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A new impulse-response model for the edge diffraction from finite rigid or soft wedges is presented
which is based on the exact Biot—Tolstoy solution. The new model is an extension of the work by
Medwin et al. [H. Medwin et al., J. Acoust. Soc. Am72, 1005—-10131982], in that the concept

of secondary edge sources is used. It is shown that analytical directivity functions for such edge
sources can be derived and that they give the correct solution for the infinite wedge. These functions
support the assumption for the first-order diffraction model suggested by Mestveih that the
contributions to the impulse response from the two sides around the apex point are exactly identical.
The analytical functions also indicate that Medwin’s second-order diffraction model contains
approximations which, however, might be of minor importance for most geometries. Access to
analytical directivity functions makes it possible to derive explicit expressions for the first- and even
second-order diffraction for certain geometries. An example of this is axisymmetric scattering from
a thin circular rigid or soft disc, for which the new model gives first-order diffraction results within
0.20 dB of published reference frequency-domain results, and the second-order diffraction results
also agree well with the reference results. Scattering from a rectangular plate is studied as well, and
comparisons with published numerical results show that the new model gives accurate results. It is
shown that the directivity functions can lead to efficient and accurate numerical implementations for
first- and second-order diffraction. @999 Acoustical Society of America.
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PACS numbers: 43.20.Bi, 43.20.Fn, 43.20[PEC]

INTRODUCTION high frequencies in certain directions. Consequently, the
Biot—Tolstoy is the preferred method for impulse response
The classic problem of edge diffraction from an infinite models of edge diffraction.
wedge irradiated by a point source has explicit impulse-  The Biot—Tolstoy expressions, explicit as they are, do
respons€IR) solutions for the cases of a rigid wedge and anot immediately suggest how the infinite wedge expressions
pressure-release wedge. These were presented by Biot aocan be interpreted to lead to expressions for finite wedges or
Tolstoy in 1957 but few studies employed these solutionsfor multiple diffraction. Medwin, Childs, and Jebsen suggest
until Medwin applied them to underwater and noise-barrieran interpretation, “a discrete Huygens interpretation,”
case<. Comparisons of his model with measurements showvhich can be used for finite wedges and also be extended to
good accuracy for geometries with infinite edgésand Ouis  handle multiple diffractiorf. This is the basis for numerical
has applied Biot—Tolstoy’s model in room acoustics to stud-methods such as the wedge assemblay&) method*!
ies of a room with balconies, a case which can be modeleiMeasurements of noise barriers with a finite thickness and
with infinite edges. comparisons with other calculation methods seem to support
An earlier alternative to the Biot—Tolstoy solution has that model. Whereas Medwin’s interpretation leads to nu-
been the Kirchhoff diffraction approximation, which can be merical calculation methods, the current paper proposes an
used for both frequency- and time-domain methods. IrAPProach in which directivity functions for the secondary
seismic$,’ as well as in room acoustiéghe Kirchhoff dif- ~ €dge sourcea la Medwin are derived analytically from the
fraction approximation has commonly been employed inlR solution for the infinite wedge. The expressions for ana-
time-domain methods for edge diffraction. However, as hadytical directivities are directly applicable to nonstraight
been shown using the Biot—Tolstoy expressidmsd other ~€dges and multiple diffraction. It will be shown that these
accurate method®,the Kirchhoff diffraction approximation analytical expressions support Medwin’s assumption for

leads to large errors, not only for low frequencies but also fofnodeling first-order diffraction, namely that the contribu-
tions from the two sides of the edge around the apex point
are exactly identical. On the other hand, the analytical func-
dPresent address: Department of Telecommunications, Norwegian Univert-Ions indicate approximations in Medwin’s assumptions for
sity of Science and Technology, N-7491 Trondheim, Norway. . . . . .
bpresent address: Akustk Forum AB, Stampgatan 15, SE-4166e8€c0nd- and higher-order diffraction. These approximations,

Gateborg, Sweden. however, seem to be of minor importance for geometries
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FIG. 1. The geometry of an infinite wedge irradiated by a point soGrce L=t
Cylindrical coordinates are used with thaxis along the edge of the wedge.

The source has coordinates and 6 and is placed ats=0. The receiver  F|G. 2. A plane view of the edge constructed from the two half-planes
has the coordinates, ¢, andzg and the wedge has an open anglegf containing the edge and the sourSeand the edge and the receivr
respectively. Twaz-coordinatesz, andz,, are indicated for which the two

where the second-order sound paths pass edges with sl 0c S0 Sstante, via the ape paint denotalof the ecige.

angle deviations, as in most noise-barrier cases. Angles are defined with signs so that sirz/m and siny=(z—zg)/!.
Section | of this paper reviews the Biot—Tolstoy solution

and Medwin’s extension to this. A new derivation using ana-

lytical directivity functions is presented, and its extension towhere

second-order diffraction is described. In Sec. Il the numerical

calculation of edge diffraction impulse responses is dis- BD=B (N T By (DF B (DFTB-—(7), 2)

cussed. Section lll presents numerical calculations for finite Siv(7+ Os* 6r)]

edges and analytical derivations for a thin circular disc. The g, . (7)= — , (3
wealth of exact and asymptotic frequency-domain solutions cosfivn(r)]=codv(mx b= b)]
(see Pierc¥ for a review is addressed here only for com- 2 o 2., .2, .2

. : . . . _ Ccore—(rgtrgtzg)
parisons with calculations where the uniform theory of dif- n(7)=cosh * , (4)
fraction (UTD) by Kouyoumjian and Pathak is us&tl. 2rgfr

where c is the speed of sound, the wedge indexequals
I. THEORY 7l 6,,, H(7— 79) In EQ. (1) is Heaviside’s unit step function,

. . __and the timer, equalsLy/c. The distancd o=[(rg+rg)?
The_ pro_ble_m to _be_ c0n5|de_red here is that of a point, zﬁ]”2 is the shortest path from the source to the receiver
source irradiating a rigid or softj.e., pressure-releaseb-

ject, a special case of which is the infinite wedge. Impuls via the edge of the wedge, passing through the so-called apex

) . int of the edge, indicated as A in Fig. 2. For an infinite
responses will be used throughout as descriptors of the souﬁﬁedge with soft(pressure-releasaurfaces, the IR is given

fields, with the sound pressumt) as output signal and a . o : :
source signadi(t) = pyA(t)/ (47), wherepy is the density of by using a modified version of thé-expressiofr
the air andA(t)' the vqlume accelera}tion of the point source. Beo T)=—Bs+(7)+ B _(1)+B_ (1)~ B__(7).
Free-field radiation is then described by the IR;(7) (5)
= §(7—R/c)/R, whereR is the source-to-receiver distance.
The IR for plane-surfaced objects can be written as a sum ofVedges with a combination of rigid and soft surfaces could
the geometrical acoustics IR, and diffraction compo- be studied using variants of ti@expressions in Eqs2) or
nentshy,. The direct sound and specular reflections of first(5); however, in the following discussion, rigid surfaces will
and higher orders will be contained I, as long as their always be assumed except for the example of a circular soft
respective validity criteria are fulfilled. In the case of andisc, studied in Sec. Il B.
object with an entirely convex geometfye., no indentg
hgirr Will consist of only first- and higher-order edge diffrac- A Models of finite wedge diffraction
tion, whereas other geometries might cause combinations of ) o )
specular reflections and edge diffraction. In this study, only  Although the analytical solution in E¢1) describes ex-
convex geometries will be considered, in particular infinitePliCitly the IR of an infinite wedge, it does not indicate what
and finite wedges, and circular and rectangular plates. & Solution for a finite wedge might look like. Medwet al.

As a starting point, consider an infinite rigid wedge with SU99est & “discrete Huygens interpretatiod, placing a
a geometry as indicated in Fig. 1 where the cylindrical coor"Umber of small secondary sources along the edge and ad-
dinatesrs, 6, O are used for the source ang, g, g for justing the|r_ strengths SO that together they give the known
the receiver. The edge diffraction IR can be written in a form&*act solution. According to this model, these secondary
which is a combination of the forms given in Refs. 3 and 14,S0Urces emit pulses when they are hit by the incident, impul-

and based on the solution presented in Ref. 1 sive, sound wave. Thus, the reaction at the edge is assumed
’ to be instantaneous. This leads to the conclusion that the
__cv B(7) value of the IRhgg, at time 7is caused by the reradiation
haitrr(7) = — 5= —=———=H(7—70), (1) g S
27 rgrrSinhy(7) from the two parts of the edge indicated in Fig. 2, a lower
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However, the errors in Medwin’'s model do not appear to
show up for geometries with symmetrical situations, such as
for noise barriers with parallel edges. The second-order dif-
fraction paths which will be of highest amplitude are those
passing the apex points, that is, with as little angular devia-
tion as possible during the passage of the edge. The methods
in Refs. 2, 3, and 11 correctly predict these high-amplitude
parts, and thus predict the second-order diffraction quite
0 10 20 30 40 50 60 well, as long as the geometry is such that sound paths with
Time  [ms] little angular deviation are possible. A critical benchmark
FIG. 3. lllustration of a diffraction impulse response for a finite wedge, C@S€ would then be one where all sound paths across edges
hsnite (SOlid line) and the corresponding infinite wedd®,gni.e (dotted ling, experience large angular deviation. For such cases, an accu-

indicating the three parts whefé] hene=hinfinie, [ii] hrinee is @ scaled  rate secondary source model would be important.
version ofhiysinie » @nd[iii ] wherehgni=0. The initial part of the impulse
responses has been truncated.

Impulse response

B. Derivation of analytical directivity functions for the

branch indicated by the subscript and an upper branch secondary edge source

indicated by a subscript. The two branches must obey the

condition A derivation of analytical directivity function for the
secondary edge sources starts by assuming the existence of a
m+l=m,+l,=cr. (6)  directivity function for the secondary edge sources which

The two edge portions at positio@sandz, will cause two ~ depends only on the angles of the incident sound patnd
radiated sound-field components,andh,,, which summed s, and of the reradiated sound paghand ¢, in Figs. 1 and

together equal the known amplitudigy, , 2. This directivity function must be independent of the dis-
tancesmandl, and must be symmetric so that the source and
hy(7) +hy(7) = hgiree (7). (7)  receiver positions can be interchanged with identical results.

As indicated in Fig. 3, an IR for a single finite wedge Thus, the reciprocit_y pr_in_ciple iS _alway_s fulfilled. A.co.nse—
will then have three parts. In the initial pafi], the IR is  duence of_ such dlrect|V|t)_/ fgnctmng is that the incident
identical to the infinite wedge response. In the final gaiif, ~ Wavefront is split up when it hits a point of the edge, and the
the IR is zero. after the sound wave has reached the furthetgradiated wavefront spreads in all directions with different
end of the edge. The intermediate péiif,, where onlyh, or amplitudes. To derive such a directivity function, the method
hy in Eq. (7) is present, is then a scaled version of the infinite®f rétarded potentials is employed as in Ref. 7, and a proto-
wedge IR. The scaling for the intermediate part was sugyPe solution can be formulated for the edge diffraction. The
gested in Ref. 2, and is based on the finite wedge IR havin%rototype solution is then matched to the known solution for
half the amplitude of the infinite wedge IR, i.&,=h,. In a e infinite wedge. Thus, the diffracted pressyg (1)

later papef, it was instead suggested that this factor should®uld be written as an integral over contributions from the
be entire wedge

ine(7) — hi(7)  myly R [t— m(z)+1(z)
Pinfinite( 7) B h)(7)+hy(7) B myl,+myl,’ (8) aittr (1) f_mq c

D[ a(2),y(2),0s, 6]
m(z)l(z) %

where it is assumed that the lower branch of the edge has the _ o ©
longest extension. It will be shown below that a theoreticalVhereD[a(2),¥(2), s, 6r] is the unknown directivity func-
derivation supports the relatidn=h, . tion. T_he position along the Wedge. is given by the_
For multiple scattering, Medwin's model and the WA Z-coordinate, and this causes a retardation of the source sig-
method assume that the secondary edge sources radiate @ d(t), an amplitude attenuation caused by the ray paths
point sources, with source strength modifications based of"d!, and a further amplitude attenuation by the directivity
Eq. (8). Second-order diffraction is then calculated by havingfunction D. The variablez can be substituted for a variable
all these secondary edge sources along the first edge generate (M+1)/c, the time delay. There will, however, be two
individual diffraction contributions via the second edge. ~ Values ofz giving the same value of, corresponding to the
Medwin et al. present comparisons between measureYPPer apd _Iower brgnches of the edge. Thus, the integral in
ments and calculations for noise barriers of finite widthsEQ- (9) is first rewritten as a sum of the upper and lower

where second-order diffraction must be taken into accountranch integrals, as

and the agreement seems to be quite gbblde agreement is Zanex m(z)+1(2)] D[a(2), ¥(2), bs, 6r]
also good for the scattering from a circular dtS@és will be  pgig, (1) = f *alt— S Rz
shown in Sec. | C, however, the derived analytical directivity o ¢ m(2)l(z)

functions indicate that having the secondary sources along % m(z)+1(2)|D[a(2),¥(2), s, Ox]
the first edge use the ordinary diffraction expression to gen- +f [t— c m2)1(2) z,
erate second-order diffraction via the second edge, as in Eq. Zapex

(1), is only an approximation as far as we can determine. (10
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wherezgeccorresponds to the apex point on the edge, which  g(7)=3{ B[ a,(7),v(7), s, 6R]
is given byz,e=2zgrs/(rs+rg). Now, a variable substitu-

tion is carried out so that +Blay(7),7u(7), 05, OR]}- (17)
0 D|(7) dgz This expression can finally be inserted into Etf), and the
Paitrr (1) = L q(t—17) m(A(7) a,97 unknown directivity functiorD can be identified as
o vBla(T),y(71),0s,06
+J qt—n 2ot 93, DLa(7). 7(7). s, 0] = — Lo L(T LOs:0R1 - g
0 my(7)ly(7) dr
o D(7) dgz where eithery,(7) andy,(7), or «,(7) andy,(7), could be
= f q(t— r)[ — W a4 chosen as solutions far(7) and y(7). These derivations lead
7o (Dh(7) dr to the conclusion that the branches of the edge on each side
Dy(7) dz, of the apex point contribute with exactly equal amounts to
YCINC) E} dr, (11)  the diffraction IRhg (7). This has two consequences. First,

one could choose either the upper or lower branch solutions
where the subscriptsand u, respectively, indicate that for for a(7), Y1), z(7), m(7), andI(7) to formulate the total
each value ofr, the solution ofd(7), m(7), I(7), andz(7) diffraction IR in this new form,

is chosen to correspond to the lower and upper branches,

respectively. Also, in Eq(11) the directivity function is writ- h _ Vv Bla(7),y(7),6s,6r] dz
ten asD,(7) rather thanD[ a,(7),7,(7),6s,6r]. The quan- aie (7)== 2 m(7)(7) dr’
tities dz/dr can then be defined as being zero befare ) )

— 75, the first arrival time of the diffracted sound-field com- Where g is as in Egs(2) and (3), and usesy(7) from Eg.
ponent, so that the lower integration limit can be expanded t616)- Second, for a finite wedgé,(t)=h,(t) in Eq.(7), i.e., -
—. From this it becomes clear that the integral in Etf) the part of _the IR which is a sc_:aleq version of the.|nf|n|te
is a convolution integral of the source sigugt) with an IR~ Wedge IR, illustrated as pafti] in Fig. 3, has the simple

(19

which must be the diffraction IR, since scaling factor 1/2,
[~ Nfnte(7) 1
pdiffr(t)_J‘iwq(t_T)hdiﬁr(T)dTa (12 (7)) 2" (20
andhg(7) can be identified as This scaling factor supports the suggestion by Medwin in
D/(r) dz D7 dz, Ref. 2, but contradicts the suggested relationship in Ref. 3, as

hgt (1) =————F 7+ ———— . 13 discussed in Sec. | A.
a7 m(D)li(7) d7 = my(7)ly(7) dr 49 Decomposition of the infinite wedge diffraction into lo-
To find a directivity functionD which satisfies Eq(13), the  cal edge contributions also makes it possible to derive dif-
observations fraction from nonstraight edges. As is shown below among
1 d 1 d H(r— the examples in Sec. lll, the first- and second-order diffrac-

— 9a _ da_ _© (_T 7o) (14)  tion components of a circular thin disc can be derived ana-
m(Dl(r) dr my(n)ly(7) d7  rergsinhy(7)’ lytically. Such derivations can employ a rewritten version of

which are proven in Appendix A, will be used. The relations the original expression in Eq9), using theg function, as

in Eq. (14) can be inserted into Eq13), which leads to

B D) (7). 5,66

+D[ay(7),yu(7),0s, 6R]. (15

Furthermore, it is possible to expregsas function of the
anglesa and y. To do this, another relation shown in Ap-
pendix B,

3 h711+sina(7')siny(7')
7(7)=Ccos cosa(7)cosy(7)

can be used. It should be noted thatand y can be ex- F_IG. 4. The geometry of a truncated .infinite wedge, with two parallel infi-

. . . .. nite edges, a point sourc@and a receiveR. One sound path, via the two
changed W'thOUt aff_ectlr_]g the_ result, and thus reciprocity ISpoints z, andz, on the two edges, is marked. For the first edge with the
assured. This relation is valid regardless of whether ongpen wedge angl@,,, the sourceS has the cylindrical coordinatess, ,
chooses the lower or upper branch combination ofdted 6, zs,, and the point az, along edge 2, which acts as a receiver, has the
v angles, an observation which could be formulated agcordinatesw,é,,,z,. Relative to the second edge with the open wedge
e (7). y(7), 0s,0:]= 1l au(T), 7’u(7')195a 0g] and conse- svn?gleozwé, ;he;:énttﬁle?::;rgvzggﬁai ?hc;sciso:j;c;rce and h_as the coordinates

) 052=0,2y, %2, Owo—0Or2, Zro- It
quently, Bl ay(7),%(7),0s,0r]=Blay(7),yu(7),0s,0R], is assumed that the twoaxes are aligned with respect to each other. The
so it can be stated that anglesa and y are as defined in Fig. 2.

: (16)
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vV (2 m(z)+1(2) C. Second-order edge diffraction
Pairrr() == 7 — Ll Q[t— B —
O 0 To derive expressions for second-order diffraction, the
pla(z) ,(7()|23,)S’ il Z (21  case of a truncated infinite wedge with two parallel, infinitely
m(z)l(z

long edges as in Fig. 4 is studied. Expanding the formulation
wherez; andz, are the two endpoints of the finite or infinite in Eq. (21), and using the sound-path designations in Fig. 4,
wedge. the second-order diffracted pressure can be written

()= ViVy ff” [t_m1(21)+m2(21122)+|2(22) Bl a1(z21),71(21,22), 051,01 B[ @2(21,23),v2(22),0,0r]
Paite V= amy2 ) ) .9 c 2my(20)My(21,2)15(25)

dzdz,

(22

where it has been assumed that the path from edge 1 to edge 2 runs along a plane connecting the two edges. This is indicatec
by the values9g;=0 andfs,=0 in the twop factors and the factor of 2 in the denominator of the integral. This factor of 2
compensates for the doubling in pressure generated by an acoustic source when it is mounted on a baffle. It should have the
value of 1 if the ray from edge 1 to edge 2 does not run along a plane. In the double integral(22)Ethe factorm; and

the delay corresponding tm; can be moved out from the integral owtr,, so that

vi [ [S(t=-my(zp)lc)
pdiffr(t):ﬂ.,f_m o omy(z)

wherée® indicates a convolution and

l2|dz, (23

I vy (e | Ma(Z4,25) +H1a(2) | Blai(Z),71(21,22), 051,01 BL@2(21,22), ¥2(22) .0,0R, ] dz (24)
2 24m ] . c My(21,25)15(25) >
|
For each value ot,, there is az; 5pexaround which the 1 vy Blasy,¥Y2u,0,0r) dz,
integrall , can be split into the upper and lower branches, adldi, zl—>R( T)= > 4n mol ar
was described before. Then, a variable substitution is pos- 22
sible with (m,+1,)/c=7, and the factorslz,/dr can be X{Bl a1,v1 051,01+ Bl @1, Y14, Bs1,01}
defined as being zero before= 7y,. Here,7g,=Ly,/c where
Loo=[(W+TRry)?+ (Zro—71)?]¥2 Since the geometry is ba- =Nt 1st.edgeb TH{BL a1, Y11 051.0]
sically the same as for the diffraction for a single wedge, the
left-hand relation in Eq(14) holds here, too. The integrbj *Aler, viu, 0s1.013/2. @7
can then be written
Lt V2 foc “ )(ﬁllﬂzl+ﬂ1u32u) % This rr.1eans. that the Ithiﬁr'Zﬁf*(.T) is a first-order
275 4, ) At=7 m,l, dr o T edge-diffraction IR from the positiorz; on edge 1 to
the receiver positionR via edge 2, scaled by 1/2, and
=0q(t)* ha, zl—»R( 7), (29 multiplied with a weighting function which is the sum of the

two B functions in Eq.(27). The approach for second-order
where the values af,, |, anddz,/d7 can be chosen as the diffraction in Ref. 3 is to place discrete edge sources along
upper or lower branch solutions for a certain valueroff  edge 1, and to use an ordinary first-order diffraction IR to

one studies the impulse resporisd%‘ZPR(T) further, calculate their contributions at the receiver point. However,
the factor with twog functions in Eq.(27) will modify the
lv, 1 dz first-order diffraction IR hig 1steagea Which in principle
Nitr, 2, - R(7) = 2 47 myl, E{B[al’?’ll 1051.0] makes it impossible to let the edge sources on edge 1 irradi-
ate edge 2 via ordinary first-order diffraction IRs. The
X Bl ez 721,0.0r2] method used in Ref. 3 probably does calculate the onset of

+ Bl a1, Y14, 051,01 Bl @24 » Y2u,0,0r2 ]} Naiter, ZﬁR( 7) correctly and, since the high-frequency proper-
(26) ties are determined to a large degree by the transient onset,
the overall second-order edge diffraction is predicted rather
Equation (17) can be applied, implying thatg[a,, Well. Employing the IR hg , &, the second-order
Y21,0,0r21= Bl @2y, ¥2u,0,0r2] and diffracted pressure becomes
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Paitir () integration ofhgi(7) in Eq. (30) over a time segmerdr is
- (8 / equivalent to the integration over a segment of the edge
_\1 [M*[q(t)*hdiﬁr L r(zy t)]] which corresponds to this particuldr. To do this, another
21— )

4 J o my(zy) variable substitution can be done so that
Xdz (n+0.5)/f Zny dr
h(n)= hdiffr(T)dT:J hair(2) 55 dz, (31)
[ va (= [alt-mi(zy)lc], (=05 Z dz
=a(t)*| 4= f a2, R(Z1.) _
T J - my(zy) wherez,, and z,, are thez-coordinates that correspond to

7=(nxt1)/(2f,), respectively. As discussed in conjunction
Xdzl]. (289  Wwith Eq. (19), one could choose either the lower or upper
branchz-coordinates that correspond toSince Eq(19) can
This expression means that the second-order diffraction IR0€ used to find that
haittr 2na(7), can be found from a single integral, dr v Bla(z),v(2),6s,0x]

Naifer(2) = — : (32)
Naiftr 2nd( 7) dz 4w m(2)I(z)
vi (= [ r—my(zy)lc] the integration in Eq(31) can be written
= — P .
Im )| Mz MamaoR(Z07) 02 V(2 Bla(2),(2),0s,0r]
h(n)=—E m21(2) dz. (33
vy (= haitr,z, R T—Mi(zg)/C] fn
4. my(z1) dz. 29 This integration can be approximated by the midpoint value
so that
However, since the IR ZlﬂR(r) is zero forr<<ry,, the
infinite integration limits in Eq(29) can be replaced by the h(n)~— v Ble(zn).¥(2n), 05, 0r] A (34)
valuesz, ; andz; ,, which both satisfyr= 7o+ m, /c. Ex- A m(zy)1(z,) "

plicit solutions to Eq.(29) might be possible for certain ge-
ometries, for instance the axisymmetric reflection from a cir
cular disc, as shown in Sec. IlI B.

where z,, is the midpoint betweerz,; and z,,. If, for a
“simplified numerical implementation, one chooses to divide
the edge into equally sized elements of sixe, then an

Il NUMERICAL IMPLEMENTATION—DISCRETE-TIME element placed atz; will give a contributionAh; to the IR

IMPULSE RESPONSES
. . . . \Y B[a(zi)vy(zi)!GS!aR]
The default solution for numerical calculations is to use ~ Ahj~——— mz)1(Z) Az (35
(| (|

a discrete-time IR which, for instance, can be given by area am

sampling of the continuous-time expression in E@9.or  This should be added to a single time sample f¢(m
(19). A value of the discrete-time diffraction IRy« (n) ata  +1)/c or divided among two or more consecutive time
certain discrete time=n/f, wheref is the sampling fre- samples. This division is determined by the edge element’s

guency anch is a sample number, is thus given by position and size relative to the time positions for sample
(n+ 12/ The contributionAh; should be viewed as a rectangular
S . . . . .
hgiter (N) = f hgire (7)d 7, (300  pulse with a widthAt as given by the element siZez and its
(n—1/2)/fs position z; . If the edge element size is chosen so that

wherehg, (7) is the continuous-time diffraction IR, such as <cl/fg, the contribution from each element will never spread

in Eq. (1). The singularity atr= 7, in Eq. (1) deserves spe- Out over more than two time samples.

cial attention, and the original function can be approximated ~ For efficient numerical implementations, tigefunction

by an analytically integrable function for values oflose to ~ can be written in a much more compact form than in Egs.

5.1 The integration in Eq(30) corresponds to filtering the (2), (3), and(16) if one uses the relation

continuous-t_ime si_gnahdim(T) prior to sampling, employing coshv ) = (AV+A~Y)/2, (36)

a low-pass filter with an IR in the form of a rectangular pulse

of width 1/f5. This is quite a crude low-pass filter, and Clay where A=(y?—1)Y?+y and y=[ml+z(z—z)]/(r4,),

and Kinney suggest the use of a wider pulse of widfh 4#  which is taken from Eq(A7), with the same variables as

The sampling frequency can, however, always be raised highefore. With this formulation, only basic mathematical com-

enough to give a low enough aliasing error at the highesputations need to be recalculated for each edge element and

frequency of interest. In the numerical examples in thisvery efficient implementations are possible.

study, numerical integration as in E¢B0) has been used Second-order diffraction is straightforward to implement

throughout with rather high sampling frequenci@® to 40  using a formulation which is based on Eg&2). If two finite

times the highest frequency of interesd get accurate re- edges are divided into equally sized edge elemaAmtsand

sults. Az,, the second-order contributiakh;; to the IR hg 2ng.
Formulating the diffraction as a sum of contributions of edge elemenitat z; of edge 1 and edge elemgnit z; of

from along the edge, as in E¢L9), it can be seen that the edge 2, can be written
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_Viva Bla1(z1),v1(21,22), 051, Or1 1 Bl @2(21,22) , ¥2(22) , 052, Oro]
3272 My (21)My(21,25)15(2,)

Ah Az, ,Az,. (37

This expression is valid for both parallel and nonparallelclearly due to using the constant value 1 in E4fl) instead

edges, as long as the appropriate expressions for the involvexd the monotonically increasing function cosh.

a, y, andd angles, andan andl distances, are used. Note that

a second-order contribution via two edge elements should bg. ExaMPLES

viewed as a triangular pulse, and a third-order contribution . ) ) ) )

appears as a pulse with second-order polynomial shape, etc. N this section, the new model employing analytical di-

This affects how each contribution should be divided amond®€Ctivity function for the secondary edge sources is compared

time samples. A simplified implementation, giving the cor- with other methods. On'ly IRs h.ave been discussed so far, but

rect low-frequency response, was used by VanderkBoy. resulj[s are often more interesting when present_ed as t_ransfer

The contributionAh can be distributed over the two time functions. These are calculated from the IRs using a discrete

samples adjacent to the arrival time of the edge element cef-ourier transform(DFT), and it is then possible to check if a

ter, with a linear weighting that depends on the center arrivapufficiently high sampling frequency has been used. The

time’s position relative to the two sample times. sampling frequency should be increased until the results at
Other models have used time-domain formulations forthe highest frequencies of interest have stabilized. In all cal-

edge diffraction, the most common ones being based on theulations, unless otherwise stated, a value of 344 m/s has

Kirchhoff diffraction approximation, as mentioned in the In- P&en used for the speed of sound.

troduction. Another model, suggested by Vanderkooy, has ap. |nfinite wedges

interesting equivalence to the new model suggested ‘fiere. . . . i

Vanderkooy's model started from a frequency-domain high- | Wo different infinite and rigid wedges were studied as

frequency asymptotic expression for the infinite wedge. illustrated in Fig. 5. Figure @) shows a thin plate edge, with

The model uses discrete edge sources, each of which giveLR€ fixed source positio (with cylindrical coordinates s
contribution =25cm, #s=15°, andzg=0) and with two different re-

ceiver positions, R1 and R@t rg=25cm, zzg=0, and 6
v k(fs,6g) =300° for R1, andg=196° for R2. The position R2 is 1°
Ah=——/ Az (38  into the shadow zone, which is critical from a numerical
point of view due to the singularity of the diffraction IR at
which is delayed by the time=(m+1)/c. Vanderkooy used the boundary of shadow zones. In Figbg another case is
a parametev, g Which is the reciprocal of the wedge index shown with a plate of thicknes&, an example which is
v used here, but for clarity the parametgr,,q was replaced duplicated from Ref. 3. In this case, the source is at cylindri-
by v in Eq. (38) so that the similarity with Eq(35) is clear.  cal coordinates s=25cm, #s=15°, and the receiver is at
The directivity functionx is rr=25cm, 6g=300°, zz=0. It should be noted that be-
cause of the widthv of the plate, the receiver coordinates are
1 relative to the second edge, closest to the receiver.
cosvm—CcogV(fr— 0s)] Calculations of IRs were made with the new model us-
ing the discrete edge decomposition described by (B§).

K( es,aR):SinVW

1 X
for the single edge, and by E for the double edge. IRs
* cosv,,+cogv(2m—6g—0s) ]|’ (39 g g y E@D J
which can be rewritten into the form oasm/
K(0s, 0r) = BLNH BYN+ Yoy gYand, (40 164
0.25m
where 025% 60°
R1
Vand: SII’[V(Wi asi GR)] (41) S 15
== 1—codv(m* st Or)] @
If cosh{vz)=1, which happens for the time= 7, (i.e., at the 0.25 m
onset of the diffractio)) theseB terms are identical with the 0.25m >6(N
analytical ones in Eq€2) and(3). Since rapid variations in R
the IR always occur at the onset, the high-frequency part of /13
the response is determined entirely by this initial part of the |
diffracted signal. Thus, it is not surprising that Vanderkooy's (b)

model correctly reproduces the initial part of the IR and CONE 6. 5. The two infinite wedge situations that have been stud@ahows

sequently t_he high-frequency response. The_ mOde! do_eﬁvthin plate edge(b) shows a plate of thickness, where the valuesv
however, give large errors at low frequencies, which is=5, 22, and 35 mm have been studied.
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TF re free field at 50 cm [dB]

0,02 0.1 1 10 20 FIG. 8. The geometry for the axisymmetric scattering from a thin, rigid
requency [kHz] . . . . . .
circular disc of radius, with colocated source and receiver at height

FIG. 6. Transfer functiorirelative to free-field propagatiprat 50 cm dis-
tance for the two receiver points at the infinite wedge in Fi@).5The . . o
frequency marked o, o, is the frequency above which the UTD method that this new model and the BTM model give very similar

should give less than 0.5 dB error according to Ref. 16. results for double-edge diffraction for a geometry with par-
allel long edges, a happenstance that does not display well
were also calculated with the Biot—Tolstoy model from Ref.the significant differences in the two theories.
3, here denoted BTM, and transfer functions were calculated
for the single edge with the uniform theory of diffraction
(UTD) by Kouyoumjian and Pgthaﬂ?.The lowest frequency g on.axis scattering from a rigid circular disc
for which the UTD method gives accurate results—that is,
within 0.5 dB of exact solutions—was found to bg,, 1o The cases of on-axis scattering from rigid and soft cir-
~140Hz based on Fig. 4 in Ref. 18. Sampling frequenciegular discs was studied in Ref. 11, employing both an accu-
of 800 kHz were used for the IRs since, compared with date, frequency-domain T-matrix formalism, and time-
sampling frequency of 400 kHz, the difference was less thalomain expressions using the WA method. The accurate
0.1 dB at 20 kHz. The edge element sizes were 0.43 mm foffequency-domain expressions were transformed into IRs us-
all cases, and the wedge had an extension®m relative to  Ing the inverse discrete Fourier transform, and adjusting the
the source. sampling frequencies to the geometry so that delays corre-
Results for the wedge in Fig(® are presented in Fig. SPonded to exact integer sample numbers, which should en-
6, where the results for the new model and the BTM modefure that accurate time-domain expressions were retrieved.
come within 0.001 dB. It can also be seen that the UTDThus, these could be seen as accurate reference cases against
method is indeed accurate downftg,, yrp~ 140 Hz. Figure which the present method can be compared. Nevertheless,
7 shows results for the double-edge wedge in Fig),Go-  although the possible effects of windowing on the time sig-
gether with single-edge diffraction for the corresponding in-nNal were mentioned in Ref. 11, no estimate was given. The
finitely thin wedge. Comparing these results with Fig. 9 infirst-order diffraction is a single pulse, for which it should in
Ref. 3, it can be seen that the results with the new metho@inciple be possible to accurately find the amplitude. Since
and the BTM results are very close to each other. As is als§econd- and higher-order diffraction components are
observable for the double-edge plates in Ref. 3, the differcontinuous-time signals with onsets exactly at the arrival of
ences between the thin plate limit and the low-frequencyhe first-order impulse, these higher-order components will
results decrease with decreasing thicknesses, yet a small Higvitably influence the sample in which the impulse arrives.
significant difference always remains. This remaining differ-This effect is small since the onset amplitude of the higher-
ence is probably caused by the lack of higher-order diffracorder diffraction is very small, but the accumulated effect is

tion components in these calculations. It can also be noteBOt clear. _ _ _ _
To derive analytical expressions for the diffraction IR,

the formulation in Eq(21) is used. TheB function must be

) -10 found for the case with the source and receiver colocated, as
5 5 illustrated in Fig. 8. In this case, the anglés and 6y are
+ equal and consequently, both will be referred tada$he g
g 20 function can be derived using the form of cosh) which is
R )5 valid for the wedge index=0.5, as shown in Appendix C,
3 -
3 cog(a—1vy)/2]
2 30 cosh. = ’ 73 (42
8 _._- Single edge, w =0 2 (cosacosy)
%5 351 —— Double edge, w = 5, 22, 35 . . . .
iﬂ ouble edge, w =5 o which, as is also shown in Appendix C, leads to
B 40
2 3 4 6 8 10 20 30 40 ) hz cog (6s+ 0R)/2]
=2 cos e
Frequency [kHz] B 2 | CosR(712) — it (0 0g)/2]
FIG. 7. Transfer functior(relative to free-field propagatiprat 50 cm+w _
for the infinite plate in Fig. &), calculated with the new method. The + COS{(GS_ 0r)12] . (43
dashed line indicates the single-edge case, that is, the thin plate limit. Solid cost( 5/2) —sir’[ (05— 6g)/2]
lines give results for a double wedge with=5, 22, and 35 mntfrom the )
top). When 65 equalsfr and both are denote@| 8 can be written
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TABLE |. Amplitude of the first-order diffraction component for axisymmetric scattering from a circular rigid
disc of radius 1 m, normalized to the specular reflection. Results are either calculated using the new method, Eq.
(47), or taken from Ref. 11. The errors are relative to the T-matrix solution which is considered as the reference

result.

Height Rel. error Rel. error
[m] T matrix (Ref. 11 WA (Ref. 11 [%] Eq. (47) [%]
11 -1.221 —-1.223 (=0.19 1.238 (1.9
15 -1.273 1.247 (2.0 —1.294 (—1.6
3.0 —1.243 —1.252 (=0.7) —1.249 (=0.5
5.0 -1.163 -1.118 (3.9 -1.173 (-0.9
10.0 —1.093 —1.099 (—0.5 —1.094 (=0.3

1 sults. The sign of the error is always negative for the rigid
m d?sc an_d positive for the sof_t disc so th_at, if the second-order
diffraction component contributes within the same sample as
the first-order component, the error would decrease, if just
marginally. The results with the WA method, as reproduced
from Ref. 11, give errors of the same magnitude as those

iven by Eqs(47) and(48) but with a larger spread, because
f varying signs of the errors.

An explicit expression for second-order diffraction can
be derived as well, and it is done here for the rigid disc only.
The expression in Eq(22) can be used if the two
z-coordinates run along the disc perimeter, fram0 to z

cosé

p= cosh 5/2) *

1

* coshi 7/2)—sinb|’ (44)

Furthermore, the cosh2) factor is simplified for the axi-
symmetric case that is studied here. For the entire circul
edge, the incident ray anglesand the reradiated ray angles
v will have the value 0, and then the quantity cagB]
=1, as is clear from Eq42). The g function in Eq.(44) can
consequently be further simplified as

1 =21ra, so that
p=2+c0s0| T ong T Tosing
1 2ma m;+my(2z4,25) +1
1 atl B jf [ Myt mMa(2y,25) +
_ _ () =2 t
=214 =2, 45 Pairr(t) ®a2) ), @ c
wherea is the radius of the disc ard= (a®+d?)'?, d being Bla,y1(21,22),05,01 Bl @2(21,23), 72,0,0r2]
the height of the source and receiver above the disc. Inserting X 2mimy(2;,2,)1,
this constant value of thg term into Eq.(21), together with
the constant values ofm and I, it is found that if the Xdzdz,. (49)
z-coordinate runs along the disc perimeter,
atl [(2ma 2| Here, the parametens); and |, are constant and will be
Pair ()=~ 7 —12 fo Q(t— ?)dz denoted!; 65, and 6g, are identical and will be denoteg)
and a; and y, are both equal to zero. The initial factor 2
a+l 2] reflects the fact that for a thin plate, there will always be
- Wq t— F) ) (46) identical diffraction components via the rear side of the plate

. . . which contribute to double the second-order diffraction am-
where it can be noted that; (t) is nothing but a scaled and plitude. Furthermore, because of rotational symmetry, one of

delayed version of the source signal. In other words, the integrations can be replaced by a factera2 and any
a+l 2] fixed value ofz, can be used in evaluating tag-integration.
it (7) = — 217 o| T— ?) (47 Then, withz; =0,

The first-order diffraction for a soft disc can be found by
employing the expression in E¢6) and repeating the deri- TABLE Il. Amplitude of the first-order diffraction component for axisym-

vations above, which yields metric scattering from a circular soft disc of radius 1 m, normalized to the
specular reflection. Results are either calculated using the new method, Eq.
a—| 21 (48), or taken from Ref. 11. The errors are relative to the T-matrix solution
hdiffr,soft( T)=— 212 ( T ?) - (48) which is considered as the reference result.

With Egs.(47) and (48), the value of the first-order diffrac- ~Height T matrix WA Rel. error Rel. error

tion component can be calculated directly as a Dirac impulse [m] (Ref. 19 (Ref. 13 (%] Ea. (48 (%]

amplitude. In Tables | and I, the values given by E@s) 11 0.239 0.236 (-1.3 0.242 1.3

and(48) are, respectively, compared with corresponding val- 1.5 0.364 0.366 (0.5 0.371 1.8

ues from Ref. 11, when normalized to the specular reflection 8'?3‘;’ g'ggg Eég; g'sgg gg

for the disc, 1/(2l). The results, while not identical, differat ;4 0.890 0.880 (_1:1) 0.896 (0:7)

most by 2.3%, or 0.20 dB, from the reference T-matrix re
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FIG. 9. Sound paths for second-order diffraction for the circular disc, indi-
cating that the incident sound path to the first edge has a constant length

and a constant incidence angtge=0. Also, the reradiated sound path from
the second edge point has a constant lemgthd a constant anglg,=0.
The intermediate sound path has the length and the two angley; and
a, have the same value.

[ My(07,)+2
C

a 2ma
pdiﬁr(t)ZszO q

% B[0171(0i22)1 010]B[ QZ(O!ZZ) 10!010]

m,(0.2) %
(50)

Because of symmetry aroursd= 7ra, the upper integration
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FIG. 10. Transfer function for the case in Fig. 8, with=1 m andd

=3 m, calculated with the new method. The specular reflection plus first-
and second-order diffraction is included, and the amplitude is normalized to
the specular reflection. The fine structure in this graph agrees with the de-
tails in Fig. 6 of Ref. 7.

1+cosy,

7_
cosi‘?E— 2 cosy, " (57)

limit can be halved, and the result doubled instead. Further-

more, a variable substitution witm(,+21)/c= 7 leads to

a ma
pdiﬂr(t):mzfo q(t—17)

XB[OY’Y:L( T),G,O]B[az(T),0,0ﬂ]
my(7)
and, as before, the factalz,/dr can be defined as being
zero beforer=2l/c and afterr=2(l +a)/c, so that the in-

tegration limits can be expanded tox, and a convolution
integral can be identified. The impulse response is then

B[O!')/l( T), 6,0]ﬁ[ a2( T) !O!Oﬂ] %
m,(7) dr’
(52)

The values ofm,, the anglesy; anda,, anddz,/d7 can be
found by inspecting Fig. 9. Thus,

dz,
—dr,

dr

(51)

a
Paiffr 2nd( 7) = 16712

m,=c7—2I, (53
my

COSy = COSap =7, (549

B D)= 5 M dzz_ c 55

z,=a(m—2vy,)=a| m—2 cos oa :>d7'_Sin)/1' (55

By employing the expression in E43), the product of the
B functions in Eq.(52) can be molded into the form

B[Oiyl( T)! 0!0]B[ a2( T) !01010]

-2

B % n n 0
=16 co§§ cosﬁz ( cosﬁi— smzi , (56)

where the fact that cosh(2) is identical for the two edges
has been used. Using E@2) and the fact thatv;= y,=0,
the function cosf(#/2) can be simplified to
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which is valid for both the first and second edges,»as
=a,. If the expression in Eq(57), together with expres-
sions for sid(6/2) and co4#/2), are inserted into E(56),
which is then used in Ed52), an expression folng 2na( 7)
results

c[1+cosyi(7)](1+cosh)
2712 siny,[ 1+ cosé cosy,(7)]?

Nittr 2na( 7) = w(T)

c(1+cosé) 12

T 2a12[ 1+ cosh cosy,(7) ]2

1+cosy (1)
1—cosy (1)

XW(T), (58

where cosgy;(7) can be found from Eqs(53) and (54),
cosé=all, andw(7)=H(r—2l/c)—H(7—2(a+I)/c). In-
cluding the first-order diffraction, Eq47), and second-order
diffraction, Eq. (58), IRs were calculated and transformed
into transfer functions. Figure 10 presents the resulting trans-
fer function for the case with=1 m andd=3 m. Calcula-
tion parameters werk,=78 569 Hz and a DFT size of 2048
was used. These results are very similar to those in Fig. 6 in
Ref. 7. Figure 1(a) shows the second-order diffraction IR
when normalized to the specular reflection amplitude
1/(2d).

In Ref. 11, the amplitude of the second-order diffraction
was presented in terms of the peak value of the function
illustrated in Fig. 11a). This peak value is critically depen-
dent on the sampling frequency and the low-pass filtering
technique used. For purposes of comparison, the process in
Ref. 11 was reproduced as closely as possible. The sampling
frequency was chosen so that the delay between the specular
reflection and the first-order diffraction pulse was an integer
number of steps, using a speed of sound of 1500 m/s. Fur-
thermore, an oversampling by a factor of 8 was used here
and, after transforming the IR into a transfer function using a
DFT size of 16 384, only the first 1024 frequencies were kept
before transforming back to an IR using a DFT size of 2048.
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30 We believe that this is a mistake for three reasons. First, the
E values in Table IV of Ref. 11 are positive rather than nega-
* 25 tive. Second, it is stated earlier in Ref. 11 that the specular
E 20 f reflection was used for normalization for all the results pre-
En | sented, even for off-axis geometries. The third argument is
s B | that our results are very close to the reference results when
= / the specular normalization is assumed, and especially after
Lf 10 // the frequency-domain low-pass filtering was used.
E 5 . The results with our new method are close enough to the
z o ——T reference results for the circular disc to generally support the
04 ! i3 p s p relations derived here, but more comparisons with reference
(@) ’ Time [ms] ’ calculgtlons shoul_d be made. Comparlsons of the frequgncy—
domain values might then be easier to carry out, avoiding
30 ambiguities involving filtering effects as discussed above.
o
E 2 } C. Scattering from a rectangular plate
E 20 | The last example is scattering from a rectangular plate.
g“ 15 J Cox and Lam present an example of a rectangular plate of
T f size 0.30X1.92<0.010m and with calculated directivity
= p plots at two single frequencies, 2012 and 3995'HZhe
£ s — source was positioned at a heightdf 3.96 m, right above
g ol I the center point of the plate. The receiver was moved along
z an arc at a constant radius BE=1.178 m, from the center
'54 4,5 5 5.5 6 points of the plate. The arc was in the direction of the short
() Time [ms] length of the plate. The total reflection strength was calcu-

lated using the boundary element method both for a three-
F'_C'r‘]- 11-1se°°”c§’c;°fge’ diffr;”“’tliot” ;mp-l:rl,sfhre:ponzf Isféhiﬁasenjnl_'t:ig- 8dimensional model and for a thin plate limit model of the
\rgvallts t?een rr::)?rrrllalized trcr:’tr?g(s::eacﬁlar\l\geﬂect?aheAWsan?plicr)19.fre(fugncﬁ/lol:‘ © plate. It was normallzeq to the direct sound amplitude. Fig-
78569 Hz was usedb) An oversampling by a factor of 8, relative ta), ~ Ure 12 shows results using E¢85) and(37) to calculate the
was used and a frequency-domain low-pass filtering as described in the tefirst- and second-order diffraction IRs for an infinitely thin
gave the same final sampling frequency asan model of the plate. A sampling frequency of 257 536 Hz was

used, corresponding to 128 times oversampling with respect
This frequency-domain low-pass filtering should be equivato the target frequency of 2012 Hz. The four edges were
lent to the technique used in Ref. 11. Figurétllshows an  divided into 0.67-mm elements for the first-order diffraction,
example of one such second-order diffraction IR, where thend twice that size for the second-order diffraction. The re-
small ripple indicates the filtering effects. ceiver was moved along the arc in steps of 1 deg. A DFT size

Table Il gives the results for the peak amplitude of theof 8192 was used, to get the transfer function values exactly

second-order diffraction IR, both when calculated using edgat 2012 Hz. The sound speee- 346 m/s was used in Ref. 19
sources as in Eq50), and after the oversampling/frequency- and here, too.
domain filtering described above. Although the results from  If one compares the level of the total field in Fig. 12
Ref. 11 are reproduced here, it should be noted that it isvith the results for the thin plate limit in Fig. 4 of Ref. 19,
stated in Ref. 11 that the values in their Table IV are nor-one can see good agreement for angles between 0 and ca. 80
malized to the first-order diffraction pulse rather than to thedeg. The larger deviations above 80 deg are probably due to
specular reflection, which is used elsewhere in that papethe need for higher-order diffraction components. This is

TABLE Ill. Peak amplitude of the second-order diffraction component for axisymmetric scattering from a
circular rigid disc of radius 1 m, normalized to the specular reflection. Results are either calculated using the
new methodbased on Eq(50)] or taken from Ref. 11. The results denoted LPF have been low-pass filtered as
described in the text. The errors are relative to the T-matrix solution which is considered as the reference
results. The T matrix and WA results were specified in Ref. 11 as being relative to the first-order diffraction
strength, but it has been assumed here that the specular reflection was used for the normalization as discussed

in the text.
Height T matrix WA Rel. error Rel. error Eq. (50 Rel. error

[m] (Ref. 1) (Ref. 11 (%] Eq. (50 (%] (LPF) (%]
11 0.043 0.039 (-9 0.0415 (=93 0.0469 (+9)
15 0.043 0.031 (—-28) 0.0374 (=13 0.0427 (-1
3.0 0.031 0.023 (—26) 0.0278 (=10 0.0293 (=5
5.0 0.024 0.016 (=33 0.0205 (=15 0.0234 (=3

10.0 0.014 0.009 (—36) 0.0114 (=19 0.0126 (=10
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field, specular reflections plus diffraction components, satis-
fies the wave equation. The complexity of the higher-order
diffraction components might, however, prevent this possi-
bility for cases other than the infinite wedge.

The proposed model gives results that, for first-order
diffraction, should be identical to those by the WA motfel.
For second-order diffraction, the results by the proposed
model are very similar to results by methods which are based

Level re. direct sound [dB]

-0 gﬁéihf‘a‘?‘r‘eﬂ, on Medwin’s modef** Conceptually, however, the differ-
-60 :jjjé{sltdoéfgérdég% ence between Medwin’s model and the proposed model is
70 ] significant since the proposed model gives a complete moti-
-90 ‘ -60 -30 0 vation and mathematical proof for the directivity functions of
Receiver angles [degrees] the secondary edge sources.

As for the numerical implementation, very high sam-
FIG. 12. Scattering from a thin rectangular plate, described in the textpling frequencies are often needed. This is because the crude
calculated with the new method. Shown are levels of the total field, of th%w-pass “antialiasing” filter, which is equivalent to the
specular reflection only, of the first-order diffraction only, and of the . . ;
second-order diffraction only. The frequency was 2012 Hz; the source wa$ingle time sample integration, has a gentle roll-off charac-
fixed symmetrically above the plate and the receiver position was variederistic. Refined integration techniques could be tested, and
along an arc. the directivity functions might lead to somewhat simpler
functions to handle, compared to the original Biot—Tolstoy
also indicated in Fig. 12 by the large amplitude of thesplution in Eqgs.(1)—(4). Also, since each higher order of
second-order diffraction component for large receiver anglesgiffraction causes a response that basically falls 3 dB/octave
The deviation at the dip around 30 deg might be caused by more quickly than the previous order, lower and lower sam-
less dense sampling in Ref. 19, or small differences in thgjing frequencies could be used for each new order. This
speed of sound. Furthermore, the smoothness of the totgkcrease occurs, however, above a cutoff frequency which is
field around 10-12 deg, where the specular reflection disapyiven by the size of the individual planes of the object, and
pears, indicates that the numerical method used(4), is  the proximity to the various shadow zones. Below those fre-
accurate enough up to within half a deg from the transitiorhuencies, the response decreases in a way which is more
zone where the specular reflection disappears. This is congifficult to predict.
pensated by the corresponding jump in value for the first- Higher-order diffraction IRs should tend towards
order diffraction. Very high oversampling was used, togetheig ayssian-shaped pulses, according to the central limit theo-
with a very fine division of the edge into elements. This iS;em in statistics, since it is equivalent to convolving any
needed only for the positions close to the transition zone ang,nction with itself many times, resulting essentially in a
fqr the largest _recei\(er e_mgles. For the larger receiver a”_9|e§3aussian function. Thus, properly time-aligned Gaussian
higher-order diffraction is needed anyway, so the total field,,ises with the right areas, widths, and polarities could serve
might be calculated more accurately by using fewer edgeg replacement functions for higher-order diffraction.
elements but higher orders of diffraction. It was shown that the case of axisymmetric backscatter-
A three-dimensional model of the plate was tested agng from a circular disc could yield explicit expressions for
well, but it was then_ clea_r that it was necessary to mcIL_J_dqhe first- and second-order diffractions. It is probably pos-
higher-order diffraction since the results differed signifi- gipie to find such explicit expressions for several other ge-

cantly from the thin plate limit model, when second-order ,ayies too. Further developments could lead to solutions
edge diffraction was included. In conclusion, the results W'”\Nhich satisfy more general boundary conditions.

the new model and the results in Ref. 19 seem to agree well The proposed model is relevant for all cases where

gnough to support the new mode_l as long as it, is rea_llized th%’cattering/diffraction from idealized, rigid, or soft objects is
it may be necessary to include higher-order diffraction COM+t died. such as when the WA is applied to underwater

ponents for some situations. acoustics cases, noise barriers, etc. In architectural acoustics,
most IR prediction models are based on geometrical acous-
tics, possibly handling surface scattering, but without the
The interpretation of the exact Biot—Tolstoy solution for possibility to handle edge diffraction accuratély.The
the infinite wedge diffraction that was presented here has nd€irchhoff diffraction approximation has been tested before,
been proven to be truger se It has, however, been shown but this new model should be much more accurate since it is
that if the existence of analytical directivity functions for the valid at all frequencies and for all source and receiver
secondary edge sources is assumed, such functions can positions'® In electroacoustics, edge diffraction has impor-
deed be derived and yield the exact solution for an infinitetant applications such as the effect of the loudspeaker enclo-
wedge. Since this also leads to a possible application to norsure on the radiated sound; many simpler edge diffraction
straight edges, and the comparison with the result for thenodels have been test&tibut the proposed model should,
circular rigid disc was accurate within 0.20 dB, it is con- here too, prove to be more accurate.
cluded that the suggested interpretation is generally valid. It  In conclusion, deriving analytical directivity functions
should then, in principle, be possible to show that the totafor the edge sources both supports, and takes a step beyond,

IV. DISCUSSION AND CONCLUSIONS
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previous models such as those based on Medwin’s work, anélll expressions so far have been valid for both the upper and
gives new possibilities to solving diffraction problems in the lower branch solutions ah andl. Moving temporarily to the
time domain. These directivity functions support some pre-expressions fodz/dr, this quantity can be found by study-
vious first-order diffraction models, but also demonstrate thaing the total path length=m-+1. A small increase in path
previous second-order diffraction models contain approximalength AL corresponds to a small increaskz, along the
tions, reflecting the greater accuracy of the proposed modeédge, and the relation between these is found by the deriva-
Derivation of explicit diffraction expressions for certain ge- tive of L(2)

ometries, and for efficient and accurate numerical calcula-

tions, become possible using the proposed model.
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APPENDIX A: PROOF OF EQ. (14)

The factorc(rgrgsinh7) " *H(r— 1) in Eq. (1) can be
rewritten, introducing an auxiliary variable

n=cosh ty=log[y+ (y>—1)*?], (A1)
so that sinhy can be written
sinhp=(y?>—1)¥2 (A2)

The auxiliary variabley introduced above ifsee Eq.(4)]

272~ (r3+ri+23)

y= TR : (A3)
and with the relatiorcTr=m+1, y can be written
(m+|)2 (ri+r +z)
S R R (A4)

2rgrr

By further using the relations fan andl (see Figs. 1 and)2

m=(r+2%)'?, (A5)
and

I=[r&+(z—2zr)?]"2 (A6)
it is possible to writey as

y- ml+rzs(rzR—zR) ' (A7)
Now, using Egs(A2) and (A7), it can be found that
rerrsinhy={[ml+z(z—zg)]2—rr3}*?

=[m?124 22(z— zg) 2+ 2mlz(z— zg) — r 4r 312
(A8)

By further employing Eqs(A5) and(A6) to get rid ofrg and
rg, itis found that

refrsinhy=[221%2+2mlz(z— zg) + (z— zg)’m?]*?

=|zl+(z—zg)m|. (A9)
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dL z z—z zl+(z—zg)m
d_z z-z_zl+(Ez-zm AL0)
dz m | ml

which, usingAL=cA 7, leads to
1dz c

mldr  zl+(z—zg)m’ (A1D)

or both the upper and lower branches of the edge, which is
e left-hand relation in Eq14). Sincedz,/dr is always
ositive, Eq.(A11) implies thatz,|,+ (z,— zg) m, also must
ways be positive. Then, Egg\9) and(A11) show that the
ght-hand relation in Eq(14) holds true.

APPENDIX B: PROOF OF EQ. (16)

The relation in Eq(16) is shown using the definitions of
the anglesx and v.

sine=z/m, cosa=rg/m, (B1)
siny=(z—zg)/l, cosy=rgll. (B2)
If these are inserted into E¢A7),
z(z—z
14 2272 o
ml+z(z—zg) ml 1+sinasiny
B rofr ~ rg’gr COSacOSy
ml
(B3)

which is the relation in Eq(16).

APPENDIX C: PROOFS OF EQS. (42) AND (43)

For the thin plate case, the wedge indexequals 0.5,
and then thed term in Eq.(1) can be simplified. The quantity
coshn) is, for the wedge index=0.5,

h— 1 -7\ 1lexpn+1 -

Ccos exp2 +exp—— 2 E W ( )
Squaring this expression gives
1 exp2n)+2ex

cos r% 7 lexp27n) A7)+ ©2

T4 exp(7)

The expression fom in Eq. (A1) can be employed, which
readily leads to the simplification

m_ y+1

5 (C3

cosﬁ

The auxiliary quantityy can then be written as in E¢B3),
which yields
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n l+sinasiny+cosacosy 1+coga—7y)

COSHE - 2 COSa COSYy ~ 2 cosa cosy
cog[(a— )2
_cos[(a—v)/2] _ Ca
CcOSa COSy

Then, coshf/2) can finally be expressed as

COShz— cog(a—v)/2]

2  (cosa cosy)l?’ (€5

which is the form in Eq(42). Taking the square root of the
right-hand term in Eq(C4) is safe, ase and vy are always
within the range— /2 to w/2. Furthermore, the sine and
cosine terms in the expression f8rin Eq. (1) can be sim-
plified, since

SiMv(7+ 05+ 0g)]=sin{[ 7+ (0= 0) 112}

=cog (0s* 6r)/2], (Co)
cogv(m= Os* Og)|=cog[ m*(0s* 0g)1/2}
=*xsin(0s* 0)/2], (Cc?
and allows thes term to be written as
cog (05t 0R)/2]

B(a! Vs 63’ GR) = COSI’( 77/2) + S"{( 95"‘ GR)/Z]

cog (05— 0r)/2]

T oSl 7/2) + sin (6s— 6r)/2]
cog (05— 0r)/2]

oSl 7/2) —sin (6s— 6r)12]
cog (05t 0R)/2]

T oSt 7/2)—sin (6t 6)/2]

=2 cosh n/2)
cog (0s+ 0g)/2]
cost( 5/2) —sir’[ (0s+ 6g)/2]
cog (05— 0R)/2]
oSk (712) —sir?[ (0s— 60)/2] |
(C8)

where coshg/2) is given in Eq.(C5), and this is the form in
Eq. (43).
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