB below the original design. The path output
noise measurements also improve, though by a lesser amount, because, as with
bandwidth definition filter, the noise generated by the filter circuitry has become
more significant as the noise from the balanced input stage has been reduced. We
have only replaced two opamp packages with the LM4562 (which is about ten times
more costly than the 5532) so the cost increase is not great.

The reduction in balanced input amplifier noise could be pursued much further, by more
extensive paralleling of opamps, as described in Chapter 16. However, is it worthwhile?
This is questionable given the noise that is generated downstream of it.

These results are summarised in Table 19.4., together with their effect on the noise output
(before the output attenuator) of each of the three crossover paths. You will note a few
minor inconsistencies in the last decimal place of some of the figures; this is due partly to
the fact that the three paths are handling different parts of the audio spectrum, and to some
extent due to the difficulties of measuring the very low noise levels accurately. Nonetheless,
the overview it gives of the worth of the various modifications is correct.

Looking at the bottom two rows of the table which gives the final noise outputs, and the
signal/noise ratios for a 1 Vrms output (after the output attenuators) we can see that the

Table 19.4: Improvements in Noise Performance

Step

Bal Stage BW Defn HF MID LF

Noise Out
dB

Noise Out
dB

Noise Out
dB

Noise Out
dB

Noise Out
dB

0 Original design 0 dB ref 0 dB ref 0 dB ref 0 dB ref 0 dB ref
1 Bal amp A3 = LM4562

Buffers A1, A2 = 5532
1.1 1.2 1.0 1.4 1.8

2 Bal amp A3 = 5532
Buffers A1, A2 = LM4562

1.9 1.8 2.2 1.5 2.2

3 2 × Bal amp A3 = 5532
Buffers A1, A2 = LM4562

3.9 3.1 3.5 1.9 2.3

4 Bal amp A3 = LM4562
Buffers A1, A2 = LM4562

4.0 3.3 2.3 2.0 2.5

5 2 × Bal amp A3 = LM4562
Buffers A1, A2 = LM4562

5.8 4.7 4.7 2.0 2.6

5 Path output noise dBu −115.3 −120.0 −125.2
5 Path output signal/noise

ratio dB
117.5 122.2 127.4
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HF path is the noisiest by a long way, despite its 6 dB higher internal level. This is because
it contains a relatively noisy third-order allpass filter, but no lowpass filters to discriminate
against its noise. Clearly that 6 dB extra level is a very good idea. The MID path is quieter
because it does have a lowpass filter which can be placed after its third-order allpass
filter. The LF path consists only of a lowpass filter and is consequently the quietest of
the lot.

The final version (Step 5) of the input circuitry is shown in Figure 19.9. Note that the
bandwidth definition filter has not been modified at any point.

19.25 The Noise Performance: Comparisons with Power
Amplifier Noise

I hope you will agree that the noise performance of this active crossover is rather good,
especially after the modifications. But how does it compare with the noise from a well-
designed power amplifier? The EIN of a Blameless power amplifier is ‒120 dBu [1] if the
input signal is applied directly to the power amplifier, rather than through a balanced input
stage. As we have seen, balanced input stages are relatively noisy and are certainly much
noisier than a power amplifier alone.

The figure of ‒120 dBu is therefore the most demanding case to compare the crossover
noise against. What are we trying to achieve? If we accept that the noise from the
loudspeakers can go up by 3 dB when we connect the crossover, its output noise must be no
more than ‒120 dBu, at the same level as the power amplifier EIN. If, however, we are
more demanding and will only stand for a noise increase of 1 dB, which is at the limit of
audibility, then the crossover output noise must be reduced to ‒126 dB. We will take that
figure as a target and see what can be done.

We will look at the noise output of the MID path because the ear is most sensitive in this
part of the audio spectrum (400 Hz–3 kHz). The noise output after the performance
optimisation is ‒120.0 dBu. This is very quiet indeed for any piece of audio equipment, but
regrettably 6.0 dB higher than the ambitious target we have just adopted. You may be
doubting if the crossover noise performance could be improved that much, and while I am
sure it could be done, I am less sure that it could be done economically.

The resistance values in the crossover have already been reduced as much as possible
without introducing extra distortion or demanding large and expensive capacitors, reducing
the effects of opamp current noise and resistor Johnson noise, but this has no effect on
opamp voltage noise. The effect of this can only be reduced by using more expensive
opamps with a lower input voltage noise density, or by paralleling opamp stages. Neither
technique promises a radical reduction in noise when practically applied.
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Nonetheless, let us conduct a thought experiment. We know that whatever amplifier
technology you use, putting two amplifiers in parallel and averaging their outputs (usually by
connecting them together with 10Ω resistors) reduces the noise output by 3 dB; putting four
in parallel reduces the noise by 6 dB, and so on. The same applies to putting two identical
active crossovers in parallel, so… if we stacked up four of them we could unquestionably get
a 6 dB noise reduction and meet our target. This is perhaps not very sensible, but it does
prove one thing—it is physically possible to accomplish the formidable task of meeting our
very demanding noise target, even if it is hardly economical to do so.

19.26 Conclusion

The description of this active crossover has hopefully demonstrated the techniques and
design principles described in this book. The use of elevated internal levels, plus other low-
noise techniques, has allowed us to achieve a remarkable noise performance.

Reference

[1] D. Self, Audio Power Amplifier Handbook, fifth ed., Newnes, Boston, MA, p. 104 (power amp input noise)
W ISBN: 978-0-240-52162-6.
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APPENDIX 1

Crossover Design References

Not all these papers and articles are referenced in the main text of this book. They are of
varying value and significance. These references are to crossover design itself; references
relating to peripheral matters like filter design are not included. Papers relating solely to
digital crossovers have also not been included. The majority of these papers come from the
JAES, the Journal of the Audio Engineering Society. These can be purchased online at
http://www.aes.org/. The cost is currently $5 per paper for members and $20 per paper for
non-members.

Early Stuff
Hilliard & Kimball “Dividing Networks for Loud Speaker Systems” Academy Research

Council Technical Bulletin, Mar 1936 Reprinted JAES Vol 26 #11,
Nov 1978, pp. 850–855

1960–69
Robert Ashley “On the Transient Response of Ideal Crossover Networks” JAES Vol 10 #3,

July 1962, pp. 241–244

1970–79
Richard H Small “Constant Voltage Crossover Network Design” JAES Vol 19 #1, Jan 1971,

pp. 12–19
Richard H Small “Phase and Delay Distortion in Multiple-Driver Loudspeaker Systems”

JAES Vol 19 #1, Jan 1971, p. 56
Richard H Small “Crossover Networks and Modulation Distortion” JAES Vol 19 #1,

Jan 1971, pp. 55–56
Ashley & Kaminsky “Active and Passive Filters as Loudspeaker Crossover Networks” JAES

Vol 19 #6, June 1971, pp. 494–502
Don Keele “What’s So Sacred About Exponential Horns?” AES Preprint #1038,

May 1975
Siegfried Linkwitz “Active Crossover Networks for Non-coincident Drivers” JAES Vol 24 #1,

Jan/Feb 1976, pp. 2–8
Erik Baekgaard “A Novel Approach to Linear Phase Loudspeakers Using Passive

Crossover Networks” JAES Vol 25 #5, 284 1977 (filler-driver)
Siegfried Linkwitz “Passive Crossover Networks for Non-coincident Drivers” JAES Vol 26 #3,

March 1978, pp. 149–150

1980–89
W. Marshall Leach “Loudspeaker Driver Phase Response: The Neglected Factor in Crossover

Network Design” JAES Vol 28 #6, June 1980, pp. 410–421
Garde, P “All-pass Crossover Systems” JAES Vol 28 #9, Sept 1980
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Dennis G Fink “Time Offset and Crossover Design” JAES Vol 28, September 1980,
pp. 601–611

Robert Bullock “Loudspeaker-Crossover Systems: An Optimal Crossover Choice” JAES
Vol 30 #7/8, Aug 1982, pp. 486–495

Adams & Roe “Computer-Aided Design of Loudspeaker Crossover Networks” JAES
Vol 30 #7/8, Aug 1982, pp. 496–503

Richard Greiner “Tone Burst Testing on Selected Electronic Crossover Networks” JAES
Vol 30 #7/8, Aug 1982, pp. 522–527

Lipshitz, Pocock & Vanderkooy “Audibility of Midrange Phase Distortion in Audio Systems” JAES #9,
Sept 1982, pp. 580–595

Wieslaw R Woszczyk “Bessel Filters as Loudspeaker Crossovers” 72nd AES Convention,
Oct 1982, Preprint 1949

Lipshitz SP & Vanderkooy J “A Family of Linear Phase Crossover Networks of High Slope Derived by
Time Delay” JAES Vol 31 #1/2, Jan/Feb 1983, pp. 2–20

Greiner & Schoessow “Electronic Equalisation of Closed-Box Loudspeakers” JAES Vol 31 #3,
Mar 1983, pp. 125–134

Shanefield Comment on “Audibility of Midrange Phase Distortion in Audio Systems”
plus reply by Lipshitz, Pocock & Vanderkooy JAES Vol 31 #6, Jun 1983,
p. 447

Robert Bullock “Satisfying Loudspeaker Crossover Constraints with Conventional
Networks” JAES Vol 31 #7, Jul/Aug 1983, pp. 489–499

James Moir Comment on “Audibility of Midrange Phase Distortion in Audio Systems”
JAES Vol 31 #12, Dec 1983, p. 939

B J Sokol “Practical Subwoofer Design” (crossover filter) Electronics World, Dec 1983,
p. 41

Robert Bullock “Passive 3-Way Allpass Crossover Networks” JAES Vol 32 #9, Sept 1984,
p. 626

Joseph D’Appolito “Active Realisation of Multi-Way All-Pass Crossover Systems” 76th AES
Convention, Oct 1984, Preprint 2125

Lipshitz & Vanderkooy “Phase Linearisation of Crossover Networks Possible by Time Offset &
Equalisation” JAES Vol 32 #12, Dec 1984, p. 946

Lipshitz SP & Vanderkooy J “Use of Frequency Overlap and Equalization to Produce High-Slope
Linear Phase Loudspeaker Crossover Networks” JAES Vol 33 #3,
Mar 1985, pp. 114–126

Robert Bullock Corrections to “Passive Three-Way All-Pass Crossover Networks” JAES
Vol 33 #5, May 1985, p. 355

Catrysse “On the Design of Some Feedback Circuits for Loudspeakers” JAES
Vol 33 #6, Jun 1985, p. 430

L R Fincham “Subjective Importance of Uniform group Delay at Low Frequencies”
JAES Vol 33 #6, Jun 1985, p. 436

Recklinghausen “Low-Frequency Range Extension of Loudspeakers” JAES Vol 33 #6,
Jun 1985, p. 440

Mitra & Damonte “Tunable Active Crossover Networks” JAES Vol 33 #10, Oct 1985, p. 762
Deer, Bloom & Preis “Perception of Phase Distortion in All-Pass Filters” JAES Vol 33 #10,

Oct 1985, pp. 782–786
de Wit, Kaizer & Op de Beek “Numerical Optimization of the Crossover Filters in a Multiway

Loudspeaker System” JAES Vol 34 #3, March 1986, pp. 115–123
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Vanderkooy & Lipshitz “Power Response of Loudspeakers with Non-coincident Drivers—The
Influence of Crossover Design” JAES Vol 34 #4, April 1986, pp. 236–244

Robert Bullock “A New 3-Way Allpass Crossover Network Design” JAES Vol 34 #5, May
1986, p. 315

Rudolf Chalupa “A Subtractive Implementation of Linkwitz–Riley Crossover Design” JAES
Vol 34 #7/8, July/Aug 1986, p. 556

Lipshitz & Vanderkooy “In-Phase Crossover Network Design” JAES Vol 34 #11, Nov 1986,
p. 889

Regalia, Fujii, Mitra, Sanjit,
Neuvo

“Active RC Crossover Networks with Adjustable Characteristics”
JAES Vol 35 #1/2, Jan/Feb 1987, pp. 24–30

M Hawksford “A Family of Circuit Topologies for the Linkwitz–Riley (LR-4) Crossover
Alignment C14” 82nd AES Convention, Mar 1987, Preprint 2468

J D’Appolito “Active Realization of Multiway All-Pass Crossover Systems” JAES
Vol 35 #4, April 1987, pp. 239–245

Harry Baggen “Active Phase-Linear Crossover Network” Elektor, Sept 1987, p. 61
Maffioli & Nicolao “Another Approach to the Ideal Crossover: The Energy Filler” AES

Convention 84 (March 1988) Paper #2642
Ronald Aarts “A New Method for the Design of Crossover Filters” JAES Vol 37 #6,

June 1989, pp. 445–454

1990–99
M Hawksford “Asymmetric All-Pass Crossover Alignments” JAES Vol 41 #3, March

1993, pp. 123–134
Neville Thiele “Precise Passive Crossover Networks Incorporating Loudspeaker Driver

Parameters” JAES Vol 45 #7/8, July 1997, pp. 585–594
Bill Hardman “Precise Active Crossover” Electronics World, Aug 1999, p. 652
Alex Megann http://www.soton.ac.uk/~apm3/diyaudio/Filler_drivers.html, December

1999 (Second and fourth-order crossovers with filler-drivers)

2000–2009
Christhof Heinzerling “Adaptable Active Speaker System” (subtractive) Electronics World, Feb

2000, p. 105
John Watkinson “Speaker’s Corner: Crossover Summation” Electronics World Sept 2000,

p. 720
Neville Thiele “Loudspeaker Crossovers with Notched Responses” JAES Vol 48 #9,

Sept 2000, p. 784
Neville Thiele “Passive All-Pass Crossover System of Order 3 (Low Pass)+ 5 (High

Pass), Incorporating Driver Parameters” JAES Vol 50 #12, Dec 2002,
pp. 1030–1038

Cochenour, Chai, Rich, &
David

“Sensitivity of High-Order Loudspeaker Crossover Networks with
All-Pass Response” JAES Vol 51 #10, Oct 2003, pp. 898–911

Neville Thiele “An Active Biquadratic Filter for Equalising Overdamped Loudspeakers”
AES Convention Paper 6153, 116th convention, May 2004

Neville Thiele “Crossover Filter System and Method” US Patent 6,854,005 Feb 2005
(Assigned to Techstream Pty Ltd, Victoria, AU)

R Christensen “Active All-Pass Crossover Networks with Equal Resistors and Equal
Capacitors” JAES Vol 54 #1/2, Jan/Feb 2006

Neville Thiele “Implementing Asymmetrical Crossovers” JAES Vol 55 #10, Oct 2007,
pp. 819–832
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APPENDIX 2

Loudspeaker Design References

These references are only a small sample of the many that are applicable to loudspeaker
design. These have been selected because they either relate closely to crossover design, for
example in the equalising of diffraction effects, or are of special significance in themselves,
such as the classic papers by Richard Small.

Early stuff
Rice & Kellogg “Notes on the Development of a New Type of Hornless Loudspeaker”

AIEE Transactions, Sept 1925 (The first description of the modern
moving-coil direct radiator cone loudspeaker.)

Muller, Black & Davis “The Diffraction Produced by Cylindrical and Cubical Obstacles and
by Circular and Square Plates” JAES Vol 10 #1, July 1938, pp. 6–13

1960–69
H F Olson “Direct Radiator Loudspeaker Enclosures” JAES Vol 17 #1, Jan 1969,

pp. 22–29 (Classic paper on frequency response anomalies due to
diffraction.)

1970–79
Richard H Small “Direct Radiator Loudspeaker System Analysis” JAES Vol 20 #5

June 1972, pp. 383–395
Richard H Small “Closed-Box Loudspeaker Systems Part 1: Analysis” JAES Vol 20 #10,

Dec 1972, pp. 798–808
Richard H Small “Closed-Box Loudspeaker Systems Part 2: Synthesis” JAES Vol 21 #1,

Feb 1973, pp. 11–18
Richard H Small “Vented-Box Loudspeaker Systems Part 1: Small-Signal Analysis” JAES

Vol 21 #5, June 1973, pp. 363–372
Richard H Small “Vented-Box Loudspeaker Systems Part 2: Large-Signal Analysis” JAES

Vol 21 #6, Aug 1973, pp. 438–444
Richard H Small “Vented-Box Loudspeaker Systems Part 3: Synthesis” JAES Vol 21 #7,

Sept 1973, pp. 549–554
Richard H Small “Vented-Box Loudspeaker Systems Part 4: Appendices” JAES Vol 21 #8,

Oct 1973, pp. 635–639
Richard H Small “Passive-Radiator Loudspeaker Systems Part 1: Analysis” JAES

Vol 22 #8, Oct 1974, pp. 592–601
Richard H Small “Passive-Radiator Loudspeaker Systems Part 2: Synthesis” JAES

Vol 22 #9, Nov 1974, pp. 683–689

1980–89
Bews & Hawksford “Application of Geometric Theory of Diffraction (GTD) to Diffraction

at the Edges of Loudspeaker Baffles” JAES Vol 34 #10, Oct 1986,
pp. 771–779
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Juha Backman “Computation of Diffraction for Loudspeaker Enclosures” JAES
Vol 37 #5, May 1989, pp. 353–362

James Porter and Earl Geddes “Loudspeaker Cabinet Edge Diffraction” JAES Vol 37 #11, Nov 1989,
pp. 908–918

1990–99
Ralph E Gonzalez “A Dual-Baffle Loudspeaker Enclosure for Balanced Reverberant

Response” 91st AES Convention, Oct 1991, Preprint No. 3203
John Vanderkooy “A Simple Theory of Cabinet Edge Diffraction” JAES Vol 39 #12,

Dec 1991, pp. 923–933
Ian Hegglun “Speaker Feedback” (motional feedback) Electronics World, May 1996,

p. 378
Russel Breden “Roaring Subwoofer” (motional feedback) Electronics World, Feb 1997,

p. 104
J R Wright “Fundamentals of Diffraction” JAES Vol 45 #5, May 1997,

pp. 347–356

2000–2009
John Watkinson “Speaker’s Corner: Voltage or Current Drive?” Electronics World,

May 2001, p. 354
John Watkinson “Speaker’s Corner: Motional Feedback” Electronics World, Sept 2001,

p. 698
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of system headroom

43–44
phase perception 47–49
steeper slopes 40
target functions 49

Cutoff frequency 144–145,
147–149, 148

D
DABP filter, see Double-Amplifier

Bandpass filter
Decoupling capacitors 524
Delay compensation

physical methods of 268–269
requirement for 261–263, 262

Delay filter
specification, sample crossover

and 270
technology 269–270

Delay lines for subtractive
crossovers 296–298

Delays
calculating required 263,

263–266
variation of 265–266

Deliyannis filter 251
Derived crossovers, see Subtractive

crossovers
Dielectric absorption 357, 358
Diffraction

6 dB baffle step 32, 32, 308
edge effect 33, 33
loudspeaker mechanism 35

Diffraction compensation
equalisation 308–309

Dipole speakers 307
Dipole subwoofers 446
Discrete circuitry, power supplies

for 532
Distortion 361–362, see also

common-mode distortion
electrolytic capacitor 364–367
in first-order allpass filters

277, 277–278

group delay 47
MFB filters

highpass 240, 241–242
lowpass 241, 241–242

modulation 37
non-electrolytic capacitor 358,

358–359
Sallen and Key filters

highpass 230–231,
232–234

lowpass 232–234,
232–234

in second-order allpass filters
284, 284–285, 289–290

third-harmonic 360, 361
in third-order allpass filters

286–290, 287–288
total modulation 37

Doppler effect 37
Drive unit delay, physical methods

of compensating for 268
Drive unit equalisation 306
Dual-Amplifier Bandpass (DABP)

filter 252, 253–254
Dual-concentric approach 269
Duelund crossover 106–107

E
Earth conductor 8
Eighth-order crossover filters 102
EIN, see Equivalent input noise
Electrolytic capacitor 357

distortion 364–367
non-linearity 364–367

Electronic balanced input 473–475
versus transformer balanced

inputs 470–471
Electrostatic coupling 468–469
Elektor’s subtractive three-way

crossover 135
Elliptical filter crossovers 115–120,

see also Neville Thiele
MethodTM (NTM) cossovers

Elliptical filters 175–177
Equalisation

by adjusting filter parameters
340

circuits 312
by filter frequency offset 339

loudspeaker 305–312
need for 303–304

Equaliser
adjustable peak/dip, see

Adjustable peak/dip
equalisers

biquad 327, 327–333, 332
bridged-T 325–327, 326
HF-cut 316–317, 316–317
HF-boost 312–315, 313–314
LF-boost 316–317
LF-cut 312–315, 315
with non-6 dB slopes 335–338

Equivalent input noise (EIN)
536, 552

Equivalent series inductance
(ESL) 357

Equivalent series resistance
(ESR) 357

ESL, see Equivalent series
inductance

ESR, see Equivalent series
resistance

External signal levels 461

F
Fifth-order allpass filter 295
Fifth-order inverse Chebyshev

lowpass filter 173, 173
amplitude response of 174, 174

Fifth-order lowpass filters in single
stage 212–213, 212–213

Fifth-order passive crossovers 102
Filler-driver crossovers 104–106,

105–106
Filter

characteristics
1 dB-Chebyshev lowpass

filter 158
3 dB-Chebyshev lowpass

filter 158
Bessel filters 153
Butterworth filters

148–150
Chebyshev filters

153–158
Gaussian filters 179–180
Legendre–Papoulis

filters 181–184
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linear-phase filters
178–179

Linkwitz–Riley filters
150–153

synchronous filters
184–186

transitional filters 178
ultraspherical filters 186
ultraspherical

polynomials 186
cutoff frequencies 144
frequency offset, equalisation

by 339
order, in signal path 432–434
roll-off slopes 40

First-order allpass filter 271–280,
278
cascaded 278–280, 299
disconcerting response of 273
distortion and noise in

277–278
distortion plots for 277
group delay response of 274,

276, 279
non-inverting RC 273
phase response of 274
two versions of 272

First-order crossovers 54–60,
55–59
Solen split crossover 60, 61
subtractive crossover 127,

128, 129
frequency response of 128

three-way crossover 60
First-order filters 125, 144–145

lowpass and highpass
190–192, 191

Fixed frequency 453
Flat amplitude response, second-

order Butterworth crossover
104, 105

Four cascaded maximally flat
fourth-order allpass filters 297

Fourth-order allpass filter 294
Fourth-order Bessel filter 299, 299

frequency response of 300
group delay of 300

Fourth-order Bessel–Thomson
filter 275

Fourth-order crossovers 85–102
1.0 dB-Chebyshev crossover

93, 94
Bessel crossover 91–93, 92–93
Butterworth crossover 86–87,

86–88
Butterworth subtractive

crossovers 132
frequency response of 133

Gaussian crossover 97–99,
97–98

Legendre crossover 99–101,
99–102

linear-phase crossover 95–97,
95–96

Linkwitz–Riley crossover
88–91, 88–91, 102, 107,
108

Linkwitz–Riley subtractive
crossover 134
frequency response of 133

Fourth-order lowpass filter
non-equal resistors, single

stage 211, 211–212
in single stage 208–210,

211–212
Frequency offsets

determining 102–103
second-order Butterworth

filters 65, 65
Frequency response

first-order crossover 128
fourth-order crossover

1.0 dB-Chebyshev
crossover 93, 94

Bessel crossover 91, 93,
92–93

Butterworth crossover
86–87, 86, 88

Butterworth subtractive
crossover 133

Gaussian crossover,
97–98, 97

Legendre crossover
99–101, 100

linear-phase crossover
95, 95–96

Linkwitz–Riley
crossover 88, 88–89

Linkwitz–Riley subtractive
crossover 133

second-order crossover
1.0 dB-Chebyshev

crossover 73–75, 73
Bessel crossover 71–72,

71
Butterworth crossover

63, 64
Butterworth subtractive

crossover 131
Linkwitz–Riley

crossover 69–70, 70
Solen split first-order

crossover 60, 61
third-order crossover

1.0 dB-Chebyshev
crossover 83, 84–85,
85

Bessel crossover 81,
82–83

Butterworth crossover
76, 76

Butterworth subtractive
crossover 132

Linkwitz–Riley
crossover 79, 79–80

G
Gain structures 426, 426–429, 428

rules for 426
Gaussian crossover, fourth-order

97–99, 97–98
Gaussian distribution 342–347
Gaussian filters 179–180
Gaussian random resistor values

344, 344
Gegenbauer polynomials, see

Ultraspherical polynomials
Ground voltages 469–470
Ground-cancelling outputs 509–510
Group delay distortion 47
Group delay response

first-order crossover 58, 58
fourth-order Linkwitz–Riley

crossover 90, 91
third-order Butterworth

crossover 77, 78
Gyrator circuits 323, 323
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H
Half-space 308
Hardman elliptical crossover 117

amplitude response of 119
design for 117, 119
in-phase summation 115, 116
lowpass filter 117, 118

Headroom 417–418
HF channels 23
HF-cut equaliser 316–317,

316–317
and HF-boost equaliser 317

HF path
3-kHz Linkwitz–Riley

highpass filter 535,
538–542, 540

noise analysis 553–554
time delay compensation 539,

542–543, 543
HF-boost equaliser 312–315,

313–314
and HF-cut equaliser 317

Hi-fi 1, 4, 17, 22
subwoofers 448

High frequency 8
amplifiers 15

High input impedance balanced
inputs 491, 491–492

Higher-order crossovers 102
subtractive crossovers 127

Higher-order filters 145
allpass filters 290–296, 291

designing 291
Bessel filters 169–170
Butterworth filters 164–167
Chebyshev filters 170–172
Linkwitz–Riley filters

168–169
High-level inputs 450
High-level outputs 450–451
Highpass filters 142, 170–172
Highpass notch response

117–118
Highpass subsonic filter 451–452
High-Q bandpass filters 252–253
High-Q peak/dip equaliser 304
Home entertainment crossovers

fixed frequency 453
multiple variable 454
variable frequency 453–454

Home entertainment subwoofers
448–453
crossover frequency control

451
crossover in/out switch 451
high-level inputs 450
high-level outputs 450–451
highpass subsonic filter

451–452
level control 451
LFE input 451
low-level inputs (balanced)

450
low-level inputs (unbalanced)

449
mono summing 451
phase switch 452
power amplifiers for 454
variable phase control 452

Horn loaded subwoofers 447
Horn loudspeakers 28, 31–32

I
IC regulators 523
In-phase summation 115

Hardman elliptical crossover
116

Input amplifier functions 462, 492
Input circuitry

noise analysis 552–553
noise performance, improving

556–560, 559, 561
Input overvoltage protection

495–496
for balanced input amplifier

496
Instrumentation amplifier 492–493,

492
Interconnections, balanced

465–466
Internal signal levels 422–426,

461–462
noise, headroom, and 417–418
raised 419–421

Inverse Chebyshev filters 173–175
Isobaric subwoofers 445

J
Johnson noise 140, 351–353, 374,

378, 380, 404, 418–419

L
Left filter block 416
Legendre crossover, fourth-order

99–101, 99–102
Legendre–Papoulis filters 181–184
Level control 451
Level trim controls 549–550
LF channels 23
LF path

400-Hz Linkwitz–Riley
lowpass filter 547

no time delay compensation
547–549, 548

noise analysis 555
LF-boost equaliser 316–317
LF-cut equaliser 312–315, 315
Line outputs

balanced outputs 510–511,
512

ground-cancelling outputs
509–510, 510

output transformer frequency
response 512–514, 513

transformer balanced outputs
511–512, 512

transformer distortion
514–515, 515
reduction 515–519, 517

unbalanced outputs 507–508,
508

zero-impedance outputs
508–509, 509

Linear-phase crossover 45, 129
fourth-order 95–97, 95–96

Linear-phase filters 178–179
Linkwitz–Riley alignment 132
Linkwitz–Riley crossover 39, 41

fourth-order 88–91, 88–91,
102, 107, 108

second-order 69–70, 70
third-order 79–81, 79–81

Linkwitz–Riley filters 150,
168–169, 432

Linkwitz–Riley lowpass filter
second-order 147

amplitude response of
151, 168

group delay of 152
phase response of 151
step response of 152
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LM4562 opamp 398–399
common-mode distortion in

399–402
in series feedback mode

402–403
in shunt-feedback mode 401
in voltage-follower mode

401, 404
LME49990 opamp 402–404

common-mode distortion in
404–405

in series feedback mode
404–405

in shunt-feedback mode 403
in voltage-follower circuit

406
Lobing 2–4

error 4
Loudspeaker 22–23

ABR 28, 30
cables 8
equalisation 305–312

6 dB/oct dipole 306–307
bass response extension

307–308
diffraction compensation

308–309
drive unit 306
room interaction

correction 309–312
horn 28, 31–32
reflex 29–30
sealed box 27–29, 28
spherical 308
transmission line 28, 31

Low frequency effects (LFE)
input 451

Low frequency power amplifiers 13
Low-impedance design 418–419
Low-level inputs

balanced 450
unbalanced 449

Low-noise balanced inputs
497–502, 498, 501
in real life 502–503

Lowpass filters 142
Bessel filters 298
second-order

Butterworth 199–200,
201–202

equal capacitor 196–198,
197–198

non-equal resistors
200–202

unity gain 194–196, 194
for time delays 298–300, 299

Lowpass notch response 117–118
Lowpass-notch filter 259

M
Magnetic coupling 469
Memory effect 357
Metering 415
MFB filters, see Multiple-FeedBack

filters
MID channels 23
Mid drive units 9
MID path

400-Hz Linkwitz–Riley
highpass filter 544

3-kHz Linkwitz–Riley lowpass
filter 544–545

noise analysis 554–555
noise performance, improving

555–556, 557
time delay compensation

545–547, 546–547
topology 543–544

MID/HF crossover 135, 136, 137
Mini-DIN connectors 25
Minimum phase system 45–46
Mixed feedback 519
Mode-switching, in an electronic

crossover 416
Modulation distortion 37
Mono active crossover 15
Mono summing 451
Monobloc power amplifiers 17, 18
Multi-band signal processing 4–5
Multi-channel power amplifiers 20
Multiple variable 454
Multiple-FeedBack (MFB) filters

105, 192, 237, 238, 280,
280, 282
bandpass 135, 251–252,

252, 281
configuration of 251

highpass 238–239, 238–239
distortion in 239–240, 240
noise in 242

lowpass 238–239
distortion in 241, 241–242
noise in 242

Multipoint bipolar peak detector
437, 438

Multi-way cables 21–22, 21
Multi-way connectors 24–25
Musical signals

amplitude/frequency
distribution of 422–426

average spectral levels in 424
Mute switches 436

output 414
Mutual shutdown circuitry 530–532

N
Neutral conductor 8
Neville Thiele Method™ (NTM)

crossovers 120, 120–125
crossover frequency 123
filter responses 121
operation of lowpass filter 122
zooming in on summation 122

Nine-way D-type connector 25
Noise 417–418

analysis
HF path 553–554
input circuitry 552–553
LF path 555
MID path 554–555

and balanced inputs 496–497
circuit 418–419
in first-order allpass filters

277–278
gain 429, 429–430
MFB filters

highpass 242
lowpass 242

Sallen and Key highpass
filters 237

in second-order allpass filters
284–285

in third-order allpass filters
286–290, 287

voltage 419
Nominal signal levels 462
Non-all-pole crossovers 51
Non-electrolytic capacitor

distortion 358, 358–359
non-linearity 359–364
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Non-equal resistors
fourth-order lowpass filter,

single stage 211,
211–212

second-order lowpass filter
200–202

third-order lowpass filter,
single stage 207, 206–207

Non-polar electrolytic capacitors 12
Normal distribution, see Gaussian

distribution
Notch crossovers

elliptical filter 115–120
Neville Thiele Method™

(NTM) 120–125
Notch filters 143, 253–255,

255, 260
Bainter 256–258, 257–258
1-bandpass 256, 257
Boctor 258–260, 259
bridged-differentiator 258
simulating 260
twin-T 255–260, 257

O
Ohm’s Acoustic Law 47
Ohm’s law 353
One-minus-bandpass principle 256
OP27 opamp 409–410

in series feedback mode 410
in shunt-feedback mode 409

Opamps 251, 369
5532 381–383, 394–395

common-mode distortion
in 387–389

output loading in shunt-
feedback mode
383–386, 385

reducing distortion by
output biasing
389–394, 390–393

with series feedback
386–387, 386

with shunt-feedback 383,
384

in voltage-follower
circuit 388

5534 381–383, 395–397
with series feedback 393
with shunt-feedback 396

AD797 405–407, 408
common-mode distortion

in 407–409
in series-feedback mode

408
in shunt-feedback mode

407
current noise 140
LM4562 398–399

common-mode distortion
in 399–402

in series feedback mode
399–400

in shunt-feedback mode
398

in voltage-follower
mode 401–402

LME49990 402–404
common-mode distortion

in 404–405
in series feedback mode

404–405
in shunt-feedback mode

403
in voltage-follower

circuit 406
OP27 409–410

in series feedback mode
410

in shunt-feedback mode
409

properties
bias current 374,

374–375
common-mode range 373
common-mode

distortion 378–379
cost 375–376, 375
distortion due to loading

377–378
input offset voltage 373
internal distortion 376
noise 371–372, 371
slew rate 372–373,

372
slew-rate limiting

distortion 376–377
selection 410–411
supply rail voltages 521–522
test circuits 380

TL072 379–381
in voltage-follower

mode 381–382
types 370–379
voltage noise 140, 430

Output attenuators 549–550, 550
placing 421–422

Output mute switches 414
Output phase-reverse switches 414
Output transformer frequency

response 512–514, 513

P
Parasitic tweeter 2
Passive crossover 5, 10, 12, 16

design of 9
networks 5

Passive delay-lines 9
Passive gain controls 431
Passive radiator loudspeakers 28,

30
Peak-to-peak ripple amplitude 523
Phase response

first-order crossover 56, 57, 58
fourth-order Linkwitz–Riley

crossover 90, 90
third-order crossover

Butterworth crossover
77, 78

Linkwitz–Riley
crossover 79, 81, 81

Phase switch 452
Phase-invert switches 436, 437
Phase-reversed summation 115
Pink noise 334
Pinkening filter 335
Polystyrene capacitor 362, 362
Ported reflex box 28
Power amplifiers 439

for home entertainment
subwoofers 454

monobloc 17, 18
multi-channel 20
six-channel 21, 22
stereo 19, 19
three-channel 20–21, 20

Power response
Butterworth crossover

second-order 66, 66
third-order 76, 77
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first-order crossover 55, 56
fourth-order Linkwitz–Riley

crossover 88, 89
Power supply rejection ratios

(PSRR) 521
PSRR, see Power supply rejection

ratios
Pythagoras 263

Q
Quarter-space operation 310

R
Rauch filter 251, 252

configuration of 251
Real filters, designing 189
Reflex loudspeakers 29–30
Reflex (ported) subwoofers 442–443
Relay output muting 415
ResCalc, see Resistor combination

calculator
Reservoir capacitors 522–523
Resistor

carbon composition 347, 353
carbon film 353
noise 351–353

excess 352, 352
non-linearity 353–356
selection 536
thick-film surface mount 354,

355–356
thin-film surface mount 354,

355
value distributions 347–348
values and tolerances 341–342
voltage coefficients 353, 354

Resistor combination calculator
(ResCalc) 350

Resistor excess noise 352, 352
RF filters 463, 463
Right filter block 416
Ripple-improvement capacitors 528
Roofing filter 462

S
Sallen and Key filters 369–370,

373, 379, 388, 414, 420, 428
with Linkwitz–Riley filter

223–224, 240

low-distortion, mixed
capacitors 224–225,
234–235

second-order 192–193, 194
variable-frequency filters 245,

245–246
Sallen and Key highpass filters

213–214
distortion in 229–232,

230–231
fourth-order, single stage

220–221, 220–222
noise in 237
second-order

Butterworth 216–218,
217–218

equal resistors 215,
215–216

non-equal capacitors 218
unity gain 214, 214–215

third-order, single stage
218–220, 219

Sallen and Key lowpass filters
with attenuation 223–224, 224
components 193–194
distortion in 232–234,

232–234
fifth and sixth order, single

stage 212–213, 212–213
fourth-order

non-equal resistors, single
stage 211, 211–212

in single stage 207–211,
208–210

noise in 236–237
second-order 116, 124, 125,

192–193, 194
Butterworth 199–200,

201–202
equal capacitor 196–198,

197–198
lowpass unity gain,

component
sensitivity 196, 196

non-equal resistors 200
unity gain 194–196, 194

third-order in single stage
202–206, 203–206
non-equal resistors

206–207, 207

Sealed box loudspeakers 27–29, 28
Sealed-box subwoofers 442
Second-order allpass filters 135,

280, 280–285
distortion plot for 284,

289–290
group delay response of 282

Second-order Butterworth
subtractive crossovers 127,
130, 130–131
frequency responses of 131

Second-order crossovers 62–75
1.0 dB-Chebyshev crossover

73–75, 73–75
Bessel crossover 70–73,

71–72
Butterworth crossover 62–69,

63–69, 104–105
Linkwitz–Riley crossover

69–70, 70
Second-order filters 145, 192

Sallen and Key 192–193, 194
Butterworth lowpass

199–200, 201–202
lowpass filter, equal

capacitor 196–198,
197–198

lowpass filter, unity gain
194–196, 194

lowpass unity gain,
component
sensitivity 196, 196

Second-order lowpass filters
Butterworth 199–200, 201–202
equal capacitor 196–198,

197–198
non-equal resistors 200
unity gain 194–196, 194

Security cover 415
Security screws 415
Shelving highpass equaliser 312
Shelving lowpass equaliser 316
Shunt protection diodes 525
Signal levels

balanced 470
external 461
internal 461–462
nominal 462

Signal summation 266–267
Signal-to-noise (S/N) ratio 431
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Simulating notch filters 260
Single transformer winding 530

±18 V power supply 529, 530
dual supplies from 529–530

Six-channel power amplifier 21, 22
Sixth-order allpass filter 295
Sixth-order lowpass filters in

single stage 212–213,
212–213

S/N, see Signal-to-noise ratio
Solen split crossover, first-order

60, 61
Sound pressure level (SPL) 52
Sound reinforcement business 22
Sound reinforcement subwoofers

456–458
area arrays 457
aux-fed subwoofers 457–458
cardioid subwoofer arrays 457

Spherical loudspeakers 308
SPL, see Sound pressure level
Standard balanced-input/subtractor

140
State-variable filters (SVFs)

242–245, 243–244, 417
variable-frequency filters

fourth order 247–250,
248–249

other orders 250
second-order 246, 247

STDEV() functions 344
Stereo power amplifiers 19, 19
Subsonic filters 227–228, 227–228,

413–414
Subtraction

performing 138–140
resistor 139

Subtractive crossovers 52,
127–134
first-order subtractive

crossover 127, 128, 129
fourth-order Butterworth

subtractive crossovers 132
second-order Butterworth

crossovers 127, 130,
130–131

third-order Butterworth
crossovers 131–132

with time delays 134–138
Subtractor circuits 140

Subwoofer
applications 441
auxiliary bass radiator 444
bandpass 444–445
dipole 446
drive units 447
horn loaded 447
integration 454–456
isobaric 445
loudspeaker 441
reflex (ported) 442–443
sealed-box 442
technologies 441–447
transmission line 444

Superbal input 487, 487–488
SVFs, see State-variable filters
Sweep-middle EQ 320
Switchable crossover modes

416–417
Switched-gain balanced inputs 488,

488–489
Symmetric crossovers 52
Synchronous filters 145, 184–186

T
Thermal compression 11
Thevenin–Norton transformation

352
Thick-film surface mount resistors

354, 355–356
Thin-film surface mount resistors

354, 355
Third-harmonic distortion 360, 361
Third-order allpass filter 285,

285–291
distortion and noise in

286–290, 287, 290
distortion plots for 287–288
group delay response of 286

Third-order Butterworth subtractive
crossovers 131–132
frequency response 132

Third-order crossovers 75–85
1.0 dB-Chebyshev crossover

83–85, 84–85
Bessel crossover 81–83, 82
Butterworth crossover 76–77,

76–79
Linkwitz–Riley crossover

79–81, 79–81

Third-order elliptical lowpass filter
176, 176
amplitude response of 177

Third-order Gaussian-12 dB
amplitude response of 179,

180
step response of 180, 181

Third-order Legendre–Papoulis
filter
amplitude response of 182,

182
step response of 183, 183

Third-order lowpass filter
non-equal resistors, single

stage 206–207, 207
in single stage 202–206,

203–206
Thomson filters 153
Three-channel power amplifiers

20–21, 20
Three-way crossover 107–108,

107, 110, 111
first-order 60

Three-way Linkwitz–Riley fourth-
order subtractive crossover,
block diagram 534, 535

Time delay
compensation

HF path 539, 542–543,
543

MID path 545–547,
546–547

lowpass filters for 298–299,
299

subtractive crossovers
134–138

variable allpass 298, 299
Time equalisation 304
Time-delay crossover

Lipshitz and Vanderkooy 296,
297

TL072 opamp 379–381
in voltage-follower mode

381–382
Total modulation distortion 37
Transformer balanced inputs

493–495, 494
electronic versus 470–471

Transformer balanced outputs
511–512, 512

Index

578



Transformer distortion 514–515
reduction 515–519

Transitional filters 178
Transmission line

loudspeakers 28, 31
subwoofers 444

Tri-amping 5
Tri-wiring 6, 23
Tweeters 2, 6, 9, 16

parasitic 2
Twin-T notch filter 255–260, 257
Two-way crossover 107, 107

U
Ultra-low-noise balanced inputs

503–505, 503, 505
Ultrasonic filters 414
Ultraspherical filters 186
Ultraspherical polynomials 186
Unbalanced inputs 462–465, 463

Unbalanced outputs 507–508, 508
balanced and 485–487, 486
to balanced input

interconnection 466
Uniform distribution 348–350

V
Valve technology 25
Variable allpass time delays

298, 299
Variable frequency 453–454
Variable gain balanced inputs

489–491, 490
Variable phase control 452
Variable-frequency filters 245,

245–246
other orders 250
state-variable fourth order

247–250, 248–249
state-variable second order

246, 247

Variable-voltage regulators
527
±17 V supply 527
protective diodes to 528

Variations, on balanced input
stage 485

Video camera connectors 25
Voltage noise 419

W
White noise 335
Winding resistance cancellation 518

X
XLR connectors 24, 469–470

Z
Zero-impedance outputs 23,

508–509, 509
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