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A new impulse-response model for the edge diffraction from finite rigid or soft wedges is presented
which is based on the exact Biot–Tolstoy solution. The new model is an extension of the work by
Medwin et al. @H. Medwin et al., J. Acoust. Soc. Am.72, 1005–1013~1982!#, in that the concept
of secondary edge sources is used. It is shown that analytical directivity functions for such edge
sources can be derived and that they give the correct solution for the infinite wedge. These functions
support the assumption for the first-order diffraction model suggested by Medwinet al. that the
contributions to the impulse response from the two sides around the apex point are exactly identical.
The analytical functions also indicate that Medwin’s second-order diffraction model contains
approximations which, however, might be of minor importance for most geometries. Access to
analytical directivity functions makes it possible to derive explicit expressions for the first- and even
second-order diffraction for certain geometries. An example of this is axisymmetric scattering from
a thin circular rigid or soft disc, for which the new model gives first-order diffraction results within
0.20 dB of published reference frequency-domain results, and the second-order diffraction results
also agree well with the reference results. Scattering from a rectangular plate is studied as well, and
comparisons with published numerical results show that the new model gives accurate results. It is
shown that the directivity functions can lead to efficient and accurate numerical implementations for
first- and second-order diffraction. ©1999 Acoustical Society of America.
@S0001-4966~99!02111-6#

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20.Px@DEC#
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INTRODUCTION

The classic problem of edge diffraction from an infini
wedge irradiated by a point source has explicit impul
response~IR! solutions for the cases of a rigid wedge and
pressure-release wedge. These were presented by Bio
Tolstoy in 1957,1 but few studies employed these solutio
until Medwin applied them to underwater and noise-barr
cases.2 Comparisons of his model with measurements sh
good accuracy for geometries with infinite edges2–4 and Ouis
has applied Biot–Tolstoy’s model in room acoustics to st
ies of a room with balconies, a case which can be mode
with infinite edges.5

An earlier alternative to the Biot–Tolstoy solution h
been the Kirchhoff diffraction approximation, which can b
used for both frequency- and time-domain methods.
seismics,6,7 as well as in room acoustics,8 the Kirchhoff dif-
fraction approximation has commonly been employed
time-domain methods for edge diffraction. However, as
been shown using the Biot–Tolstoy expressions,9 and other
accurate methods,10 the Kirchhoff diffraction approximation
leads to large errors, not only for low frequencies but also

a!Present address: Department of Telecommunications, Norwegian Un
sity of Science and Technology, N-7491 Trondheim, Norway.

b!Present address: Akustik Forum AB, Stampgatan 15, SE-41
Göteborg, Sweden.
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high frequencies in certain directions. Consequently,
Biot–Tolstoy is the preferred method for impulse respon
models of edge diffraction.

The Biot–Tolstoy expressions, explicit as they are,
not immediately suggest how the infinite wedge expressi
can be interpreted to lead to expressions for finite wedge
for multiple diffraction. Medwin, Childs, and Jebsen sugge
an interpretation, ‘‘a discrete Huygens interpretation
which can be used for finite wedges and also be extende
handle multiple diffraction.3 This is the basis for numerica
methods such as the wedge assemblage~WA! method.11

Measurements of noise barriers with a finite thickness
comparisons with other calculation methods seem to sup
that model. Whereas Medwin’s interpretation leads to n
merical calculation methods, the current paper proposes
approach in which directivity functions for the seconda
edge sourcesá la Medwin are derived analytically from the
IR solution for the infinite wedge. The expressions for an
lytical directivities are directly applicable to nonstraig
edges and multiple diffraction. It will be shown that the
analytical expressions support Medwin’s assumption
modeling first-order diffraction, namely that the contrib
tions from the two sides of the edge around the apex p
are exactly identical. On the other hand, the analytical fu
tions indicate approximations in Medwin’s assumptions
second- and higher-order diffraction. These approximatio
however, seem to be of minor importance for geometr

r-

4
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where the second-order sound paths pass edges with s
angle deviations, as in most noise-barrier cases.

Section I of this paper reviews the Biot–Tolstoy soluti
and Medwin’s extension to this. A new derivation using an
lytical directivity functions is presented, and its extension
second-order diffraction is described. In Sec. II the numer
calculation of edge diffraction impulse responses is d
cussed. Section III presents numerical calculations for fin
edges and analytical derivations for a thin circular disc. T
wealth of exact and asymptotic frequency-domain soluti
~see Pierce12 for a review! is addressed here only for com
parisons with calculations where the uniform theory of d
fraction ~UTD! by Kouyoumjian and Pathak is used.13

I. THEORY

The problem to be considered here is that of a po
source irradiating a rigid or soft,~i.e., pressure-release! ob-
ject, a special case of which is the infinite wedge. Impu
responses will be used throughout as descriptors of the so
fields, with the sound pressurep(t) as output signal and a
source signalq(t)5r0A(t)/(4p), wherer0 is the density of
the air andA(t) the volume acceleration of the point sourc
Free-field radiation is then described by the IR,hFF(t)
5d(t2R/c)/R, whereR is the source-to-receiver distanc
The IR for plane-surfaced objects can be written as a sum
the geometrical acoustics IR,hGA, and diffraction compo-
nentshdiffr . The direct sound and specular reflections of fi
and higher orders will be contained inhGA, as long as their
respective validity criteria are fulfilled. In the case of a
object with an entirely convex geometry~i.e., no indents!,
hdiffr will consist of only first- and higher-order edge diffra
tion, whereas other geometries might cause combination
specular reflections and edge diffraction. In this study, o
convex geometries will be considered, in particular infin
and finite wedges, and circular and rectangular plates.

As a starting point, consider an infinite rigid wedge wi
a geometry as indicated in Fig. 1 where the cylindrical co
dinatesr S , uS , 0 are used for the source andr R , uR , zR for
the receiver. The edge diffraction IR can be written in a fo
which is a combination of the forms given in Refs. 3 and 1
and based on the solution presented in Ref. 1,

hdiffr~t!52
cv
2p

b~t!

r Sr R sinhh~t!
H~t2t0!, ~1!

FIG. 1. The geometry of an infinite wedge irradiated by a point sourceS.
Cylindrical coordinates are used with thez-axis along the edge of the wedge
The source has coordinatesr S anduS and is placed atzS50. The receiver
has the coordinatesr R , uR , andzR and the wedge has an open angle ofuw .
2332 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
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where

b~t!5b11~t!1b12~t!1b21~t!1b22~t!, ~2!

b66~t!5
sin@v~p6uS6uR!#

cosh@vh~t!#2cos@v~p6uS6uR!#
, ~3!

h~t!5cosh21
c2t22~r S

21r R
21zR

2 !

2r Sr R
, ~4!

where c is the speed of sound, the wedge indexv equals
p/uw , H(t2t0) in Eq. ~1! is Heaviside’s unit step function
and the timet0 equalsL0 /c. The distanceL05@(r S1r R)2

1zR
2 #1/2 is the shortest path from the source to the recei

via the edge of the wedge, passing through the so-called a
point of the edge, indicated as A in Fig. 2. For an infin
wedge with soft~pressure-release! surfaces, the IR is given
by using a modified version of theb-expression15

bsoft~t!52b11~t!1b12~t!1b21~t!2b22~t!.
~5!

Wedges with a combination of rigid and soft surfaces co
be studied using variants of theb-expressions in Eqs.~2! or
~5!; however, in the following discussion, rigid surfaces w
always be assumed except for the example of a circular
disc, studied in Sec. III B.

A. Models of finite wedge diffraction

Although the analytical solution in Eq.~1! describes ex-
plicitly the IR of an infinite wedge, it does not indicate wh
a solution for a finite wedge might look like. Medwinet al.
suggest a ‘‘discrete Huygens interpretation,’’3 placing a
number of small secondary sources along the edge and
justing their strengths so that together they give the kno
exact solution. According to this model, these second
sources emit pulses when they are hit by the incident, imp
sive, sound wave. Thus, the reaction at the edge is assu
to be instantaneous. This leads to the conclusion that
value of the IRhdiffr at time t is caused by the reradiatio
from the two parts of the edge indicated in Fig. 2, a low

FIG. 2. A plane view of the edge constructed from the two half-plan
containing the edge and the sourceS, and the edge and the receiverR,
respectively. Twoz-coordinates,zl andzu , are indicated for which the two
sound pathsS–zl –R and S–zu–R have identical path lengths. Also indi
cated is the shortest distance,L0 , via the apex point, denotedA, of the edge.
Angles are defined with signs so that sina5z/m and sing5(z2zR)/l.
2332Svensson et al.: Secondary source model of edge diffraction
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branch indicated by the subscriptl, and an upper branch
indicated by a subscriptu. The two branches must obey th
condition

ml1 l l5mu1 l u5ct. ~6!

The two edge portions at positionszl andzu will cause two
radiated sound-field components,hl andhu , which summed
together equal the known amplitudehdiffr ,

hl~t!1hu~t!5hdiffr~t!. ~7!

As indicated in Fig. 3, an IR for a single finite wedg
will then have three parts. In the initial part,@i#, the IR is
identical to the infinite wedge response. In the final part,@iii #,
the IR is zero, after the sound wave has reached the furt
end of the edge. The intermediate part,@ii #, where onlyhl or
hu in Eq. ~7! is present, is then a scaled version of the infin
wedge IR. The scaling for the intermediate part was s
gested in Ref. 2, and is based on the finite wedge IR hav
half the amplitude of the infinite wedge IR, i.e.,hl5hu . In a
later paper,3 it was instead suggested that this factor sho
be

hfinite~t!

hinfinite~t!
5

hl~t!

hl~t!1hu~t!
5

mul u

mul u1mll l
, ~8!

where it is assumed that the lower branch of the edge has
longest extension. It will be shown below that a theoreti
derivation supports the relationhl5hu .

For multiple scattering, Medwin’s model and the W
method assume that the secondary edge sources radia
point sources, with source strength modifications based
Eq. ~8!. Second-order diffraction is then calculated by havi
all these secondary edge sources along the first edge gen
individual diffraction contributions via the second edge.

Medwin et al. present comparisons between measu
ments and calculations for noise barriers of finite wid
where second-order diffraction must be taken into acco
and the agreement seems to be quite good.3 The agreement is
also good for the scattering from a circular disc.11 As will be
shown in Sec. I C, however, the derived analytical directiv
functions indicate that having the secondary sources a
the first edge use the ordinary diffraction expression to g
erate second-order diffraction via the second edge, as in
~1!, is only an approximation as far as we can determi

FIG. 3. Illustration of a diffraction impulse response for a finite wedg
hfinite ~solid line! and the corresponding infinite wedge,hinfinite ~dotted line!,
indicating the three parts where@i# hfinite5hinfinite , @ii # hfinite is a scaled
version ofhinfinite , and@iii # wherehfinite50. The initial part of the impulse
responses has been truncated.
2333 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
st

-
g

d

he
l

as
n

rate

-
s
t,

g
-
q.
.

However, the errors in Medwin’s model do not appear
show up for geometries with symmetrical situations, such
for noise barriers with parallel edges. The second-order
fraction paths which will be of highest amplitude are tho
passing the apex points, that is, with as little angular dev
tion as possible during the passage of the edge. The met
in Refs. 2, 3, and 11 correctly predict these high-amplitu
parts, and thus predict the second-order diffraction qu
well, as long as the geometry is such that sound paths w
little angular deviation are possible. A critical benchma
case would then be one where all sound paths across e
experience large angular deviation. For such cases, an a
rate secondary source model would be important.

B. Derivation of analytical directivity functions for the
secondary edge source

A derivation of analytical directivity function for the
secondary edge sources starts by assuming the existenc
directivity function for the secondary edge sources wh
depends only on the angles of the incident sound path,a and
us , and of the reradiated sound path,g andu r in Figs. 1 and
2. This directivity function must be independent of the d
tancesm andl, and must be symmetric so that the source a
receiver positions can be interchanged with identical resu
Thus, the reciprocity principle is always fulfilled. A cons
quence of such directivity functions is that the incide
wavefront is split up when it hits a point of the edge, and t
reradiated wavefront spreads in all directions with differe
amplitudes. To derive such a directivity function, the meth
of retarded potentials is employed as in Ref. 7, and a pro
type solution can be formulated for the edge diffraction. T
prototype solution is then matched to the known solution
the infinite wedge. Thus, the diffracted pressurepdiffr(t)
could be written as an integral over contributions from t
entire wedge

Pdiffr~ t !5E
2`

`

qF t2
m~z!1 l ~z!

c G D@a~z!,g~z!,uS ,uR#

m~z!l ~z!
dz,

~9!

whereD@a(z),g(z),uS ,uR# is the unknown directivity func-
tion. The position along the wedge is given by th
z-coordinate, and this causes a retardation of the source
nal q(t), an amplitude attenuation caused by the ray pathm
and l, and a further amplitude attenuation by the directiv
function D. The variablez can be substituted for a variabl
t5(m1 l )/c, the time delay. There will, however, be tw
values ofz giving the same value oft, corresponding to the
upper and lower branches of the edge. Thus, the integra
Eq. ~9! is first rewritten as a sum of the upper and low
branch integrals, as

pdiffr~ t !5E
2`

zapex
qF t2

m~z!1 l ~z!

c G D@a~z!,g~z!,uS ,uR#

m~z!l ~z!
dz

1E
zapex

`

qF t2
m~z!1 l ~z!

c GD@a~z!,g~z!,uS ,uR#

m~z!l ~z!
dz,

~10!

,

2333Svensson et al.: Secondary source model of edge diffraction
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wherezapexcorresponds to the apex point on the edge, wh
is given byzapex5zRr S /(r S1r R). Now, a variable substitu
tion is carried out so that

pdiffr~ t !5 È t0
q~ t2t!

Dl~t!

ml~t!l l~t!

dzl

dt
dt

1E
t0

`

q~ t2t!
Du~t!

mu~t!l u~t!

dzu

dt
dt

5E
t0

`

q~ t2t!H 2
Dl~t!

ml~t!l l~t!

dzl

dt

1
Du~t!

mu~t!l u~t!

dzu

dt J dt, ~11!

where the subscriptsl and u, respectively, indicate that fo
each value oft, the solution ofD(t), m(t), l (t), andz(t)
is chosen to correspond to the lower and upper branc
respectively. Also, in Eq.~11! the directivity function is writ-
ten asDl(t) rather thanD@a l(t),g l(t),uS ,uR#. The quan-
tities dz/dt can then be defined as being zero beforet
5t0 , the first arrival time of the diffracted sound-field com
ponent, so that the lower integration limit can be expande
2`. From this it becomes clear that the integral in Eq.~11!
is a convolution integral of the source signalq(t) with an IR
which must be the diffraction IR, since

pdiffr~ t !5E
2`

`

q~ t2t!hdiffr~t!dt, ~12!

andhdiffr(t) can be identified as

hdiffr~t!52
Dl~t!

ml~t!l l~t!

dzl

dt
1

Du~t!

mu~t!l u~t!

dzu

dt
. ~13!

To find a directivity functionD which satisfies Eq.~13!, the
observations

2
1

ml~t!l l~t!

dzl

dt
5

1

mu~t!l u~t!

dzu

dt
5

cH~t2t0!

r Sr R sinhh~t!
, ~14!

which are proven in Appendix A, will be used. The relatio
in Eq. ~14! can be inserted into Eq.~13!, which leads to

2
vb~t!

2p
5D@a l~t!,g l~t!,uS ,uR#

1D@au~t!,gu~t!,uS ,uR#. ~15!

Furthermore, it is possible to expressb as function of the
anglesa and g. To do this, another relation shown in Ap
pendix B,

h~t!5cosh21
11sina~t!sing~t!

cosa~t!cosg~t!
, ~16!

can be used. It should be noted thata and g can be ex-
changed without affecting the result, and thus reciprocity
assured. This relation is valid regardless of whether
chooses the lower or upper branch combination of thea and
g angles, an observation which could be formulated
h@a l(t),g l(t),uS ,uR#5h@au(t),gu(t),uS ,uR# and conse-
quently, b@a l(t),g l(t),uS ,uR#5b@au(t),gu(t),uS ,uR#,
so it can be stated that
2334 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
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b~t!5 1
2$b@a l~t!,g l~t!,uS ,uR#

1b@au~t!,gu~t!,uS ,uR#%. ~17!

This expression can finally be inserted into Eq.~15!, and the
unknown directivity functionD can be identified as

D@a~t!,g~t!,uS ,uR#52
vb@a~t!,g~t!,uS ,uR#

4p
, ~18!

where eithera l(t) andg l(t), or au(t) andgu(t), could be
chosen as solutions fora~t! andg~t!. These derivations lead
to the conclusion that the branches of the edge on each
of the apex point contribute with exactly equal amounts
the diffraction IRhdiffr(t). This has two consequences. Firs
one could choose either the upper or lower branch soluti
for a~t!, g~t!, z(t), m(t), and l (t) to formulate the total
diffraction IR in this new form,

hdiffr~t!52
v

4p

b@a~t!,g~t!,uS ,uR#

m~t!l ~t!

dz

dt
, ~19!

whereb is as in Eqs.~2! and ~3!, and usesh~t! from Eq.
~16!. Second, for a finite wedge,hl(t)5hu(t) in Eq. ~7!, i.e.,
the part of the IR which is a scaled version of the infin
wedge IR, illustrated as part@ii # in Fig. 3, has the simple
scaling factor 1/2,

hfinite~t!

hinfinite~t!
5

1

2
. ~20!

This scaling factor supports the suggestion by Medwin
Ref. 2, but contradicts the suggested relationship in Ref. 3
discussed in Sec. I A.

Decomposition of the infinite wedge diffraction into lo
cal edge contributions also makes it possible to derive
fraction from nonstraight edges. As is shown below amo
the examples in Sec. III, the first- and second-order diffr
tion components of a circular thin disc can be derived a
lytically. Such derivations can employ a rewritten version
the original expression in Eq.~9!, using theb function, as

FIG. 4. The geometry of a truncated infinite wedge, with two parallel in
nite edges, a point sourceS and a receiverR. One sound path, via the two
points z1 and z2 on the two edges, is marked. For the first edge with t
open wedge angleuw1 , the sourceS has the cylindrical coordinatesr S1 ,
uS1 , zS1 , and the point atz2 along edge 2, which acts as a receiver, has
coordinatesw,uw1 ,z2 . Relative to the second edge with the open wed
angleuw2 , the pointz1 along edge 1 acts as a source and has the coordin
w, uS250, z1 , and the receiverR has the coordinatesr R2 , uw2–uR2 , zR2 . It
is assumed that the twoz-axes are aligned with respect to each other. T
anglesa andg are as defined in Fig. 2.
2334Svensson et al.: Secondary source model of edge diffraction
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pdiffr~ t !52
v

4p E
z1

z2
qF t2

m~z!1 l ~z!

c G
3

b@a~z!,g~z!,uS ,uR#

m~z!l ~z!
dz, ~21!

wherez1 andz2 are the two endpoints of the finite or infinit
wedge.
a
o

-
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C. Second-order edge diffraction

To derive expressions for second-order diffraction, t
case of a truncated infinite wedge with two parallel, infinite
long edges as in Fig. 4 is studied. Expanding the formulat
in Eq. ~21!, and using the sound-path designations in Fig
the second-order diffracted pressure can be written
s indicated
of 2

have the
pdiffr~ t !5
v1v2

~4p!2EE
2`

`

qF t2
m1~z1!1m2~z1 ,z2!1 l 2~z2!

c Gb@a1~z1!,g1~z1 ,z2!,uS1,0#b@a2~z1 ,z2!,g2~z2!,0,uR2#

2m1~z1!m2~z1 ,z2!l 2~z2!
dz1dz2 ,

~22!

where it has been assumed that the path from edge 1 to edge 2 runs along a plane connecting the two edges. This i
by the valuesuR150 anduS250 in the twob factors and the factor of 2 in the denominator of the integral. This factor
compensates for the doubling in pressure generated by an acoustic source when it is mounted on a baffle. It should
value of 1 if the ray from edge 1 to edge 2 does not run along a plane. In the double integral in Eq.~22!, the factorm1 and
the delay corresponding tom1 can be moved out from the integral overdz2 , so that

pdiffr~ t !5
v1

4p E
2`

` Fd~ t2m1~z1!/c!

m1~z1!
* I 2Gdz1 , ~23!

where* indicates a convolution and

I 25
1

2

v2

4p E
2`

`

qF t2
m2~z1 ,z2!1 l 2~z2!

c G b@a1~z1!,g1~z1 ,z2!,uS1,0#b@a2~z1 ,z2!,g2~z2!,0,uR2#

m2~z1 ,z2!l 2~z2!
dz2 . ~24!
d
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For each value ofz1 , there is az2,apexaround which the
integralI 2 can be split into the upper and lower branches,
was described before. Then, a variable substitution is p
sible with (m21 l 2)/c5t, and the factorsdz2 /dt can be
defined as being zero beforet5t02. Here,t025L02/c where
L025@(w1r R2)21(zR22z1)2#1/2. Since the geometry is ba
sically the same as for the diffraction for a single wedge,
left-hand relation in Eq.~14! holds here, too. The integralI 2

can then be written

I 25
1

2

v2

4p E
2`

`

q~ t2t!
~b1lb2l1b1ub2u!

m2l 2

dz2

dt
dt

5q~ t !* hdiffr, z1→R~t!, ~25!

where the values ofm2 , l 2 , anddz2 /dt can be chosen as th
upper or lower branch solutions for a certain value oft. If
one studies the impulse responseh

diffr, z1→R
(t) further,

hdiffr, z1→R~t!5
1

2

v2

4p

1

m2l 2

dz2

dt
$b@a1 ,g1l ,uS1,0#

3b@a2l ,g2l ,0,uR2#

1b@a1 ,g1u ,uS1,0#b@a2u ,g2u,0,uR2#%.

~26!

Equation ~17! can be applied, implying thatb@a2l ,
g2l ,0,uR2#5b@a2u ,g2u,0,uR2# and
s
s-

e

hdiffr, z1→R~t!5
1

2

v2

4p

b~a2u ,g2u,0,uR2!

m2l 2

dz2

dt

3$b@a1 ,g1l ,uS1,0#1b@a1 ,g1u ,bS1,0#%

5hdiffr,1st,edge2~t!$b@a1 ,g1l ,uS1,0#

1b@a1 ,g1u ,uS1,0#%/2. ~27!

This means that the IRhdiffr, z1→R
(t) is a first-order

edge-diffraction IR from the positionz1 on edge 1 to
the receiver positionR via edge 2, scaled by 1/2, an
multiplied with a weighting function which is the sum of th
two b functions in Eq.~27!. The approach for second-orde
diffraction in Ref. 3 is to place discrete edge sources alo
edge 1, and to use an ordinary first-order diffraction IR
calculate their contributions at the receiver point. Howev
the factor with twob functions in Eq.~27! will modify the
first-order diffraction IR hdiffr,1st,edge2, which in principle
makes it impossible to let the edge sources on edge 1 irr
ate edge 2 via ordinary first-order diffraction IRs. Th
method used in Ref. 3 probably does calculate the onse
hdiffr, z1→R

(t) correctly and, since the high-frequency prope

ties are determined to a large degree by the transient on
the overall second-order edge diffraction is predicted rat
well. Employing the IR hdiffr, z1→R , the second-order

diffracted pressure becomes
2335Svensson et al.: Secondary source model of edge diffraction
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pdiffr~ t !

5
v1

4p E
2`

` H d@ t2m1~z1!/c#

m1~z1!
* @q~ t !* hdiffr, z1→R~z1 ,t !#J

3dz1

5q~ t !* H v1

4p E
2`

` Fd@ t2m1~z1!/c#

m1~z1!
* hdiffr, z1→R~z1 ,t !G

3dz1J . ~28!

This expression means that the second-order diffraction
hdiffr,2nd(t), can be found from a single integral,

hdiffr,2nd~t!

5
v1

4p E
2`

` Fd@t2m1~z1!/c#

m1~z1!
* hdiffr, z1→R~z1 ,t!Gdz1

5
v1

4p E
2`

` hdiffr, z1→R@t2m1~z1!/c#

m1~z1!
dz1 . ~29!

However, since the IRhdiffr, z1→R(t) is zero fort,t02, the
infinite integration limits in Eq.~29! can be replaced by th
valuesz1,1 and z1,2, which both satisfyt5t021m1 /c. Ex-
plicit solutions to Eq.~29! might be possible for certain ge
ometries, for instance the axisymmetric reflection from a c
cular disc, as shown in Sec. III B.

II. NUMERICAL IMPLEMENTATION—DISCRETE-TIME
IMPULSE RESPONSES

The default solution for numerical calculations is to u
a discrete-time IR which, for instance, can be given by a
sampling of the continuous-time expression in Eqs.~1! or
~19!. A value of the discrete-time diffraction IRhdiffr(n) at a
certain discrete timet5n/ f s , where f s is the sampling fre-
quency andn is a sample number, is thus given by

hdiffr~n!5E
~n21/2!/ f s

~n11/2!/ f s
hdiffr~t!dt, ~30!

wherehdiffr(t) is the continuous-time diffraction IR, such a
in Eq. ~1!. The singularity att5t0 in Eq. ~1! deserves spe
cial attention, and the original function can be approxima
by an analytically integrable function for values oft close to
t0 .14 The integration in Eq.~30! corresponds to filtering the
continuous-time signalhdiffr(t) prior to sampling, employing
a low-pass filter with an IR in the form of a rectangular pu
of width 1/f s . This is quite a crude low-pass filter, and Cla
and Kinney suggest the use of a wider pulse of width 4/f s .14

The sampling frequency can, however, always be raised
enough to give a low enough aliasing error at the high
frequency of interest. In the numerical examples in t
study, numerical integration as in Eq.~30! has been used
throughout with rather high sampling frequencies~20 to 40
times the highest frequency of interest! to get accurate re
sults.

Formulating the diffraction as a sum of contributio
from along the edge, as in Eq.~19!, it can be seen that th
2336 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
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integration ofhdiffr(t) in Eq. ~30! over a time segmentdt is
equivalent to the integration over a segment of the e
which corresponds to this particulardt. To do this, another
variable substitution can be done so that

h~n!5E
~n20.5!/ f s

~n10.5!/ f s
hdiffr~t!dt5E

zn1

zn2
hdiffr~z!

dt

dz
dz, ~31!

wherezn1 and zn2 are thez-coordinates that correspond t
t5(n61)/(2 f s), respectively. As discussed in conjunctio
with Eq. ~19!, one could choose either the lower or upp
branchz-coordinates that correspond tot. Since Eq.~19! can
be used to find that

hdiffr~z!
dt

dz
52

v
4p

b@a~z!,g~z!,uS ,uR#

m~z!l ~z!
, ~32!

the integration in Eq.~31! can be written

h~n!52
v

4p E
zn1

zn2 b@a~z!,g~z!,uS ,uR#

m~z!l ~z!
dz. ~33!

This integration can be approximated by the midpoint va
so that

h~n!'2
v

4p

b@a~zn!,g~zn!,uS ,uR#

m~zn!l ~zn!
Dzn , ~34!

where zn is the midpoint betweenzn1 and zn2 . If, for a
simplified numerical implementation, one chooses to div
the edge into equally sized elements of sizeDz, then an
elementi placed atzi will give a contributionDhi to the IR

Dhi'2
v

4p

b@a~zi !,g~zi !,uS ,uR#

m~zi !l ~zi !
Dz. ~35!

This should be added to a single time samplen5 f s(m
1 l )/c or divided among two or more consecutive tim
samples. This division is determined by the edge eleme
position and size relative to the time positions for samplen.
The contributionDhi should be viewed as a rectangul
pulse with a widthDt as given by the element sizeDz and its
position zi . If the edge element size is chosen so thatDz
,c/ f s , the contribution from each element will never spre
out over more than two time samples.

For efficient numerical implementations, theb function
can be written in a much more compact form than in E
~2!, ~3!, and~16! if one uses the relation

cosh~vh!5~Av1A2v!/2, ~36!

where A5(y221)1/21y and y5@ml1z(z2zr)#/(r sr r),
which is taken from Eq.~A7!, with the same variables a
before. With this formulation, only basic mathematical co
putations need to be recalculated for each edge element
very efficient implementations are possible.

Second-order diffraction is straightforward to impleme
using a formulation which is based on Eq.~22!. If two finite
edges are divided into equally sized edge elementsDz1 and
Dz2 , the second-order contributionDhi j to the IRhdiffr,2nd,
of edge elementi at zi of edge 1 and edge elementj at zj of
edge 2, can be written
2336Svensson et al.: Secondary source model of edge diffraction



Dhi j 5
v1v2

32p2

b@a1~z1!,g1~z1 ,z2!,uS1 ,uR1#b@a2~z1 ,z2!,g2~z2!,uS2 ,uR2#

m1~z1!m2~z1 ,z2!l 2~z2!
Dz1 ,Dz2 . ~37!
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This expression is valid for both parallel and nonpara
edges, as long as the appropriate expressions for the invo
a, g, andu angles, andm andl distances, are used. Note th
a second-order contribution via two edge elements shoul
viewed as a triangular pulse, and a third-order contribut
appears as a pulse with second-order polynomial shape
This affects how each contribution should be divided amo
time samples. A simplified implementation, giving the co
rect low-frequency response, was used by Vanderkoo16

The contributionDh can be distributed over the two tim
samples adjacent to the arrival time of the edge element
ter, with a linear weighting that depends on the center arr
time’s position relative to the two sample times.

Other models have used time-domain formulations
edge diffraction, the most common ones being based on
Kirchhoff diffraction approximation, as mentioned in the I
troduction. Another model, suggested by Vanderkooy, ha
interesting equivalence to the new model suggested he16

Vanderkooy’s model started from a frequency-domain hi
frequency asymptotic expression for the infinite wedge17

The model uses discrete edge sources, each of which giv
contribution

Dh52
v

4p

k~uS ,uR!

ml
Dz, ~38!

which is delayed by the timet5(m1 l )/c. Vanderkooy used
a parametervVand which is the reciprocal of the wedge inde
v used here, but for clarity the parametervVand was replaced
by v in Eq. ~38! so that the similarity with Eq.~35! is clear.
The directivity functionk is

k~uS ,uR!5sinvpH 1

cosvp2cos@v~uR2uS!#

1
1

cosvp1cos@v~2p2uR2uS!#J , ~39!

which can be rewritten into the form

k~uS ,uR!5b11
Vand1b12

Vand1b21
Vand1b22

Vand, ~40!

where

b66
Vand5

sin@v~p6uS6uR!#

12cos@v~p6uS6uR!#
. ~41!

If cosh(vh)51, which happens for the timet5t0 ~i.e., at the
onset of the diffraction!, theseb terms are identical with the
analytical ones in Eqs.~2! and ~3!. Since rapid variations in
the IR always occur at the onset, the high-frequency par
the response is determined entirely by this initial part of
diffracted signal. Thus, it is not surprising that Vanderkoo
model correctly reproduces the initial part of the IR and co
sequently the high-frequency response. The model d
however, give large errors at low frequencies, which
2337 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
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clearly due to using the constant value 1 in Eq.~41! instead
of the monotonically increasing function coshvh.

III. EXAMPLES

In this section, the new model employing analytical d
rectivity function for the secondary edge sources is compa
with other methods. Only IRs have been discussed so far,
results are often more interesting when presented as tran
functions. These are calculated from the IRs using a disc
Fourier transform~DFT!, and it is then possible to check if
sufficiently high sampling frequency has been used. T
sampling frequency should be increased until the result
the highest frequencies of interest have stabilized. In all c
culations, unless otherwise stated, a value of 344 m/s
been used for the speed of sound.

A. Infinite wedges

Two different infinite and rigid wedges were studied
illustrated in Fig. 5. Figure 5~a! shows a thin plate edge, with
one fixed source positionS ~with cylindrical coordinatesr S

525 cm, uS515°, andzS50) and with two different re-
ceiver positions, R1 and R2~at r R525 cm, zR50, anduR

5300° for R1, anduR5196° for R2!. The position R2 is 1°
into the shadow zone, which is critical from a numeric
point of view due to the singularity of the diffraction IR a
the boundary of shadow zones. In Fig. 5~b!, another case is
shown with a plate of thicknessw, an example which is
duplicated from Ref. 3. In this case, the source is at cylind
cal coordinatesr S525 cm, uS515°, and the receiver is a
r R525 cm, uR5300°, zR50. It should be noted that be
cause of the widthw of the plate, the receiver coordinates a
relative to the second edge, closest to the receiver.

Calculations of IRs were made with the new model u
ing the discrete edge decomposition described by Eq.~35!
for the single edge, and by Eq.~37! for the double edge. IRs

FIG. 5. The two infinite wedge situations that have been studied.~a! shows
a thin plate edge.~b! shows a plate of thicknessw, where the valuesw
55, 22, and 35 mm have been studied.
2337Svensson et al.: Secondary source model of edge diffraction
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were also calculated with the Biot–Tolstoy model from R
3, here denoted BTM, and transfer functions were calcula
for the single edge with the uniform theory of diffractio
~UTD! by Kouyoumjian and Pathak.13 The lowest frequency
for which the UTD method gives accurate results—that
within 0.5 dB of exact solutions—was found to bef low,UTD

'140 Hz based on Fig. 4 in Ref. 18. Sampling frequenc
of 800 kHz were used for the IRs since, compared with
sampling frequency of 400 kHz, the difference was less t
0.1 dB at 20 kHz. The edge element sizes were 0.43 mm
all cases, and the wedge had an extension of65 m relative to
the source.

Results for the wedge in Fig. 5~a! are presented in Fig
6, where the results for the new model and the BTM mo
come within 0.001 dB. It can also be seen that the U
method is indeed accurate down tof low,UTD'140 Hz. Figure
7 shows results for the double-edge wedge in Fig. 5~b!, to-
gether with single-edge diffraction for the corresponding
finitely thin wedge. Comparing these results with Fig. 9
Ref. 3, it can be seen that the results with the new met
and the BTM results are very close to each other. As is a
observable for the double-edge plates in Ref. 3, the dif
ences between the thin plate limit and the low-frequen
results decrease with decreasing thicknesses, yet a sma
significant difference always remains. This remaining diff
ence is probably caused by the lack of higher-order diffr
tion components in these calculations. It can also be no

FIG. 6. Transfer function~relative to free-field propagation! at 50 cm dis-
tance for the two receiver points at the infinite wedge in Fig. 5~a!. The
frequency marked,f low,UTD , is the frequency above which the UTD metho
should give less than 0.5 dB error according to Ref. 16.

FIG. 7. Transfer function~relative to free-field propagation! at 50 cm1w
for the infinite plate in Fig. 5~b!, calculated with the new method. Th
dashed line indicates the single-edge case, that is, the thin plate limit. S
lines give results for a double wedge withw55, 22, and 35 mm~from the
top!.
2338 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
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that this new model and the BTM model give very simil
results for double-edge diffraction for a geometry with pa
allel long edges, a happenstance that does not display
the significant differences in the two theories.

B. On-axis scattering from a rigid circular disc

The cases of on-axis scattering from rigid and soft c
cular discs was studied in Ref. 11, employing both an ac
rate, frequency-domain T-matrix formalism, and tim
domain expressions using the WA method. The accu
frequency-domain expressions were transformed into IRs
ing the inverse discrete Fourier transform, and adjusting
sampling frequencies to the geometry so that delays co
sponded to exact integer sample numbers, which should
sure that accurate time-domain expressions were retrie
Thus, these could be seen as accurate reference cases a
which the present method can be compared. Neverthe
although the possible effects of windowing on the time s
nal were mentioned in Ref. 11, no estimate was given. T
first-order diffraction is a single pulse, for which it should
principle be possible to accurately find the amplitude. Sin
second- and higher-order diffraction components
continuous-time signals with onsets exactly at the arriva
the first-order impulse, these higher-order components
inevitably influence the sample in which the impulse arriv
This effect is small since the onset amplitude of the high
order diffraction is very small, but the accumulated effect
not clear.

To derive analytical expressions for the diffraction IR
the formulation in Eq.~21! is used. Theb function must be
found for the case with the source and receiver colocated
illustrated in Fig. 8. In this case, the anglesuS and uR are
equal and consequently, both will be referred to asu. Theb
function can be derived using the form of cosh(vh) which is
valid for the wedge indexv50.5, as shown in Appendix C

cosh
h

2
5

cos@~a2g!/2#

~cosa cosg!1/2, ~42!

which, as is also shown in Appendix C, leads to

b52 cosh
h

2 H cos@~uS1uR!/2#

cosh2~h/2!2sin2@~uS1uR!/2#

1
cos@~uS2uR!/2#

cosh2~h/2!2sin2@~uS2uR!/2#J . ~43!

WhenuS equalsuR and both are denotedu, b can be written

lid

FIG. 8. The geometry for the axisymmetric scattering from a thin, rig
circular disc of radiusa, with colocated source and receiver at heightd.
2338Svensson et al.: Secondary source model of edge diffraction
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TABLE I. Amplitude of the first-order diffraction component for axisymmetric scattering from a circular r
disc of radius 1 m, normalized to the specular reflection. Results are either calculated using the new meth
~47!, or taken from Ref. 11. The errors are relative to the T-matrix solution which is considered as the ref
result.

Height
@m# T matrix ~Ref. 11! WA ~Ref. 11!

Rel. error
@%# Eq. ~47!

Rel. error
@%#

1.1 21.221 21.223 ~20.16! 1.238 ~21.4!
1.5 21.273 1.247 ~2.0! 21.294 ~21.6!
3.0 21.243 21.252 ~20.7! 21.249 ~20.5!
5.0 21.163 21.118 ~3.9! 21.173 ~20.9!

10.0 21.093 21.099 ~20.5! 21.094 ~20.1!
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b5
2

cosh~h/2!
1cosuF 1

cosh~h/2!1sinu

1
1

cosh~h/2!2sinuG . ~44!

Furthermore, the cosh(h/2) factor is simplified for the axi-
symmetric case that is studied here. For the entire circ
edge, the incident ray anglesa and the reradiated ray angle
g will have the value 0, and then the quantity cosh(h/2)
51, as is clear from Eq.~42!. Theb function in Eq.~44! can
consequently be further simplified as

b521cosuS 1

11sinu
1

1

12sinu D
52S 11

1

cosu D52
a1 l

a
, ~45!

wherea is the radius of the disc andl 5(a21d2)1/2, d being
the height of the source and receiver above the disc. Inse
this constant value of theb term into Eq.~21!, together with
the constant values ofm and l, it is found that if the
z-coordinate runs along the disc perimeter,

pdiffr~ t !52
a1 l

4pal2 E0

2pa

qS t2
2l

c Ddz

52
a1 l

2l 2 qS t2
2l

c D , ~46!

where it can be noted thatpdiffr(t) is nothing but a scaled an
delayed version of the source signal. In other words,

hdiffr~t!52
a1 l

2l 2 dS t2
2l

c D . ~47!

The first-order diffraction for a soft disc can be found
employing the expression in Eq.~5! and repeating the deri
vations above, which yields

hdiffr,soft~t!52
a2 l

2l 2 dS t2
2l

c D . ~48!

With Eqs.~47! and ~48!, the value of the first-order diffrac
tion component can be calculated directly as a Dirac impu
amplitude. In Tables I and II, the values given by Eqs.~47!
and~48! are, respectively, compared with corresponding v
ues from Ref. 11, when normalized to the specular reflec
for the disc, 1/(2d). The results, while not identical, differ a
most by 2.3%, or 0.20 dB, from the reference T-matrix
oc. Am., Vol. 106, No. 5, November 1999
ar

ng

e

l-
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sults. The sign of the error is always negative for the rig
disc and positive for the soft disc so that, if the second-or
diffraction component contributes within the same sample
the first-order component, the error would decrease, if
marginally. The results with the WA method, as reproduc
from Ref. 11, give errors of the same magnitude as th
given by Eqs.~47! and~48! but with a larger spread, becaus
of varying signs of the errors.

An explicit expression for second-order diffraction ca
be derived as well, and it is done here for the rigid disc on
The expression in Eq.~22! can be used if the two
z-coordinates run along the disc perimeter, fromz50 to z
52pa, so that

pdiffr~ t !52
1

~8p!2 EE
0

2pa

qF t2
m11m2~z1 ,z2!1 l 2

c G
3

b@a1 ,g1~z1 ,z2!,uS1,0#b@a2~z1 ,z2!,g2,0,uR2#

2m1m2~z1 ,z2!l 2

3dz1dz2 . ~49!

Here, the parametersm1 and l 2 are constant and will be
denotedl; uS1 and uR2 are identical and will be denotedu;
and a1 and g2 are both equal to zero. The initial factor
reflects the fact that for a thin plate, there will always
identical diffraction components via the rear side of the pl
which contribute to double the second-order diffraction a
plitude. Furthermore, because of rotational symmetry, one
the integrations can be replaced by a factor 2pa, and any
fixed value ofz1 can be used in evaluating thez2-integration.
Then, withz150,

TABLE II. Amplitude of the first-order diffraction component for axisym
metric scattering from a circular soft disc of radius 1 m, normalized to
specular reflection. Results are either calculated using the new method
~48!, or taken from Ref. 11. The errors are relative to the T-matrix solut
which is considered as the reference result.

Height
@m#

T matrix
~Ref. 11!

WA
~Ref. 11!

Rel. error
@%# Eq. ~48!

Rel. error
@%#

1.1 0.239 0.236 ~21.3! 0.242 ~1.3!
1.5 0.364 0.366 ~0.5! 0.371 ~1.8!
3.0 0.634 0.642 ~1.3! 0.649 ~2.3!
5.0 0.777 0.782 ~0.6! 0.789 ~1.5!

10.0 0.890 0.880 ~21.1! 0.896 ~0.7!
2339Svensson et al.: Secondary source model of edge diffraction
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pdiffr~ t !5
a

32p l 2 E
0

2pa

qF t2
m2~0,z2!12l

c G
3

b@0,g1~0,z2!,u,0#b@a2~0,z2!,0,0,u#

m2~0,z2!
dz2 .

~50!

Because of symmetry aroundz25pa, the upper integration
limit can be halved, and the result doubled instead. Furth
more, a variable substitution with (m212l )/c5t leads to

pdiffr~ t !5
a

16p l 2 E
0

pa

q~ t2t!

3
b@0,g1~t!,u,0#b@a2~t!,0,0,u#

m2~t!

dz2

dt
dt, ~51!

and, as before, the factordz2 /dt can be defined as bein
zero beforet52l /c and aftert52(l 1a)/c, so that the in-
tegration limits can be expanded to6`, and a convolution
integral can be identified. The impulse response is then

hdiffr,2nd~t!5
a

16p l 2

b@0,g1~t!,u,0#b@a2~t!,0,0,u#

m2~t!

dz2

dt
.

~52!

The values ofm2 , the anglesg1 anda2 , anddz2 /dt can be
found by inspecting Fig. 9. Thus,

m25ct22l , ~53!

cosg15cosa25
m2

2a
, ~54!

z25a~p22g1!5aS p22 cos21
m2

2a D⇒ dz2

dt
5

c

sing1
. ~55!

By employing the expression in Eq.~43!, the product of the
b functions in Eq.~52! can be molded into the form

b@0,g1~t!,u,0#b@a2~t!,0,0,u#

516 cos2
u

2
cosh2

h

2 S cosh2
h

2
2sin2

u

2 D 22

, ~56!

where the fact that cosh(h/2) is identical for the two edge
has been used. Using Eq.~42! and the fact thata15g250,
the function cosh2(h/2) can be simplified to

FIG. 9. Sound paths for second-order diffraction for the circular disc, in
cating that the incident sound path to the first edge has a constant lenl
and a constant incidence anglea150. Also, the reradiated sound path fro
the second edge point has a constant lengthl and a constant angleg250.
The intermediate sound path has the lengthm2 , and the two anglesg1 and
a2 have the same value.
2340 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999
r-

cosh2
h

2
5

11cosg1

2 cosg1
, ~57!

which is valid for both the first and second edges, asg1

5a2 . If the expression in Eq.~57!, together with expres-
sions for sin2(u/2) and cos2(u/2), are inserted into Eq.~56!,
which is then used in Eq.~52!, an expression forhdiffr,2nd(t)
results

hdiffr,2nd~t!5
c@11cosg1~t!#~11cosu!

2p l 2 sing1@11cosu cosg1~t!#2 w~t!

5
c~11cosu!

2p l 2@11cosu cosg1~t!#2 F11cosg1~t!

12cosg1~t!G
1/2

3w~t!, ~58!

where cosg1(t) can be found from Eqs.~53! and ~54!,
cosu5a/l, and w(t)5H(t22l /c)2H(t22(a1 l )/c). In-
cluding the first-order diffraction, Eq.~47!, and second-orde
diffraction, Eq. ~58!, IRs were calculated and transforme
into transfer functions. Figure 10 presents the resulting tra
fer function for the case witha51 m andd53 m. Calcula-
tion parameters weref s578 569 Hz and a DFT size of 204
was used. These results are very similar to those in Fig.
Ref. 7. Figure 11~a! shows the second-order diffraction I
when normalized to the specular reflection amplitu
1/(2d).

In Ref. 11, the amplitude of the second-order diffracti
was presented in terms of the peak value of the funct
illustrated in Fig. 11~a!. This peak value is critically depen
dent on the sampling frequency and the low-pass filter
technique used. For purposes of comparison, the proces
Ref. 11 was reproduced as closely as possible. The samp
frequency was chosen so that the delay between the spe
reflection and the first-order diffraction pulse was an inte
number of steps, using a speed of sound of 1500 m/s.
thermore, an oversampling by a factor of 8 was used h
and, after transforming the IR into a transfer function usin
DFT size of 16 384, only the first 1024 frequencies were k
before transforming back to an IR using a DFT size of 20

-
h

FIG. 10. Transfer function for the case in Fig. 8, witha51 m and d
53 m, calculated with the new method. The specular reflection plus fi
and second-order diffraction is included, and the amplitude is normalize
the specular reflection. The fine structure in this graph agrees with the
tails in Fig. 6 of Ref. 7.
2340Svensson et al.: Secondary source model of edge diffraction
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This frequency-domain low-pass filtering should be equi
lent to the technique used in Ref. 11. Figure 11~b! shows an
example of one such second-order diffraction IR, where
small ripple indicates the filtering effects.

Table III gives the results for the peak amplitude of t
second-order diffraction IR, both when calculated using e
sources as in Eq.~50!, and after the oversampling/frequenc
domain filtering described above. Although the results fr
Ref. 11 are reproduced here, it should be noted that
stated in Ref. 11 that the values in their Table IV are n
malized to the first-order diffraction pulse rather than to
specular reflection, which is used elsewhere in that pa

FIG. 11. Second-order diffraction impulse response for the case in Fig
with a51 m andd53 m, calculated with the new method. The amplitu
has been normalized to the specular reflection.~a! A sampling frequency of
78 569 Hz was used.~b! An oversampling by a factor of 8, relative to~a!,
was used and a frequency-domain low-pass filtering as described in the
gave the same final sampling frequency as in~a!.
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We believe that this is a mistake for three reasons. First,
values in Table IV of Ref. 11 are positive rather than neg
tive. Second, it is stated earlier in Ref. 11 that the specu
reflection was used for normalization for all the results p
sented, even for off-axis geometries. The third argumen
that our results are very close to the reference results w
the specular normalization is assumed, and especially a
the frequency-domain low-pass filtering was used.

The results with our new method are close enough to
reference results for the circular disc to generally support
relations derived here, but more comparisons with refere
calculations should be made. Comparisons of the frequen
domain values might then be easier to carry out, avoid
ambiguities involving filtering effects as discussed above

C. Scattering from a rectangular plate

The last example is scattering from a rectangular pla
Cox and Lam present an example of a rectangular plate
size 0.30231.9230.010 m and with calculated directivity
plots at two single frequencies, 2012 and 3995 Hz.19 The
source was positioned at a height ofd53.96 m, right above
the center point of the plate. The receiver was moved al
an arc at a constant radius ofR51.178 m, from the cente
points of the plate. The arc was in the direction of the sh
length of the plate. The total reflection strength was cal
lated using the boundary element method both for a thr
dimensional model and for a thin plate limit model of th
plate. It was normalized to the direct sound amplitude. F
ure 12 shows results using Eqs.~35! and~37! to calculate the
first- and second-order diffraction IRs for an infinitely th
model of the plate. A sampling frequency of 257 536 Hz w
used, corresponding to 128 times oversampling with resp
to the target frequency of 2012 Hz. The four edges w
divided into 0.67-mm elements for the first-order diffractio
and twice that size for the second-order diffraction. The
ceiver was moved along the arc in steps of 1 deg. A DFT s
of 8192 was used, to get the transfer function values exa
at 2012 Hz. The sound speedc5346 m/s was used in Ref. 1
and here, too.

If one compares the level of the total field in Fig. 1
with the results for the thin plate limit in Fig. 4 of Ref. 19
one can see good agreement for angles between 0 and c
deg. The larger deviations above 80 deg are probably du
the need for higher-order diffraction components. This

8,

ext
m a
ing the
ed as
erence
ction
iscussed
TABLE III. Peak amplitude of the second-order diffraction component for axisymmetric scattering fro
circular rigid disc of radius 1 m, normalized to the specular reflection. Results are either calculated us
new method@based on Eq.~50!# or taken from Ref. 11. The results denoted LPF have been low-pass filter
described in the text. The errors are relative to the T-matrix solution which is considered as the ref
results. The T matrix and WA results were specified in Ref. 11 as being relative to the first-order diffra
strength, but it has been assumed here that the specular reflection was used for the normalization as d
in the text.

Height
@m#

T matrix
~Ref. 11!

WA
~Ref. 11!

Rel. error
@%# Eq. ~50!

Rel. error
@%#

Eq. ~50!
~LPF!

Rel. error
@%#

1.1 0.043 0.039 ~29! 0.0415 ~23! 0.0469 ~19!
1.5 0.043 0.031 ~228! 0.0374 ~213! 0.0427 ~21!
3.0 0.031 0.023 ~226! 0.0278 ~210! 0.0293 ~25!
5.0 0.024 0.016 ~233! 0.0205 ~215! 0.0234 ~23!

10.0 0.014 0.009 ~236! 0.0114 ~219! 0.0126 ~210!
2341Svensson et al.: Secondary source model of edge diffraction
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also indicated in Fig. 12 by the large amplitude of t
second-order diffraction component for large receiver ang
The deviation at the dip around 30 deg might be caused
less dense sampling in Ref. 19, or small differences in
speed of sound. Furthermore, the smoothness of the
field around 10–12 deg, where the specular reflection dis
pears, indicates that the numerical method used, Eq.~35!, is
accurate enough up to within half a deg from the transit
zone where the specular reflection disappears. This is c
pensated by the corresponding jump in value for the fi
order diffraction. Very high oversampling was used, toget
with a very fine division of the edge into elements. This
needed only for the positions close to the transition zone
for the largest receiver angles. For the larger receiver ang
higher-order diffraction is needed anyway, so the total fi
might be calculated more accurately by using fewer e
elements but higher orders of diffraction.

A three-dimensional model of the plate was tested
well, but it was then clear that it was necessary to inclu
higher-order diffraction since the results differed sign
cantly from the thin plate limit model, when second-ord
edge diffraction was included. In conclusion, the results w
the new model and the results in Ref. 19 seem to agree
enough to support the new model as long as it is realized
it may be necessary to include higher-order diffraction co
ponents for some situations.

IV. DISCUSSION AND CONCLUSIONS

The interpretation of the exact Biot–Tolstoy solution f
the infinite wedge diffraction that was presented here has
been proven to be trueper se. It has, however, been show
that if the existence of analytical directivity functions for th
secondary edge sources is assumed, such functions ca
deed be derived and yield the exact solution for an infin
wedge. Since this also leads to a possible application to n
straight edges, and the comparison with the result for
circular rigid disc was accurate within 0.20 dB, it is co
cluded that the suggested interpretation is generally valid
should then, in principle, be possible to show that the to

FIG. 12. Scattering from a thin rectangular plate, described in the t
calculated with the new method. Shown are levels of the total field, of
specular reflection only, of the first-order diffraction only, and of t
second-order diffraction only. The frequency was 2012 Hz; the source
fixed symmetrically above the plate and the receiver position was va
along an arc.
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field, specular reflections plus diffraction components, sa
fies the wave equation. The complexity of the higher-ord
diffraction components might, however, prevent this pos
bility for cases other than the infinite wedge.

The proposed model gives results that, for first-ord
diffraction, should be identical to those by the WA model11

For second-order diffraction, the results by the propos
model are very similar to results by methods which are ba
on Medwin’s model.3,11 Conceptually, however, the differ
ence between Medwin’s model and the proposed mode
significant since the proposed model gives a complete m
vation and mathematical proof for the directivity functions
the secondary edge sources.

As for the numerical implementation, very high sam
pling frequencies are often needed. This is because the c
low-pass ‘‘antialiasing’’ filter, which is equivalent to th
single time sample integration, has a gentle roll-off char
teristic. Refined integration techniques could be tested,
the directivity functions might lead to somewhat simpl
functions to handle, compared to the original Biot–Tolst
solution in Eqs.~1!–~4!. Also, since each higher order o
diffraction causes a response that basically falls 3 dB/oct
more quickly than the previous order, lower and lower sa
pling frequencies could be used for each new order. T
decrease occurs, however, above a cutoff frequency whic
given by the size of the individual planes of the object, a
the proximity to the various shadow zones. Below those f
quencies, the response decreases in a way which is m
difficult to predict.

Higher-order diffraction IRs should tend toward
Gaussian-shaped pulses, according to the central limit th
rem in statistics, since it is equivalent to convolving a
function with itself many times, resulting essentially in
Gaussian function. Thus, properly time-aligned Gauss
pulses with the right areas, widths, and polarities could se
as replacement functions for higher-order diffraction.

It was shown that the case of axisymmetric backscat
ing from a circular disc could yield explicit expressions f
the first- and second-order diffractions. It is probably po
sible to find such explicit expressions for several other
ometries too. Further developments could lead to soluti
which satisfy more general boundary conditions.

The proposed model is relevant for all cases wh
scattering/diffraction from idealized, rigid, or soft objects
studied, such as when the WA is applied to underwa
acoustics cases, noise barriers, etc. In architectural acou
most IR prediction models are based on geometrical aco
tics, possibly handling surface scattering, but without
possibility to handle edge diffraction accurately.20 The
Kirchhoff diffraction approximation has been tested befo
but this new model should be much more accurate since
valid at all frequencies and for all source and receiv
positions.10 In electroacoustics, edge diffraction has impo
tant applications such as the effect of the loudspeaker en
sure on the radiated sound; many simpler edge diffrac
models have been tested,16 but the proposed model should
here too, prove to be more accurate.

In conclusion, deriving analytical directivity function
for the edge sources both supports, and takes a step bey

t,
e

as
d
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previous models such as those based on Medwin’s work,
gives new possibilities to solving diffraction problems in t
time domain. These directivity functions support some p
vious first-order diffraction models, but also demonstrate t
previous second-order diffraction models contain approxim
tions, reflecting the greater accuracy of the proposed mo
Derivation of explicit diffraction expressions for certain g
ometries, and for efficient and accurate numerical calcu
tions, become possible using the proposed model.
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APPENDIX A: PROOF OF EQ. „14…

The factorc(r Sr R sinhh)21 H(t2t0) in Eq. ~1! can be
rewritten, introducing an auxiliary variabley,

h5cosh21 y5 log@y1~y221!1/2#, ~A1!

so that sinhh can be written

sinhh5~y221!1/2. ~A2!

The auxiliary variabley introduced above is@see Eq.~4!#

y5
c2t22~r S

21r R
21zR

2 !

2r Sr R
, ~A3!

and with the relationct5m1 l , y can be written

y5
~m1 l !22~r S

21r R
21zR

2 !

2r Sr R
. ~A4!

By further using the relations form and l ~see Figs. 1 and 2!

m5~r S
21z2!1/2, ~A5!

and

l 5@r R
21~z2zR!2#1/2, ~A6!

it is possible to writey as

y5
ml1z~z2zR!

r Sr R
. ~A7!

Now, using Eqs.~A2! and ~A7!, it can be found that

r Sr R sinhh5$@ml1z~z2zR!#22r S
2r R

2%1/2

5@m2l 21z2~z2zR!212mlz~z2zR!2r S
2r R

2 #1/2.

~A8!

By further employing Eqs.~A5! and~A6! to get rid ofr S and
r R , it is found that

r Rr R sinhh5@z2l 212mlz~z2zR!1~z2zR!2m2#1/2

5uzl1~z2zR!mu. ~A9!
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All expressions so far have been valid for both the upper
lower branch solutions ofm andl. Moving temporarily to the
expressions fordz/dt, this quantity can be found by study
ing the total path lengthL5m1 l . A small increase in path
length DL corresponds to a small increase,Dz, along the
edge, and the relation between these is found by the der
tive of L(z)

dL

dz
5

z

m
1

z2zR

l
5

zl1~z2zR!m

ml
, ~A10!

which, usingDL5cDt, leads to

1

ml

dz

dt
5

c

zl1~z2zR!m
, ~A11!

for both the upper and lower branches of the edge, whic
the left-hand relation in Eq.~14!. Sincedzu /dt is always
positive, Eq.~A11! implies thatzul u1(zu2zR)mu also must
always be positive. Then, Eqs.~A9! and~A11! show that the
right-hand relation in Eq.~14! holds true.

APPENDIX B: PROOF OF EQ. „16…

The relation in Eq.~16! is shown using the definitions o
the anglesa andg.

sina5z/m, cosa5r S /m, ~B1!

sing5~z2zR!/ l , cosg5r R / l . ~B2!

If these are inserted into Eq.~A7!,

y5
ml1z~z2zR!

r Sr R
5

11
z~z2zR!

ml

r Sr R

ml

5
11sina sing

cosa cosg
,

~B3!

which is the relation in Eq.~16!.

APPENDIX C: PROOFS OF EQS. „42… AND „43…

For the thin plate case, the wedge indexv equals 0.5,
and then theb term in Eq.~1! can be simplified. The quantity
cosh(nh) is, for the wedge indexv50.5,

cosh
h

2
5

1

2 S exp
h

2
1exp

2h

2 D5
1

2

exp~h!11

@exp~h!#1/2. ~C1!

Squaring this expression gives

cosh2
h

2
5

1

4

exp~2h!12 exp~h!11

exp~h!
. ~C2!

The expression forh in Eq. ~A1! can be employed, which
readily leads to the simplification

cosh2
h

2
5

y11

2
. ~C3!

The auxiliary quantityy can then be written as in Eq.~B3!,
which yields
2343Svensson et al.: Secondary source model of edge diffraction
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cosh2
h

2
5

11sina sing1cosa cosg

2 cosa cosg
5

11cos~a2g!

2 cosa cosg

5
cos2@~a2g!/2#

cosa cosg
. ~C4!

Then, cosh(h/2) can finally be expressed as

cosh
h

2
5

cos@~a2g!/2#

~cosa cosg!1/2, ~C5!

which is the form in Eq.~42!. Taking the square root of th
right-hand term in Eq.~C4! is safe, asa and g are always
within the range2p/2 to p/2. Furthermore, the sine an
cosine terms in the expression forb in Eq. ~1! can be sim-
plified, since

sin@v~p6uS6uR!#5sin$@p6~uS6uR!#/2%

5cos@~uS6uR!/2#, ~C6!

cos@v~p6uS6uR!#5cos$@p6~uS6uR!#/2%

56sin@~uS6uR!/2#, ~C7!

and allows theb term to be written as

b~a,g,uS ,uR!5
cos@~uS1uR!/2#

cosh~h/2!1sin@~uS1uR!/2#

1
cos@~uS2uR!/2#

cosh~h/2!1sin@~uS2uR!/2#

1
cos@~uS2uR!/2#

cosh~h/2!2sin@~uS2uR!/2#

1
cos@~uS1uR!/2#

cosh~h/2!2sin@~uS1uR!/2#

52 cosh~h/2!

3H cos@~uS1uR!/2#

cosh2~h/2!2sin2@~uS1uR!/2#

1
cos@~uS2uR!/2#

cosh2~h/2!2sin2@~uS2uR!/2#J ,

~C8!

where cosh(h/2) is given in Eq.~C5!, and this is the form in
Eq. ~43!.
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